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ON STRONG OPERATIONS

Vu Duc Th<

MTA STTAKI

§1. INTRODUCTION

The families of strong dependencies were introduced and
investigated in (1,2]. In this paper we define strong operations
and investigate the properties of strong operations. Based on
these properties we give some combinational results which are
related to the families of strong dependencies.

First we give some necessary definitions, and in §2. formu-

late our results.

§1. DEFINITIONS

Definition 1.1. Let R={h1,...,hm} be a relation over the
finite set of attributes Q, and A,BSQ. Then we say that B

strongly depends on A in R. (denote A % B) if

(vh, ,h4€R) (( a€A) (h, (@)=hj(a))~(¥beEB) (h; (b)=hj(b)));

Ayrh

B functionally depends on A in R (denote A B) 1E£€

(¥h, ,h4€R) ((¥a€R) (h; (a)=hj(a))~(¥be€B) (h; (b)=hj(b))).

Let

e o " S

B Bl

SR is called the full family of strong dependencies.
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Definittion 1.2. Let R, R, be two relations over Q. We say

2
that Ry and R, are s-equivalent if SR1=SR2-
- . ; : ’ 5
Rl is an irredundant relation if for all R CRl S SR,+SRl .

Definition 1.3. Let Q be a finite set, and denote P (Q) its
power set. Let Y-P(Q)xP (Q). We say that Y satisfies the S-

axioms iff for any A,B,C,D&Q, a€q.

(sl) ({a}, f{a}) ey ;

(s2) (A,B)eY, (B,C)eyY, B#p - (A,C)EY ;
(s3) (A,B)€Y, CEA, DEB - (C,D)€Y ;
(s4) (A,B)ey, (c,D)ey - (AnC, BuD)E€Y ;
(s5) (pA,B)eY, (c,D)ey - (AuC, BnD)€Y .

It is clear that SR satisfies the S—-axioms.

Definition 1.4. Let Y _P(Q)xP(Q).

We say that Y satisfies the C-axiom iff there is a family of

2
subsets of Q, {Ei g i=1,...,2;ig Ei = Q} such that
(i) for any A,BS E., =~ (A,B)eY ;
EiﬂA#¢
(ii) (€,;D)ey,; CﬂEi#:Q) = B gEi .
§2. RESULTS

Theorem 2.1. Let Y-P(Q)xP(Q). Then Y satisfies the S-axioms

iff Y satisfies the C-axiom.

Proof. First we suppose that Y satisfies the S-axioms. Then
by (S1), (S3), and (S5) for each a€Q we can construct an
E; (E;£Q) so that ({a},E;)€Y, and VE':E.CE’' implies ({a},E’)¢Y.
It is obvious that aeEi, and we obtain nnsuch Ei-s, where /Q/=n.
Thus, we have the set E={Ei:i=l,...,n; iglEi=Q}. We assume that
A={al,...,ak : ajeqQ, j=1,...,k}#0, and Bl is a set such that

(A,Bl)eY, ¥B,:B,CB, implies (A,B2)¢Y. According to the
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construction of E, it is clear that for each ?jthere is an

4 4 . N . =
EijeE sg that ({aj},Eij)eY. By (S4) we have (jglzaj, j=lElj)
=k(A, jg E,  )€Y. By the definition of B, we obtain
leEijg B1:1 On the otherhand, by (A,Bl)eY, and by (S3) we
have é{a-},Bl)eY for allkj (3=1,...,k). Consequently,

c N $
Bl==j=l Eij ; l1.e. B
nEi e Kk
n

BiNA%0 3

=.N_E, It is obvious that
1 3=1 iy

E;. - Thus, for all B (BS N E; ) : BEB, .
1 73 EiﬂA#¢

Consequently, (A,B)evy. If (C,D)e€Y, CnEi#¢, then we assume
that aleCﬂEi . On the otherhand, suppose that a is an attribute
such that ({a},E,)€Y, and VE’:EiCEV implies ({a},E’)§Y. By

eEﬁ, and (s3) (f{a}, {al})eY holds. By (S3), and a,€C we

B i

oétain ({al},D)eY

Consequently, by (S2), and al$¢ ({a},D)eY holds. According
to the definition of E, we have DgEi. Thus, Y satisfies the C-
axiom. It can be seen that by convention N¢=Q, for all B (BEB)
we have (¢,B)€Y. The proof of the reverse direction is easy and
so will be omitted. The theorem is proved.

Now, we define thefollowing operation.

