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ABSTRACT, Fuzzy grammars and fuzzy languages in connection
with finite fuzzy acceptors are studied. Let A be a finite
fuzzy acceptor and R(A) be the set of all words recognizable
by A. It is proved that for each fuzzy regular grammar GF ge-
nerating the language L(GF) there exists a finite fuzzy ac-
ceptor A such that R(A)=L(GF) and vice versa.

The main results are about algorithmical decidability of
e-equivalence and e-reduction by inputs. It is shown that the
relation e-closeness of matrices is invariant. On this base
some properties of the e-equivalence and e-reduction are ob-
tained and their application in syntactic pattern recognition
are discussed.

1. €-CLOSENESS OF MATRICES

In this section e-closeness for matrices over a bounded
chain is defined and studied. These algebraic results are ne-
cessary for the e-equivalence and e-reduction by input words
which is the subject of section 3. The algebraic terminology
is according to C31.

Let L.=(CO,13,~,~,0,1) be a bounded chain [3] over the orde~
red set [0,1]J«R with lower and upper bounds respectively O
and 1 and operations ~ and .

Let A=(a,.) and B=(b, .) be matrices over the bounded
ij ‘mxn ij ‘nxp
chain I. with elements aij,bijeto,l] for each i,j. The matrix
C=AB=(c, .) is a product of A and B if

ij ‘mxp
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cij=kzl (aikabkj) for each i=l,...,m and each j=1,...,p [41.
It is easily established that the matrix multiplication is as-
sociative. Having in mind this property we snall omit the
breckets next.

Let A=(aij) and B=(bi') be mxn-matrices and eeEO,lJtﬁe
fixed. We say that the i row in A is €-close to the k row
in B if |a; -b, _|<e holds for each s, 1<s<n; A and B are
g-close (notation d(A,B)<e) if la..-bijlis holds for each i,

1]
1<i<m and for each j, 1<j<n.

Theorem 1. If A=(aj)n are e€-close then

l;(aj)-g(bj)lée is valid.

and B=(b.)
j’'n

x1 x1

Proof. Let .(a.)=a, and .(b.)=b_. Then
2} J g J r

k

a, —e<b, <b_<a_+e<a, +£ =>
= K=r=xr =

k k
ak~€;br;ak+e =

k
-e<b -a, <e <=>|br-ak|;€, i.e. lj(aj)_j(bj)lée

In particular, if lak—aiI;ZE for each i#k then j(aj)=ak

~

3 (b )=by

it = == 3 < = => < S8y < bt 5.4 e
a;+2e<a, < >a;+esa, —€ b,<a;+e<a, -e<b, and hence b,<b

and for the same index k because

k
for each i#k.

It is easy to see that Th.l is valid for At and B* as well.

Theorem 2. If d(A,B)<e and d(C,D)<e then d(AC,BD)<e holds

whenever the products make sence.

Proof. According to the definitions d(AC,BD)is <==>
Ik( (aix’ckj))_k( (bik’dkj))lie for each i,j. We shall prove
the last inequation for arbitrary i,j. For the vector-matrices

(viy(k)) = (“(agg,e5), (@,  Deens)

(*{b

(w5 (K)) gl ey Desss)

we obtain d(Vij,Wij);e because |vij(k)-wij(k)|;e for each k

as it is shown by the following points:
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0 v..(k)= (aik,ckj)=aik and wij(k)= (bik'dkj)=bik then

lvij(k) W, (k)l |a because d(A,B)<e;

ik Pixl2e
2%t (k)— (a k,ckJ) =Ck3 and w, (k)" br dkj) ko then

lvij(k)—w (k)| |c kjlée because d(C,D);e ;

3.. If vij(k)= (aik'ckj)=ai and Wy (k)- (bik’ - dk then

bikecaik-e,aik+s] & B0, 173; ckjetaik,lj because aik= k3 Since

dkjetckj—e,ckj+ej and dkjeto R (d <bik k+€) we obtain
= - V= -

dy4€ faj-€,a;+1  and hence Ivij(k) W5 5 (k) |=]a;, dkjlie

4, If \ (k) ik'ckj)=ckj and wij(k)= (bik,dkj)=bkj by
analogy with the previous case we obtain Ivij(k)-wij(k)lée

Since |vij(k)-wij(k)|;e is valid for each k we have

d(Vij,Wij);e . According to Th.l the inequation (k)=

lx Vij
K wij(k)lée is true, i.e. | (7( 1k’ckj)) =L (blk'dk]))l<€
is valid.

