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LATTICE POINTS IN DIFFERENCE SETS

В. UHRIN 

MTA SZTAKI

1. Let A be any Lebesgue-measurable set in Rn. By the dif­
ference set of A we mean the algebraic difference of A with 
itself. We shall denote this set by D A , i.e. D A  := A - A.
D A  is clearly symmetric(about the origin), i.e. D A  =  -  D A .

The most familiar example for a difference set is any symmetric 
(about 0) convex set K, because К = D (-̂ K) . Denote by Д C Rn 
the set of points having integer coordinates (lattice points). 
The quotient space Rn/A is usually identified with the set 
P := {x G Rn : 0 £ xi < 1, i = l,...,n}. The cardinality of 
the finite set S C. Rn will be denoted by js[ .
The present note studies the question: what is the connection 
between JD A  П Л| and the volume (L-measure) V(A) of A?
It is intuitively clear that if V(A) is too small then we 
cannot in general expect that D A  will contain non-zero lattice 
points. For example the open unit hypercube
C := {X G Rn: |x̂ | < 1, i = l,...,n) has the volume V(C)=2n ,
but the only lattice point in C is the origin 0. However if 
we increase this set a little, i.e. take the set 
С' := {x: IXjJ < 1+E, i=l,...,n}, where e > 0 is arbitrarily 
small, then V(C') > 2n and Jc'n A| = 3n.
The latter example reflects a more general rule: if for any
symmetric (about 0). convex set К we have V(.K) > 2n then
j К П A j >1. (This is the well known Minkowski's convex body

1theorem, see [1].) Taking into account that V(K)/2n = VOs- K) ,
1 zwe can formulate this statement in terms of D (-̂ K) :

V(jK) > 1 => I £<2 К) П П| >1.
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This result proved to be true for any measurable set A: 
if V(A) > 1 then J Z7A П A J >1. (This is the generalization 
of Minkowski's theorem due to Blichfeldt, see [1]).
On the other hand, let us look at the set S on Figure 1,

Figure 1

It is symmetric and convex, its volume is eL, but ft contains 
^ L//2" lattice points. So we have a set of "almost zero volume" 
containing "almost infinitely many lattice points".
The basic aim of this note is to give a rule which sharpens 
the Blichfeldt!s result and which works also in the above case 
of "thin sets of small volume containing many lattice points". 
The second aim is to present a new method of proof which seems 
to be at most natural and simple when compared with known ones.

0-> о

2. The basic tool in our investigations will be the so called 
lexicographic ordering of points in Rn, denoted by , It is
defined as follows: x >. 0 if and only if either x1 > 0 or
x^ = x2 =..= x^ = 0 and x^+  ̂  ̂0 for some 1 i < n,
Of course, x > у means x-y > 0. This is a total (linearl 
ordering in Rn consistent with the addition of vectors.
Let H c Rn, be any finite set containing the zero vector 0
and symmetric about 0 (i.e. H = -H). If we want to list all
elements of H, we can proceed in the following way:
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First take 0. Secondly, take h-̂  G H that is the first 
positive (in the ordering^*) element of H (i.e. 1^ > 0 and 
there is no h G H such that h^ > h У 0). It is clear that
-h^ £ H and -h1 is the first negative element of H (-ĥ  4r 0 
and there is no h G H s.t. -h.̂  4 h 4 0 ) . Take the second 
positive element of H, h2, (i.e. h2 > h^ and there is no
h G H s.t. h2 У  h>h^). Again -h2 is the second negative 
element of H. And so on. In this way we list all elements of 
H and we get

H = {-h 4 -h , 4 . • *- -h,4 h_ = 0 4 h.4 h„4 —  4 h } . q q-I 1 0 1 2  q

At the same time we have just also proved that | Hj is an 
odd number. Now, let A c Rn be an arbitrary measurable and 
bounded set. Applying the previous remark, we have for some
p > 1

(1) PA П A = i-r'kp_^4-bp_2 4 . .<-b^4 0 4 b-̂ 4 b2 4 ... 4 b^ , 

showing that

(2) I PA П ДI = 2p-l.

The relation (2) implies that

(3) IА П A i <_ p.