Definition 2.2. Let Q be a finite set. The mapping

F: P(Q)»P(Q) is called a strong operation over Q if for every
a,b€Q, and AS Q, the following properties hold:

(i) a€F ({a}l),
{ii) beF ({a}) - F({b}) € F({a}),
(ii1): @A) = agAF({a}).

Remark 2.3. It is easy to see the following elementary

properties of strong operations.

For A,B€ P(Q) : F(AUB) = F(A) N F(B). By convention nN@=Q we
obtain F (@)= Ng=Q .

For ASB F(B)SF(a).

Definition 2.4. Let Y=P(Q)xP(Q). We say that Y is an s-

family over Q, if Y satisfies the S-axioms.
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Lemma 2.5. Let S be an s-family over Q. We define the
mapping Fg: P(R) — P(Q) as follows: FS(A)={a€Q: (A, {a})€s}. Then
FS is a strong operation. Conversely, if F is a strong operation,
then there is exactly one s-family S so that F=F
s={(A,B): A,BEP(Q):BSF (A)} .

g’ where

Proof. Suppose that S is an s-family. It is obvious that
VaeQ:aGFS({a}). By Theorem 2.1. S satisfies the C-axiom, and so
we have (C,D)eS, and CﬂEi#¢ implies DgEi. It can be seen that in
Theorem 2.1 for any a€gQ, FS({a})e {Ei:i=l,...,n, [Q/=n}.
Consequently, (b,FS(b))GS, beFS({a}), i.e. (A,FS(A))GS,

Va€A : AMFg(a)#® imply Fo(A) =Fg(fa}). Thus, Fg(a) €
On the other hand, by (S5) in the S-axioms we obtain

Va€eA: ({a}, FS({a}))GS implies (A,agAEé({a}))GS, 1.8

n = = NF
2682 FS({a})= FS(A). Consequently, FS(A) aeA({a}) holds.

Conversely, assume that F is a strong operation over Q and
S={(A,B):BSF(A)}. We have to show that S is an s-family. By
Theorem 2.1 we prove that S satisfies the C-axiom. We set
E={F ({a}): a€eQ, /Q/=n}. By the definition of S it is obvious
that BS F”( {ab;)(eri;& implies (A,B)€S by F”( {a}F)(n{g% S F(A). On the
other hand if (C,D)e€S, and CNF ({a})#¢®, then we assume that
beCnF ({a}), hence by (ii) be€F ({a}) implies F({b}) € F({a}). It

is obvious that D§F(C)=d%%({d}). By beC, and é‘eFC({d})g F ({b})

we obtain DEF ({a}). It is clear that ¥ASQ: (9,A), (A,P)e€s. It
can be seen that F=FS. Now, we suppose that there is a s-family

S’ so that FS,=F. By the definition of S and F we obtain S’ES.

If (A,B)ES, then B%F(A)=Fs,(A). By the definition of FS, we have
(A,B)esS’. Consequently, S’=S holds. The proof is complete.

N (
aeaFe (fal).

Remark 2.6. Clearly, if Fl and F, are strong operations
(F1$F2), then Sl%Sz, where for i=1,2 : Si={(A,B): A,BSQ: BgFi(A)}.

Definition 2.7. Let S be an s-family over Q. We say that a

relation R represents S iff 8,=5.

In [2] the equality sets of relation are defined as follows.
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..,hm} be a relation over Q.

Definition 2.8. Let R={hl,.
Denote by E; . the set {aGQ:hi(a)=hj(a), 1<i<j<m}. We set
]
= . <4 .
E {Elj : l_1<3Sm}.
Now, we give a necessary and sufficient condition for a

relation R to represent an s-family.

Theorem 2.9. Let S be an s-family, and R be a relation over

Q. Then R represents S iff for each a€Q:

F.({a}) = NE,; if 3E, : a€E, .
= a€E; ] 15 13
14 (1)
FS({a}) = 0 otherwise.

Proof. By Lemma 2.5 gr=S holds if and only iZ Fgp=Fg-

Consequently, first we show that

F. ({a}) = nE,  if E, :a€E, . ,
Sgr a€el] 3 3
2
and in other case FSR({a})=Q holds. Clearly, FSR({a})=
= {beQ : {a} % {b}}. Accordint to the definition of strong

dependency we know that for any a€Q: {a} % B <« {a} % B, where

a#®. Let us denote by T the set {Ei" :aeEi,}. It is obvious

that if T=¢, then {a} % Q. i.e. FSR({a})=Q. If T#® holds, then

we set A = fWEi_ . If T=E holds (E is the set of all equality
aeEig p

sets of R), then it is obvious that {a} B A. If TCE holds, then

for Ei,: Eij$T, hi(a)#hj(a). Consequently, we have also {a} % A.