Theorem 3. If d(A,B)<e then:

i) a(ca,cB)<e; ii) 4(AT,BT)<e; iii) d(CAT,CBT)<e
whenever the products make sence.

The proof follows from Th.2.

2. FUZZY ACCEPTORS AND FUZZY GRAMMARS

We define and study fuzzy acceptors and fuzzy grammars by
analogy with [2] where the stochastic acceptors and stochastic
grammars are considered. The terminology for automata and lan-
guage theories is according to [21,C41,C5].

A fuzzy automaton A [41,[6] is a quintuple A=(X,Q,Y,MIL)
where:

(i) X,Q,Y are nonempty sets of input letters, states and
output letters respectively:
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(ii) M={M(x/y)=(mij(x/y))/xex,er,mijeEO,lJ} is the set of
the transition-output matrices, the step-wise behaviour of A;

(iii) L =(co,137,%0,1) is the bounded chain.

If X,Q,Y are finite then A is called finite automaton.

The interpretation of the membership degrees mij(x/y)GEO,lJ
is well-known [41,[6]: each element mij(x/y) determines the
step-wise behaviour of A. If in step t the automaton is in
state q; and receives the input letter x, it puts out the out-
put letter y in step t and reaches the state qj in the next
step t+l with the membership degree mij(x/y)EEO,l].

A finite fuzzy acceptor (shortly acceptor) A=(X,Q,qo,F,MJL)
is a finite fuzzy automaton without outputs (i.e. |Y|=1), with
fixed initial state qOGQ and with a set FeQ of the final sta-
tes.

Let X* be the free monoid generated by X with e€X* as unit
element. We extend the step-wise behaviour of the acceptor
A=(X,Q,qo,F,MJL) to the complete behaviour of A for k€ N con-
secutive steps as follows: since the empty word e need no time
we define M(e)=I, where I stands for the unitary matrix of or-
der |Q|, the cardinality of Q; if the ‘input word u€X* is a
letter x€X then the transition matrix is M(u)=M(x); if in k>1
€X are fed into A (i.e.

k
the input word is u=x,...x €X% then M(u)=M(xl)...M(xk) and an ar-

consecutive steps the letters XyreeorX

bitrary element mij(u)in M(u) is interpreted as the membership
degree for the state q; and the input word u in step t under
teh state qj in step t+k. We denote by M* the set of all tran-
sition matrices (the complete behaviour) for the given acceptor
A:

M#%* = {M(u) = (mij(u))/uex*}.

The set of all words u€X#*, which are recognizable by the acceptor
A is denoted by R(A):
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= i % 3 ; ; .
R(A) {u/uex*, moJ(u)>O, qJeF}

We define the notion fuzzy grammar by analogy with [2]
where stochastic grammars are defined and studied.

A fuzzy grammar GF=(N,T,S,PF) is specified by a finite set
N of nonterminal symbols, a finite set T of terminal symbols,
disjoint from N, an element SEN called the start symbol and a

finite set of fuzzy productions
B
a; =3 b;yr 1=1,...,k, 3=1,...,n;, where a;E(NUT)*N(NUT)*,

bije(NUT)* and pijeto,13 is the mebership degree for this pro-

duction. For the fuzzy grammar GF we say that w directly derives

P; .
(notation w —4 w’) with the membership degree Py

w'’ e
P, J

i r - l 2 3 _i °
W=Cia,Chy W clbijc2 and ai——l bij is a production in PF’ we say

that w derives w’ with membership degree p=3 pj (notation

7 % w’) if there exists a sequence Wyreoo W in (NUT)#* such
) < 3

and wj 4w

n+1l

that w=w,, w’'=w for 1<j<n. The binary rela-
1 n =J=

+1 j+1
tion —y— is the reflexive and transitive closure of =~ .
The fuzzy language L(GF) generated by G is the set of all

terminal strings which can be derived from S:
k

P.
L(G)) = {(u, p(u))/ueT*, s g u, j=1,...,k, p(w= 7, py>0}.

The number of the different ways to obtain u from S is denoted
by k.

Example 1. Let the fuzzy grammar GF=(N,T,S,PF) with

N = {so,sl,sz}, 7?={a,b}, s=so and P_:

F
O Q%2 O, 7
So ——i aSl Sl -5 aSl Sl — a
0,3 05 0,§
So —_— sz Sl — sz 82 b

be given. The fuzzy language L(GF) generated by Gp is



- 60 -

2,0,1)/n21}U{(a”,0,1)/n>1}.

L(Gg)= {(b%,0,3)} U {(a"
The grammar G=(N,T,S,P) obtained from the fuzzy grammar
GF=(N,T,83PF) by forgetting the membership degrees in the pro-

ductions in P, is called assocziated to GF' The fuzzy grammar

GF has type 0€1,2,3 if its associated grammar G has type 0,1,2,3
respectively.

In this paper we consider only the fuzzy grammars of type 3.
For a fuzzy grammar of type 3 (finite state, regular) all pro-
ductions in PF are as follows: Si Eii ij or Si Ei y, where
Si,SjeN,x,yeT.

Theorem 4. Let GF=(N,T,S,PF) be a fuzzy grammar of type 3.
T A=(X,Q,qo,F,M;EJ is an acceptor with X=T;. Q=NU{E}; qo=S;
F={S,E} if the production S Be belongs to P, and F={E} other-
wise and the following membership degrees for each qi,qjeN,
q EF, xeT:

Q5
mij(x)=pij>0 if q; = xqj is a production in Poi

o ’ i : - - ’
mij(X)_pi> OB E q; — x1is a production in PF’

m,.(x)= 0 otherwise,
1]
then R(A)=L(GF).

Proof. Let zo=(zo(i))lx| be the vector-row with elements

Q|

i T o q; =957
Z L) =
o R & qi+qo.

The product zo.M(u) determines the behaviour of A under the in-
% a B A : = ;

put word u€X* if the initial state is qer' Let Zp (zF(l))IQIxl

be the column-vector with elements

Jl if q,€F,

Za(d)-=
1 O otherwise.

E
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Then zo.M(u).zfeEO,lj gives the maximal membership degree for
the input word u€X* if the beginning state is the initial state
qOGQ and the last state belongs to F. Obviously ueL(GF) <==>
zo.M(u).zF>O<=>ueR(A).

Theorem 5. Let A=(X,Q,qo,F,MJL) be an acceptor. If
GF=(N,T,S,PF) is a fuzzy grammar with N=Q, T=X, S=qo and pro-
: - Pj5 : %
ductions in PF have thepform q; __3 xqj it mij(x)—pij>0, where
3 : 4L
qi,qjeQ and x€X, or q; —> X i£ mif(x)—pi>0 for inQ, qfeF,
x€X, then Gp is a grammar of type 3 and L(GF)=R(A).

We may prove Th.5 in complete analogy with Th.4.

Example 2. Construct the acceptor, corresponding to the

fuzzy grammar G_, given in Example 1.

F
According to Th.4 we obtain X={a,bl, Q=NL1{E}={SO,Sl,Sz,E},
qo=so’ F={E}. The transition matrices are:

0 8,70 0 (o Y - YRR . I Tl
O =072 ¥0: SO0 0" 0 0,510
M(a) = O O 0O O M(b) =10 0 O 0]
OSFe) O: O O 0" "0 (0]
The direct computation for M(az) and M(bz) s
G 0,3 0 =02 O 0 +0 O3
0. 0,2 10 0,2 0 %0 0. 075
M(az) =10 O 0O O M(b2)= 0 10 Y. O
Q¢ O 02 £0 0. 0" g, O
By induction we can prove that
0. 0,1, 0 021 0 0601
0@, 28 & 20,2 L0 (0 I D.
Ma™) =|0 o 0.0 ,n>13 M(anb2)= 0.0 O .0 ERa]s
0 0 0O O O- OF 1O #0



Since zo=(l O O O0) and z; = (0 O O 1) we compute

2 2 : n s , N2 &
zo.M(b ).zF = 0,3; zo.M(a ).zF = 0,1; zo.M(a b ).zF—O,l.
The other words from X* are not acceptable since zO.M(u).zF=O.
Hence this acceptor recognizes exactly the fuzzy language
L(GF) from Example 1.

5. €-EQUIVALENCE AND €-REDUCTION

The classical problems for pure equivalence, reduction and
minimization are completely studied for deterministic and non-
deterministic automata [5]. Latter they were treated on the
lines of their analoqgues for stochastic [5] and fuzzy [43]1,061]
automata.

Since the nature of stochastic and fuzzy automata is that
they can be thought of as approximate models of incompletely
understood systems the idea of approximate equivalence by
(stochastic, resp. fuzzy) behaviours is well motivated.

We shall define and study the approximate equivalence and
approximate reduction by inputs based on the €-distance of the
behaviour matrices for fuzzy acceptors. The main results con-
cern the algorithmical decidability of the above problems.

The terminology on automata theory is according to [51].

Let A=(X,Q,qo,F,MJL) be an acceptor. The input words
u,vexX* are called e-equivalent iff d(M(u),M(v))<e (notation

€
s Y,

Theorem 6. Let AﬁX,Q,qO,F,MJL) be an acceptor, x,x’€X be

input letters and u,vex* be input words. If x o x' then:
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i) uxv £ ux'v;

ii) xv £ x

iii1) ux £ ux’.

Proof. x : x’ <=>d(M(x),M(x’))<e . (i) follows from Th.3
(iii), (ii) follows from Th.3(ii);(iii) follows from Th.3(I)

Hence e-equivalence by input letters implies e-equivalence
by input words, distinguished only by e-equivalent letters
(standing in the middle, in the beginning or in the end of the
words). |

The relation e-equivalence by inputs is not an equivalence
relation. But we can define an e-partition on X, resp. on X%,

The set Exi]={x/xex and x & xi} defines an e-class with
center X, . The e-classes ([xiJ)i are called an e-partition
of X 4ff: [xiJQExj]=¢ for i#j and gtxi3=x. According to Th.6
the e-partition on X induces an e-partition on X*. Note that

Exin#txjj=s>d(M(xi),M(xj))>e .

Theorem 7. For each acceptor A=(X,Q,qO,F,MJL) the following
problems are algorithmically decidable:

i) whether x £ x’ for each X,X'ex;

ii) construcing an e-partition on X (resp. on X%).

Proof. i) For each x,x'€X we can compute whether d(M(x),
M(x'))<e . The algorithm is finite because A is a finite ac-
ceptor. ii) We can construct an e-partition on X using the
following algorithm: ’

l. Enter X,M,c.

2. For the elemenet xiex with the smalest index form the

e-class Exi]={x/x€X and x ¢ xi}.

3. Print Exi].

4, X=X = ExiJ.

5. If X#) go to Step 2.
6. End.



Let A=(X,Q,qo,F,MJL) and A’=(X,Q',q6,F',M'JL) be acceptors
with the same X,JL. A and A’ are e-equivalent by inputs (A £ i)
if for each x€X there exists an e-equivalent x’'€X’ (i.e.
d(M(x),M'(x"))<e) and vice versa. A’ is in e-reduced form by
inputs if x' € x" > x'=x" for each x',x"€X’'. A’ is an e-reduct

of A if A £ A’ and A’ is in e-reduced form.