Indeed, assume that q -= |a П A| ?" p. Writing А П A in the
order > , we have А  П A = {an 4 a~4 ...4 a }. The elements1 2 q
al~aq 4 а!-а ! 4 ... 4 a1~a2 4 0 4 a2"a! <  аз“а1^ • • • 4 a ^  
are mutually different and all belong to PA П A, This implies 
that j PA П A J >_ 2q-l > 2p-l that contradicts to (2) ,
In general А П A may be empty (hence j А П A j =0) but (2) 
may hold with some p > 1. The second "extreme” case of (3) is 
when IА П A J = p. This implies quite strict conditions on the 
structure of А П A, namely we have
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P r o p o s i t i o n  1. Assume (2) holds and |A П Лj = р. Then 
А П Л = {a, a+d, a+2d, . . ., а+ (р-1) d} for some a G Л and ű У  ó 
(i.e. А П'Л is an arithmetic progression in the lexicographic 
ordering). n
The proposition will be a simple consequence of the following.

L e m m a . Let S,H C Rn be two finite non-empty sets. Let 
S+H be their algebraic sum. Then

(5) |S + H| > IS Í + |H| - 1

and equality is in (5) if and only if S and H are of the 
following form: S = Ís,s+d,...,s+(r-1)d },
H = {h,h+d, . . . ,h+ (q-1) d} , where d > 0 , r=]s|, q = j h | . □

P r o o f . Write S and H in the order У  , say,
s = {£ ...<s„ ,}, H = {h h, X . . . ■< h . } . Now weО 1 r— i О -L q-1
have

<6> sG+ho < s0+h1 . . . < s0+hq_1 4 sl+hq-l < ■ ■ ■ < S r - l + h q - l '

which proves (5) .
The "if" part of the equality statement is clear. As to the 
"only if" part, denote sij:= si+^j and
Lj := U oo'sol' * * ‘ ,soj ' slj 'S2j ' * • * 'sr-l, j ,sr-l, j+1' * ' * ,sr-l/3-l} ' 
j = 0,1,...,q-1. Each Lj consists of lexicographically 
increasing sequence of elements, begins with sqo and ends 
with s r _ i  q-l* T h i s  implies, using the assumption 
IS + H| = r + q - 1, that each Lj represent the whole set 
S + H .  This further implies that the k-th elements of any two 
Lj-s are equal, к = 1,2 , . . . , r+q-1. So we have for Lj^, Lj 
and Lj+ :̂ s . + h . . i D-l S±_1 + si+l + hj-l S1 + hj'
s. ,, + h. = s. + h . .. . This implies : d = s. - s. . —i+l j l j+1 ^ 1 l-l
= s.,i - s. = h. - h. -1 = h . ,. - h . .i+l l 3 ]-l j+1 3
Here i and j were arbitrary, so the lemma is proved, ■
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Proof of t h e  proposition: It is clear that

(6) D A  П A 2 D (А П A) .

Using (5) with S : = А П Л ,  H := - (А П A) , we have

(7) |PA П A| > ID (А П A) | > 2p - 1, 

hence

(8) 12? (А П Л) I = 2  I А П Л I - 1.

The lemma now implies the result. ■

The relation (2) implies a more general inequality, containing 
(3) as a special case. Namely, it is cleat that D A  is inva­
riant under the translations of A, i.e. D (A-x) = D A  for all 
X G Rn. So (2) implies

(9) I D A  П ЛI = ID (A-x) П A| = 2p - 1,

hence all results proved above hold for A-x instead of A, 
say :

(10) I (A - x) П Д J ^ p.

The function | (A-x) П Д| (of x) is periodic modA,, i.e,
I (A-x+u) П AI = J (A-x) П Л J, Vx, Vu, hence when dealing with 
it we can restrict ourselves to the set P (a basic cell of A) .
(9) and (10) give

Proposition 2. For any set A C Rn we have

(11) I PA П ЛI >_ 2. max| (A-x) П A| - 1. □
x6P
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3. Let us study now the volume (L-measure) V(A) of a 
L-measurable bounded set A C Rn. Using A, we get two de­
compositions of A:

(12) A = U ( (P+u) П A) ,ueA

(13) A = U (А Л (A+x) ) .
xep

In both decompositions the sets in the union are mutually 
disjoint. In (12) only finite number of sets are non-empty, 
hence

(14) V (A) = 2 V( (P+u) П A)ueA

(where the sum is finite) .

In (13) each А П (A+x) is finite, so we have to collect many 
of them to get sets of positive measure. This can be done, 
say, in such a way that we put together the sets А П (A+x) 
having the same cardinality.
For this denote

(15) A^ : = { x £ P  ; 1А П (A+x) 1 = i> , i 0,1,2,,,, .