Denote A’ the set with the following properties:
(1)  fa} £a’,
(ii) A'CA" implies {a} % A%

It can be seen that A’=A. According to the definition of FSR we

obtain Fg,({a}) = NE.. . Thus, if S_.,=S holds, then
=
B (fa}) = 0NE. , if 9 E;. 2a€E. .
S aeEi? 15 iy

1)
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FS({a}) = Q otherwise.

Conversely, if FS satisfies (1), then according to the above

part for any a€Q we have Fs({a})=FSR({a}). Because F_. and FSR

S
are strong operations, and by Lemma 2.5. We obtain
VASQ: FS(A) = FSR(A). Consequently, Fg=Fg, holds. The proof is
complete.

We say that a relation R represents a strong operation F iff

F=FSR . Based on Theorem 2.9, the next Corollary is obvious.

Corollary 2.10. Let F be a strong operation, R be a relation

over Q. Then R represents F iff

F({a}) = nE,, if 3 E, :a€E, .
acet] 15 ij !
13
F({a}) = @ otherwise ,

where a€Q.
Clearly, from a relation R we can construct the set of all
equality sets of R. Consequently, a following corollary is also

obvious.

Corollary 2.11. Let R be a relation, and F be a strong

operation over Q. Then there is an effective algorithm, that

decide whether R represent F or not. This algorithm requires

time polynomial in the number of rows and columns of R.
Based on Theorem 2.9. We going to construct an effective

algorithm, which determines an irredundant relation.

Algorithm 2.12. Let R={hl,...,hm} be a relation over
Q={al,...,an}.

Step 1l: From relation R we construct

E={E, :E.. is an equality set of R 1<i<qy<m} .
l:] lj

If there is not an Ei' so that Ei,$¢ /| then we choose any

J
pair hi’hﬁ . It is obvious that R’={hi,hj} is an irredundant
relation such that SR’=SR . Now, we assume that atyre--sat, are
attributes such that Eij:athEij , Wwhere g=1,...,4% .
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Step 2: We construct sets of indexpairs, as follows:
€Ey see s Ty=0(1,9): atzeEif. Let A= N Eij P

Ir=401,9): a
- 5 ¢ eEi'
% =3

i &

q = 1yeuiilks

It is obvious that %2<n. Denote by Si the number of elements
ef Ty iA=L, . eie ;%

Z 1 2

Denote Ii(j)’ and Ii(j) the first and second indices of jth
pair in Ii' =1 e i ISjSBi. After that we perform the
following bloc-scheme.
I, (18, T,..., 1,115,

c:=¢, p:=1

yes

t(pstsz) so that

] 5
3(Ip(q),k)eIt.Atanij

i#IE(q), and j#k
or
S -
3(k,1p(q))€It.AtCnEij

s
C:=C
UIJq)

#k, and j#I:(q

From all It(pstSL) delete
(19(a),3), (1,13(q))-s.
It can be seen that if I =
contains (I;(q)) or (i,Ip(q)),
then St decrease
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Then R’={hi:i€C} is an irredundant relation such that R’ER,

and S =S itern-S and S_ are s-equivalent.
R B K

RI

Proof. It is clear that by Theorem 2.9., and Lemma 2.5. we
have SR'=SR' It can be seen that in Step2 the Algorithm
formulated in the bloc-scheme deletes all redundant rows of R.
Thus, R’ is an irredundant relation.

The proof is complete.

Remark 2.13. It can be seen that Algorithm 2.12 requires

time polynomial in the number of rows and columns of R.

Example 2.14. Let ©@={1,2,3,4,5,6} and

R={hl,h2,h3,h4,h5,h6,h7}
be a relation over Q.
Attributes: 1 2 3 4 5 6
J-%00! 4002 2 T2
2+ © @k 3 830
3 3.3 2 1 0
R=1 1 2 4 3 3
4 .2. 4 1 0O I
5 27 4 5 4 4
6 4 5 5 5 b5

Clearly, E12=E56={2,3}, E23=E67={4}, El4={l}, E23={6}, and
E2,=1{5}.

Consequently, I,={(1,4)}, I,={(1,2),(5,6)}, I,={(1,2),(5,6)},
I4={(l,3),(6,7)}, IS={(2,4)}, and 16={(2,3)}.

It is obvious that A2={1}, A2={2,3}, A3={2,3}, A4={4},
A5={5}, and A6={6}.

It can be seen that by Algorithm 2.12 we obtain C={1,2,3,4},

i.e. 1 68 22 2
=2 6 0 3 38 ©

5 .2 3 2 & B

1 1 2.4 3 3



- 99 -

Definition 2.15. Let T€P(Q), and I closed under inter-

section. Let M=P(Q). Denote M’ the set {nM’':M'EM} . We say that

M generates I if M+=I.

By convention n@=Q, i.e. M+ always contains Q, so Q is never
required in M. It is obvious that Q€I.

J.Demetrovics in [2] showed that for a given family M of
subsets of @ there is exactly one family N, which generates M+,

and has minimal cardinality.

Lemma 2.16., [2] Let M=P(Q) be a family over Q. Let N =
{A€M: (¥B,CeM) (A=BNC - A=B or A=C)}. Then N generates M' and if
N’ generates M+, then NEN’. It is possible that @€N.

By Remark 2.3 we obtain F(AUB)=F(A)NnF(B) for A,BEP(Q), where
F is a strong operation. Thus, the set {F(A):2€Q} closed under

intersection. It is easy to see that
The set {F({a}) # Q: a€Q} generates {F(A): ASQ} . It is

possible that a#b, but F({a})=F({b}). It is known (see [1,21)
that if S is an s-family over Q, then there is a relation R over
2 such that SR=S. However, here we construct for a given s-

family S a simple concrete relation R so that R represents S.

Proposition 2.17. Let S be an s-family over$2={al,...,an}.
Let {FS fal @ A=144s:500 ={Al’°"'Ak:Ai+Aj' 1<izk, lSjSk,
i#j, k=n}. We set T={Al,...,Ak}, and

N={A€T:A#Q, (¥B,CET) (A=BNC»A=B or A=C)}. Suppose that
N={B1,...,B2}, (2<k). Then we set R={ho,h1,...,h2} as follows:
for all aeQ:hO(a)= (6%
0 if aeB, ,
for each 1 U=li.e-0l) ¢ hi(a) =

T otherwise .

Then R represents S, i.e. SR=S.

Proof. By Theorem 2.9 we prove that for each a€Q:
N B
i

J
a€E; |
+3

i AVEL i a€Bay o,
g i

FS({a}) o 3 ]

Q otherwise.

Fg({a})



It is easy to see that if FS({a})=Q , then there is not an Eij

so that aeEi. (by the construction of R). If F({ait})=Bt, then
J

by (ii) in Definition of strong operation we have VBk:aiteBk

implies FS({ait})=Bt gBk. Consequently,

F.({a;, 1) = NEy = By = B,.
S 1t aeEit t T
For a;,€Q : F({a;,}) =B N...N By, . We obtain that for any
1 it J Jt
By (ait €B,) F( {ait}) gBk by (ii). Consequently,
( }) NE L E
P ({a; = & = N o
$a aeEi% g=1 ©°Jq

It can be seen that by (ii) for any a (a€Q) so that

F({a}) = F({aj,}). We have
t
F{{a}) = N E." =K or F({a}) = NE, = n E_,
aGElJ Pk aeElJ q=l ojq

The proof is complete.

Based on Proposition 2.17, if can be seen that if F is a
strong operation over Q, then there is an effective algorithm
(this algorithm requires time polynomial in /Q/), which
determines a relation (it is analogous to R in Proposition 2.17)

or that this relation represents F.

Definition 2.18. Let S be an s-family over Q. Let

Q(S)=min {m: SR=S, /R/=m, R is a relation over Q}. Thus, Q(S)
is the number of rows of minimal relation which represents the

s—-family S.

Corollary 2.19. Let S be an s-family over Q.
Let
T ={FS({a}): a€Q} and N={A€T:A+Q, (¥B,CET) (A=BNC-+A=B or A=C)}.

Then if /N/=0 i.e. T={Q}, then Q(S)=2. If /N/21, then
szog27N7 < Q{8) = [N]+1 & [0]+l.

Proof. According Theorem 2.9 if R represents S, then



O =

F . ifal) = mEe - A -IE, tragkl,

£ a€E ] v il
3

FS({A}) = Q otherwise .

It is easy to see that if T={Q}, then for all Eij we obtain
Eij=¢. Consequently, Q(S)=2

It is clear that according to the definition of strong
operation N determines the family {FS({a}): aenl}. It is obvious

that /Q/=/N/ and for VAi,AjeN (Ai%Aj) we have

{(i,5): l<i<jsm, [R/ m, AiSEij} +

{(i,j): l<i<jsm, /R/ = m, Ay S D 5

1j
) _
Consequently, /N/<2 . Thus, J210927N/<m. By Proposition 2.17

Q(S)</N/+1. The proof is proved.

The next corollary is obvious.

Corollary 2.20. Let Q(n)=max {Q(S): S is an s-family over Q,
/R/=n}. Then Q(n)<n+l.

Definition 2.21. Let

TEP(Q) and let N={A€T: A+#Q, (¥B,CET) (A=BNC-A=B or A=C)}.

Then we say that T is s-semilattice if T closed under inter-
section, Q€T and N satisfies (1): for all AEeN

(3aen) (AieN and A¢Ai b aeAi) 3

Theorem 2.22. Let F be a strong operation over Q. Let

Tp= {F(A): AEP(Q)} and

NF={A€TF: A#Q, (¥B, CGTF) (A=BNC - A=B or A=C)} .

Then TF is a s-semilattice. Conversely, if T is any s-semilattice,

then there is exactly one strong operation so that T=T Where

P
for each a (a€eQ)



I

F({a}) = N Ay if JA,eN:ae€r, ,
aeA.
9
A.EN
o
Bli{ab) = a otherwise

Proof. It is obvious that for arbitrary strong operation we
have ¥A,BEP(Q): F(AUB)= F(A)NF(B), F(®)=0 and ASB-F (B)SF (A) .

Consequently Q€ TF and T_, closed under intersection. Now we

F
assume that AGNF. If there is not attribute a so that F({a})=A,
then if A=F(B) (/B/>2), then A = ‘;fe(ébi”.
i
definition of Ng. Consequently, there is attribute a (a€R) so

that F({a})=A. It is obvious that a€A. Clearly, NF satisfies (1).

Conversely, we assume that T is a s-semilattice over Q. Then

This contradicts the

we set for each a (a€Q)

F({a}) = 0NAj if 3A;€EN:a€r; ,
beEA.
3
A.€EN
3:
F({a}) = Q otherwise.

Clearly, for all AEN (Ja€ A: AieN and A¢Ai - aeAi)we obtain
F({a})=A for different set A(AEN) is easy to see that there is
attribute a so that F({a})=A. Consequently, VAEN: a€Q: F({a})=A.
Now we prove that F is a strong operation. According to the
construction of F it is clear that a€F({a}) and if there is AieN
So that a€A., then F({a})€N'. If beF({a}), then

F({b}) = NA; EnAay =F({a}).
aeAi aeAi

A.€EN A.€EN
3 1

It is obvious that the set {F({a}): bEQ} determines the set
{F(A): A€P(Q)}. Consequently, F is a strong operation and T=TF.
If we suppose that there is strong operation F’ so that T=TF’ -
Then for all a (a€Q) there is b (b€R) such that

F({a})=F' ({b}). It is obvious that a€F’ ({b}). Consequently, we
have F’ ({a}) € F({a}). On the other hand, there is attribute

c (c€Q) so that F'({a})=F({c}). By a€F ({c}) we obtain
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F({a}) S F’ ({a}).

The proof is proved.

Definition 2.23. Let S be a s-family over Q, and (A,B)E€S.

We say that (A,B) is a maximal right side dependency of S if
¥B':BSB', (A,B')es - B=B’,.

Denote by M(S) the set of all maximal right side de-
pendencies of S. We say that B(B ) is a maximal right side of
S if there is an A such that (A,B)EM(S). Denote U (S) the set of

all maximal right sides of S.

Corollary 2.24. Let S be a s-family over Q. Then u(sy is =a
s-semilattice. Conversely, if T is a s-semilattice, then there
is exactly one s-family so that T=U(S). By Lemma 2.5 and

Theorem 2.22 this corollary is obvious.
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Az erds operacidkrol

Vu Duc Thi

Osszefoglald

A szerzd az erds operdcidk tulajdonséagait vizsgalja. Néhany
uj kombinatorikus eredményt is ad, amelyek az erds fliggdségek

csaladdjaira vonatkoznak.

CUJIbHHE OIepaliuu

By ek Txu

Pe3swmMe

B HacTosAmey paboTe H3y4YaeTCHd CBA3b MExIy CHJIBHEMH ornepa-

IIUAMH H CHJIBHEIMMH 3aBHCHMOCTSAMH.
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