Theorem 8. Let A S A’. For each input word u€X#* there

exists an e-equivalent input word u’€X’#* and vice versa.

Proof. If u=e or u€X the proof is trivial. For u=xix.ex
the e-equivalent word is u’=x’'x"€x’#* if X, = x' and xj =i

because

X, £ x’=s>d(M(xi),M'(x'));€,

X, S x" =>a(M( x5) M(x™) )<e

and according to Th.2 d(M(Xi),M’(x’));e and d(M(xj),M’(x?);ena
d(M(xixj),M'(x’x"));e . The rest of the proof follows by in-
duction on the lenght of the words and having in mind that

Kve B

Corollary. If A’ is an e-reduct of A then A and A’ have

ge—equivalent béhaviours.

Theorem 9. It is algorithmically decidable to find an e-re-
duct for each acceptor A=(X,Q,qO,F,MJL).

Proof. According to Th.7 we can find an e-partition Xr of
X, where Xr is the set of the centers of the e-classes. The
different symbols in Xr are not e-equivalent by construction.
The acceptor Ar=(Xr,Q,qo;F,MrJL) with Mr={M(x)/x€Xr} is an
e-reduct of A.



e s T

4, APPLICATIONS IN SYNTACTIC PATTERN RECOGNITION

We shall sektch some applications of these results in
syntactic pattern recognition. This 'is an open problem [11.

Let W= {(w,p(w))/p(w)€CLO,11} be a class of images and
p(w) is the membership degree for the image w. If each w is
a string we can consider W as a fuzzy language L(GF). The set
of the features P, wich characterizes each string of W, de-
termines a finite set T of the terminals for the fuzzy gram-
mar GF’ respectively the set X of the input letters for the
recognizing acceptor A with R(A)=L(GF).

Let a suitable criterion with a numberical valuation
e€L0,1] be choosen, i.e. € characterizes the similarity measure
of the features in W. If the input letters x,x’'€X are e-equi-
valent, then w=uxv and w’=ux’v are e-equivalent. But we can
assign to each x€X a feature pxeP and vice versa, i.e. XéP;
consecuently the feature pXGP is a carrier of an e-equivalent
information in comparison with px,eP. Hence we can consider
Pys as an inessential feature for the given recognizing prob-
lem or we can interprete Pyr as an e-distored image of P, -
Having in mind Th.7 we can construct an e-partition of the set
of the features P (resp. of W). The elements of the e-class
are e-equivalent (and e-distored) in comparison with the cen-
ter Py- It follows that p, can be select as an essential fea-
ture (sample) for the recognizing probliem. But the choise of
the essential features is algorithmically decidable (Th.9)
because it is equivalent to the constructing of the e-reduct
Ar for A. With the same notions, if Ar is an e-reduct of A,
then A recognizes images, which are e-distored in comparison

with the images acceptable by A .
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Fuzzy automatdk és fuzzy grammatikak

K.G. Peeva

Osszefoglald

Legyen A egy véges fuzzy akceptor és R(A) az A a&ltal
felismerhetd szavak halmaza. A szerzd bebizonyitja, hogy
minden fuzzy szabalyos Gp grammatikahoz, amely generalja
az L(GF) nyelvet, létezik eqgy A véges fuzzy akceptor ugy
hogy R(A) = L(GF), és vice versa.

PacniuByYaThe /fuzzy/ PaMMaTHKH H MHOXeCTBa

K.I'. IIeeBa
Pe3wmMme

[IycTe A eCTh KOHEUHHH akKuenTtop H R(A) eCTh MHOXECTBO
BCeX CJIOB, PAaCIIO3HAHHHX akKuenTtopoM A. Jloka3mBaeTCA, 4YTO IasA
BCEeX peryJiIfpHHX I'PaMMaTHK GF HEHEepPUPYWIHX S3HK L(GF) , Cy-
MEeCTBYET KOHEUHHM PaCNJIHBYATHYE aKUEeNToOp TaKo#, 4TO R(A)=L(GF)

H HaobopoT.
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