For x G A±, i > 0, the set А П (A+x) is of the form

(16) (a1 (x) = ^  (x) + x, a2 (x) = u2 (x)+x,... , a^x) = UjM+x}

Let us partition A^ further according to the rule: x,y 6 A^ 
belong to the same set if Uj(x) = u^(y) for all j=l,2,...,i. 
This will give a finite partition of A^, say A.^, 
к = 1,2,...,N(i).
Hence we can write
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« N ( i )
(17) A = U U U (A П (Л. + X)) .

i = l j =1 x6A. .ij

Clearly, there are j / 6 A. such that

(18) U ( A  fl (Jl+ X)) = Ù ( A . .  + u. .).
x6A.. k-1 13 KDij

Substituting (18) into (17) we get
00

(19) V (A) = Z i • V (A. ) .
i= 1

The set
oo

(20) ф (A) := У A. = lx 6 P: A (1 (Л + x) / (?}
i= 1

plays an important role in the algebraic theory of Rn . It is 
nothing else then the canonical map of A into the tours 
group Rn/il (after identifying Rn/A with P) . This mapping is 
important also in our investigations. The quantity

OO
(21) V (<p (A) ) = Z V (A • )

i= 1
is the measure of the projection of A into Rn/A.

4. Now we put together the results of previous two sections 
to get main results of this note. It is clear that 
i (A-x) П Лj = Ja П (Л + x) J for all x E P,

P r o p o s i t i o n  3. For any bounded L-measurable set A C Rn 
we have

(22) I D A  П Л I • V  ( ф (A)  ) ^  2 V ( A )  -  V  (.q> (A). ) .
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P r o o f . (19) and (21) shows that V(A) = 0  if and only if
V(<p(A)) = 0. Let V(A) > 0. Inequality (11) implies that

(23) I D A  П ЛJ > 2i - 1

holds for all i such that V(A^) > 0. Hence

(24) |űA П A|*V(Ai) 2i V(A±) - V(A±).

Summing up both sides of (24) we get (22). ■

P r o p o s i t i o n  4. Let A be as in Prop.3. If for some 
positive integer m we have V(A)/V(cp(A)) > m, then there 
are 6 A , i = l,...,m, such that

(25) { -u 4 -u ! -< . • • 4 -u, <  0 <  u, ■< u, .. . -< u } с и  il A, □m m— 1 l i z  m —

P r o o f . Using (22) and (2) we see that p-l f  m, so (1) 
gives the result. □
This result is clearly sharper and more "exact" than that of 
Blichfeldt. Moreover, sets of the type seen on Fig.l are 
succesfully treated by this rule. For such sets V(A) may be 
very small, but V(cp(A)) is necessarily smaller (see (19) 
and (21) ), so that their ratio may be quite big. For the
investigation of this ratio the representations (19) and (21) 
are very useful.

5. In the course of our proofs we have used two structural 
properties of Rn only: it is an Abelian group having a total 
(linear) ordering consistent with the group operation.
Hence all results are true in the same form for any topological 
Abelian group G and its discrete subgroup A, assuming that 
A can be totally ordered. (Of course we have also to assume 
that the quotient group G/А is compact.) In this case V 
means the Haar-measure in G.

i
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The method sketched in this note can be succesfully developped 
to prove some estimations in geometry of numbers which are 
both more general and sharper than the known ones, see [2], [ 3].
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Differencia-halmazokban levő rácspontok

Uhrin Béla

Összefoglaló

A cikkben az (A-A)ПЛ halmaz számosságára vonatkozó alsó 
becslésektől van szó, ahol A C Rn L-mérheto halmaz és A 
egy pontrács (diszkrét részcsoport) az Rn-ben. Az eredmé­
nyek élesitik a klasszikus Minkowski-Rlichfeldt tételt a geo­
metriai számelméletben.

Решеточные точки в разностных множествах

Б. Ухрин 

Р е з ю м е

В статье изучаются нижние оценки для мощности множества 
(А-А)ПД , где А с Rn измеримое множество и Л  есть решетка /дис­
кретная подгруппа/ в Rn . Результаты уточняют классический ре­
зультат Минковского-Блихфелдта в геометрии чисел.


	B. Uhrin : Lattice points in difference sets���������������������������������������������������
	Oldalszámok������������������
	175����������
	176����������
	177����������
	178����������
	179����������
	180����������
	181����������
	182����������
	183����������
	184����������


