MTA SZTAKI Kozlem&nyek 33/1985 p. 95-112

NETS., POLYCATEGORIES AND SEMANTICS OF PARALLEL PROGRAMS

Y.P. Velzinov

Center of Applied Mathematicsj Higher Institute of Mechanical and
Electrical Engineering; 1000 Sofia, p.box 384,
Bulgaria

The purpose of the present paper is to establish some
connections between (a modified variant of) Petry nets and
Polycategories and on this base to spread the category
approach to the semantics of programs (flow diagrams) pro-
posed by ADJ group [JCS] and Goguen [HCT] over a wider class
of parallel programs.

The reader which is not accustomed with the category
approach to programming is invited to consult [HCT] or [JCS1J,
where the ideas not concerned with the parallelism can be
easily followed.

1. POLYGRAHS AND A -POLYCATEGORIES

1.1. A polygraph (or a net) (@ is defined to be a system
presented by the following string of data

<O, A, +, ®, dom, cod>

where
- © =0b(6) is a set of elements called objects;
A = Ar(B) is a set of elements called (poly)arrows; e€ ©;
- dom,cod and + are three mappings: dom A =+ © puts in
correspondence to each arrow an object called its iInitZal
object; cod: & + © puts in correspondence to each arrow
an object called its final object; +: © x O >~ © .

- 96 -

These data are such that:

PO.< ©,+,@> is a monoid with operation + and neutral ele-
ment e.

The objects of a polygraph usually will be denoted by A,
B,C,u,v,w and the arrows by x,y,z,f,g,h. |

The presented structure is similar to the Petry net struc-
ture [PNTJ. If the monoid of objects of a polygraph is taken
to be a free monoid over some set V¥V of "places" and arrows
are taken to be "transitions" the only significant difference
will be that instead of sets string of places are put in cor-
respondence to the transitions by the "input" and "output"
functions dom and cod.

Situations in a polygraph can be graphically illustrated
representing objects by their names situated on a sheet of
paper and arrows by "drawn branching arrows" (sometimes with
boxes or circules on them) which lead from names of objects to
names of objects. If several names of objects are situated at
different beginnings (ends) of a drawn arrow, they form the
name of the initial (final) object of the arrow by a standard
agreement of composing them from the left to the right.

cod(x) B C C
t # /’:J:;\ 1 ;STZi\X q>;{l
dom(x) &. 2B B: ‘A B B A/ B B

dom(x) =A + B + B, cod(x) =B + C

An ordered triple of objects will be called a connector.
Connector will be denoted by | or T. A connector <A,B,C>
will be denoted by ABC also. If | =<A,B,C> is a connector
then | | | will denote the object A+B+C and L(l), C(l),R(l)
will denote its first, second and third component respectively.
C(L) will be called the center of the connector. The set of
all connectors of a polygraph &will be denoted by Con((®).

=9

An operation ¢: Con(@)xCon(@) — Con(@) defined@ by the
correspondence
> <By,B

B B +A. >

<<Ajrdo A 2% Baify

B1>> - <A.|_+B

3 2’ . 44

will be used in the following exposition.
The sign "+" for the monoidal operation will often be
omitted.

1.2 A A.—polycategory z} is defined to be a system pre-
sented by the string of data

<O, A +, e,dom, cod, Y', I>

where < ©, A,+,®,dom,cod> = Gr(P) is a polygraph (the under-
lying polygraph of the polycategory), I: @ - A, I:Av I,

a mapping that puts in correspondence to each object a selec-
ted arrow, called Zdentity arrow and

is

Y : AxCon(Gr(P))x A »~ A
y:i<x,Ly> x [1] y

is a partial mapping, called composition law for the arrows.
These data fulfil the following axioms:
PY 1. (Existence of composites)

Iz(x[|]y = z) = dom(x)= ||| & c(])= cod(y).

PY 2. (dom and cod of a composite)

dom(z) = ||¢dom(y) |
x[11y =2

cod(z)

cod(x)

- 08 -

PY 3. (Partial commutativity)

(x/Al§2A3A4A57Y)/AldoﬁTy7A3§4A5/z =

= (X/AlA A_A A /z)/AlﬁzA

Rl Ry dom(z)ag/y

3

if the described composites exist.

PY 4. (Associativity)

x5 Myl T Iz} = (=3t iieT]z

if the described composites exist.

PY 5. (Unit law)
For any object A and arrows X,y : dom(iA) - cod(IA) = A

and IAf§7x=x, y[g7IA=y if the described composites exist.

Now to shorten the notation we can introduce two deriva-
and ll+ll :

tive operations - "o

x}dom(xi?y,
X +y = (Icod(x)+cod(y)/cod(iTCod(yY/x)/dom(x)cod(z)/y

X 0y

The main interpretation cf the presented structure, which
we will need here is the A—polycategory Pfn. It is defined as
follows:

- Ob(Pfn) contains all the sets (in some universe) disting-
wished to within the associativity of Cartesian product and
the product with the set {¢};

- Ar(Pfn) contains all the functions;

- the monoidal operation is the product and the neutral
element of this operation is {¢};

- the composition law for the arrows is the superposition
specified by the connectors.

- 99 -

A A -polycategory is said to be a A-polycategory with
forks iff for each object A there is an arrow VA:A + A+A
such that

3
A

(Ipan/BBAIV,) [EE]V, = (I,,,/RRATV,)[RA]V, =V

More details about polygraphs, polycategories and
k—polycategories can be found in CP,CFP,P.EP,PSMC I,
PSMC II, PR,CAPJ]. In particular A-polycategories can be
viewed as strict monoidal categories [CWM,MFC] in the frame

of which a new composition law
<x, <A,B,C>,y>m» x[ABCly = x O(IA+y+IC)
is introduced [PSMC I, PSMC II, PRI].

1.3. Let B= <y*, A,+,e,dom,cod> be a polygraph with a
free monoid of objects <V#*,+,e> over a set of nodes V. No-
tice that in such a situation the objects can be viewed as
words over V and a connector l specifies a participation of
the word C(]) in| |

A sequence of arrow and connectors in @G of the form

P = <lyexyolorXprees Loxprens, RN B B A e

is called a path in @G iff
- the center of Li is cod(x;), (i=1,2,...,n);

’
- Ili+ll = |li+dom(xi)l, i Py SORSRE)
& -]-n+1 " 0y l_{_nédom(xn) | ,@>.
The objects |ll| and Iln+l| are called the end and the

beginning of the path and denoted by cod*(p) and dom*(p)
respectively.

- 100 -

In degenerated cases, when a path does not contain arrows,
it should be in the form <uu ... u, u>, uev*. Such paths are
called fork paths (or diagonals). The paths of the form <u,u>
are called identity paths. They will be denoted by Py also.
Paths of the form P o <cod(x), x, dom(x)> and degenerated
paths will be called elementary paths.

Each path p in @ proposes a sequence of words

Lyl o Tl reeer Tl

such that Ilil is obtained from lli-li by substitution of
words. So each path proposes a sequence of substitutions
also.

Let p be a path in @ . An arrow X is directly connected.
with a connector |, in p iff the participation | of cod(x)
in |lm| is a conveyed (by substitutions of p) participation
of cod(x) in |[], [; an arrow x_ is directly connected with
another arrow X in p iff it is directly connected with lk+l
and the center of lm is a conveyed participation of such a sub-
word of Ilk+l| that intersects with the center of lkédom(xk).
EE X, and X, are directly connected with lk in p the connec-
tion with x 18 to the left of the connection with X iff the
predecessors of ll and lm in Ilkl do not intersect and the
first is situated to the left of the second.

A path in @ is called canonical iff it satisfies the
following conditions:

- each arrow situated between two arrows directly connec-
ted with a connector is directly connected with the connector
also;

- if two arrows X1 and X are directly connected with a
connector and the connection with the first is to the left
of the connection with the second then the first is situated
in the path to the left of the second;

- 101 -

- there are not two connected forks in the path.

An operation "transposition" can be applied to any two
adjacent unconnected arrows Xn-1 @nd x . in a path

P = <LyexyelpnXpreccilp g ®py Xl Xnrlngr®

to transform it to another path

q = <lyexgrlprxgeees Ty oXpeTpeXp yre oo rly®nrlg®

where T _, is obtained from | _, removing its center over the
T‘ . .
predecessor of the center of lm and | ~is obtained from lm—l

substituting the predecessor of the center of lm by dom(xm).

The operation is convertable. It is easy to spread it
over any two arrows in a path which are not adjacent but
fulfil the condition that there ar¢ no arrows between them,
the second one is connected with.

Similarly, an operation "coalescence of forks" can be in-
troduced. It includes applying of transpositions so to put
all connected forks in neighbourhood, replacement of each

k+1

group of k forks by V and the corresponding modifications

of connectors.

PROPOSITION 1. Each path in a polygraph @ with a free
monoid of objects can be transformed to a unique canonical
path applying finitely many times the operations transposi-

tion and coalescence of forks.

Let py = <ly 1%y 300y, 00%) prevrly ke¥p krly k41 304

By Mi<l o v % (ol GG g Valpn ek ge o giy> BE tudriRGRe
in a polygraph.l? and | = u cod*(gzl v be a connector such

-

that || = dom*(pl). A composition of P and p, by | is a path

- 102 -

plf7r7’pz =

<T1'X1,1'T2'X1,2""'Tk'xl,k'Tk+1'X2,1'Tk+2'Xz,z'

oo Tiy17%, 8 Tkans1”™

where T, = |, . for i=1,2,...,k, Tk+j = T#sz 2 ;o o B
4

and ﬂ—k+ Q+ll=lTﬂ—2,&+ll - A canonical composition of p, and p,
by T is a path pl/_:I‘—7p2 obtained from pl]T-T’pz after
transforming it into canonical form.

Each path in a polygraph © with a free monoid of objects
can be represented as a composition of elementary paths.

The A -polycategory of paths over a polygraph @ with a
free monoid of objects is represented by the string

G* = <V#,P,+,e,dom*,cod*,y,I>

where P is the set of all canonical pathsin G,dom* and cod#
put in correspondence the beginning and the end to each path
respectively, Y is the canonical composition of paths and
TV P, Ity v Pye One can easy see that it is a A =poly~-
category with forks.

Let us denote by UP the polygraph obtained from a poly-
category P after forgetting the composition law for the
arrows and by In G = <In GO,In Gﬂ_\> the inclusion morphism
G - U3* determined by the correspondences In @O: vV & 3,

In GA:X g Py~

PROPOSITION 2: @* is a free A-polycategory with forks
over the polygraph G with free monoid of objects in the sense
that for each A-polycategory P and each polygraph morphism
F = <7©, TA> F:(65 — UP there exists a unique functor
{ A\ -polycategory morphism) F *: B*—* o such that the follo-

wing diagram commutes "

G : InG UG* &

- 103 -

2. PARALLEL PROGRAMS
2l LeE (; = <V#*,A,+,e,dom,cod> be a polygraph with a

free monoid of objects <«#*,+,e> over a set of nodes

vV = {vl,vz,...}
A sequence s = Xy rXgreer Xy of arrows such that cod(xi)
and dom(xi+l), (i=1,2,...,m-1) contain common nodes will be

called a string of arrows.

An object u€V#* is in conformity with another object veV#
iff for any two strings of arrows S1/8, which lead from v to
u the stituation of the codomains of the last arrows of S
and S, in u (to the left or to the right with possible over-
lapping) is the same as the situation of the domains of the
1 and S,-

1 and X,

common nodes will be called alternative arrows.

first arrows of s

TwO arrows x such that dom(xl) and dom(xz) contain

A polygraph (B with two selected objects - a start object,

ug and an end object, ug will be called a program scheme iff
it satisfies the following conditions:

¢3i) - A and V are finite sets;

Gady) - if the domains and/or codomains of two arrows
contain common nodes their participations form a subword of

any of the domains or codomains under consideration;

(iii) - the end object is in conformity with the start
object;
(iv) - any two strings of arrows which begin in the

start object and finish with arrows with common nodes in
codomains branch out through alternative arrows or one is
contained in the other;

(v) - all the nodes which take part in the domain of
some arrow but do not take part in the codomain of any arrow
take part in the start object; there is no arrow such that a
node which takes part in the end object takes part in its

domain also.

- 104 -

A sgimple example of a (parallel) program scheme, represen-
ted in diagram form is shown on the next figure:

A% v C
TS r hl
¥
,_i_, —vlv2 3 ri——\ lhz
Vi A A
(a) a program scheme (3 (b) a program in the shape

Let (; be any subcategory with forks of the polycategory
Pfn such that all the functions in it are computable. By U(
as usual we denote the corresponding polygraph obtained after
forgetting the composition law for the arrows in C.

A (deterministic) program in the shape of-the program
scheme © (or an interpretation of G) is a functor P: G » Uu(C
such that the P-images of any two alternative arrows are func-
tions whose ranges of definition (in the corresponding to the

common nodes particular domains) are disjoint.

2.2. Following the ideas similar to that used in the
Theory of Petry nets a concept of data flow through a prog-
ram scheme @& can be introduced as a token game :

- at the beginning (step 0) all the nodes in the start
object are marked with active tokens;

- at the step t each arrow, which is not alternative
with any other, with marked domain such that at least one of
its nodes is marked with an active token can be activated to
convert the tokens in its domain to passive and to give raise
to active tokens in all nodes in its codomain; in alternative
situations just one arrow can be selected to act as described;

- the data flow can be stopped at some step or it can
stop naturally if there is no possibility for it to be conti-
nued.

=TSN

Given an object u which is in conformity with the start
object a data flow is a data flow to u if when it stops all
the nodes in u are marked with active tokens and there are

no other active tokens.

PROPOSITION 3: There is no data flow in a program scheme
such that:

(i) - a node is supplied with an active token by two dif-
ferent arrows simultaneously:

(ii) - a node marked with an active token is supplied

with an active token again before its dead.

Proof: Suppose the opposite for a node. In both cases
following back the movement of the active tokens two strin.s

s1 and s, can be formed such that: their arrows have been ac-

tivated;zthey begin from the start object; their last arrows
have the node in common. They cannot branch out through alter-
native arrows. So one of them contains the other. In the ca-
se (i) inclusion is not possible (we want the node to be mar-
ked with an active tokens simultaneously). So S, and S, coin—
cide. In the case (ii) because of the inclusion the token

should be made passive before being forced to be active again.

An element of a set Alezx...xAm will be called a string
of data also. Each string of data <al,a2,...,am> has A1s857 ey
a, as components.

Given a string of data from the start set a calculatzion
according to a data flow can be defined as follows:

- at the step O a string of data from the start object is
available;

- at the step t a function is calculated for the available
data iff it corresponds to an arrow which is activated in the
data flow and the available data are in the domain of the
function; in this case new avaliable data appear in its codo-
main according to (ii) the available data for the step t can

be arranged in appropriate string of data.

=106 =

A data flow (to u) is adequate to a string of data from
the start set iff all the functions of the corresponding cal-
culation can be calculated (in particular from two alterna-
tive arrows the arrow which correspondsto a function defined
for the available data should be activated). A data flow
(to u) is punctual for a string of data from the start set
iff it is adequate to the string of data and the calculation
can not be continued according to another adequite data flow
(to u) containing the data flow under consideration.

Given a program‘P and an object u which is in conformity
with the start object a main calculation to u over some string
of data from the start set according P is a calculation ac-
cording to a punctual (to the string of data) data flow to u
HNEL S

For each gtring of data from the start set there is just
one punctual data flow in P, at most one punctual data flow
to u in P and so at most one main calculation to u.

A result of a calculation (to u) according to a given
program P for the given string of data from the start set is
a string of data received in the end set (the set correspon-
ding to u) according to the main calculation to the end ob-
ject (to u) if there is any and otherwise there is no result.

Propositin 3 allows us to state:

PROPOSITION 4: There is just one result of a calculation,
if any, for a given string of data from the start set accor-
ding to a program P.

The junction defined by calculation according to a program
is a function from the start set to the end set of the program
which puts in correspondence to each string of data the result
of the calculation over it. The operational semantics for prog-
rams supplies a program with the function defined by calcula-

tion as meaning.

=307 »

2.3. The considerations implemented above intuitively sug-
gest paths in a program scheme as formal descriptions of data
flows.

Let P: B LU be a program. According to Proposition 2 P
has a unique extension to a functor P*¥: B3* _~G from the A -po-
lycategory with forks of paths over (B . The set of the arrows in

n_n

G is partially ordered by a relation "=":
pedq 1ffpis an infitial part of g.

Given a program P: 3 —. UL the relation <P*(vg P (ve) ,8>

where

g is a maximal (related to <) path in G
6 =4 <a,l[P*(g)l(a)> |such that P*(q) is defined for a, dom*(q)=

=us,cod==(q)=ue
will be called the conceptual meaning of P. The semantics
which supplies each program with its conceptual meaning will
be called conceptual semantic. (We use the term "conceptual"
to distinguish between conceptual semantic, operational seman-
tic and denotational semantic, the latter usually connected

with fix-point constructions.)

PROPOSITION 5: Conceptual and operational semantics coin-
cide.

Proof: Each path g from the start object to an object u
which is in conformity with it describes a data flow. Looking
on it from the right to the left it can be considered as a
sequence of objects and arrows activated in consequent steps.
According to the superposition rules in Pfn if P*(g) is de-
fined for a P*(us) then the calculation according these data
flow gives as a result [P#*(g)l(a) in P*(ue). (These state-

ments can be proved more strictly by induction.)

- 108 -

Each (finite) data flow to an object u which is in confor-
mity with the start object can be described as a (canonical)
path g from the start object to u such that if the data flow
is adequate to a string of data a then P#*(qg) is defined for
a and the result of the calculation according to the data
flow over it is [P*(qg)i(a).

To prove this statement we shall use induction on the num-
ber of steps in a data flow.

Suppose that all data flows of t steps fulfil the state-
ment. Consider a data flow of t+1 steps to an object u which
is in conformity with the start object. Let at the step t+l
the arrows xl,xz,...,xn have been activated. Their codomains
take part in u and do not overlap. If the order of situation
of codomains coincides with the chosen order of arrows the
object u is of the form

u = ulcod(xl)uzcod(xz)...uncod(xn)un+l.

All the nodes in it are active and the nodes in codomains have
been activated after the step t+l. This leadsus to a conclu-
sion that the object

w = uldom(xl)uzdom(xz)...undom(xn)un+l
is in conformity with the start object (suppose the opposite
and u will not be in conformity with the start object) and
all the nodes in it have been activated after the step t.
Restricting the data flow under consideration a data flow to
the object w of t steps can be obtained. By induction hipo-
thesis there is a vath p fulfilling the statement for this
data flow.

Consider the path

- 109 -

— ’ —
g =g’ op = <(u;cod(x,)u,cod(x,) ... uncod(xn)un+l),xl,
(u,dom(x,)uycod(x,) ... ucod(x Ju ,),X,,
(uldom(xl)uzdom(xz) LR undom(xn)un+l)> o 18 -

Since P*(q) = P*(q’) o P*(p), according to the rules of
superposition in Pfn the evaluatin of P#*(q) for the string
of data a can be done continuing the evaluation of P#(p) in
the manner described by q’. So the result of executing of t+1(th)
step of the calculation according to the given data flow
on the result of the calculation till the step t will be ob-
tained. That is just the result of the calculation according
to the given data flow.

Moreover, if a data flow is punctual for a given string
of data then the corresponding path is a maximal path defined
for it (suppose the opposite and the data flow could be con-
tinued to another data flow to the same object adequate to
the given string of data) and vice verse.

These statements related to the end object prove the

proposition.

COROLLARY: The conceptual meaning of a program is a
function.
The conceptual meaning of a program P:(3 —»U(can also be

defined as a relation <P*(us),P*(ue), 6> where
6 = U{P*(q) |dom*(q) = u,, cod*(q) = ul

The limitations of the objects which could be end objects in-
sure the maximality of the paths. So the semantic is the same.
But such a definition supplies other objects with relations

instead of functions as meaning.

S

= =|EL@ =

As an example, on the next figure the interpretations of

three paths to W for the program scheme and the program

v
x-2
presented above are shown in diagram form.

h,
g g

5 A
h h f s

1 2 L

£ D
g —t g
B__B' BBB
g yv '\1 7\73
e A A A A B hon oy

3., CONCLUDING REMARKS

There are many other problems, like the problem of termi-
nation or the problem of equivalence which have not been
discussed in the present paper. The reader could try to con-
sider them following the papers [HCT, JCSJ.

The presented constructions are not perfect in several
directions. First of all, there are two many restrictions on
a polygraph to be a program scheme. Some of them can be avoided
if more complicated polycategories (we shall need projections
and transpositions [P]) are used. Moreover, it is desirable to
find out "external" characteristics of some notions as "domain
of definition" or "meaning of a program" instead of the ele-

mentwise used here. Such characteristics will giwe possibility

- 111 -

to involve other polycategories on the place of Pfn.

REFERENCES

JCS - J.A.Goguen, J.W.Thatcher, E.G.Vagner, J.B.Wright,
"A Junction between Computer Science and Category
Theory, I,II" IBM Watson Res. Reports, 1973.

HET

J.A.Goguen, "On Homomorphisms, Correctness, Termi-
nation, Unfoldments, and Equivalence of Flow Diag-
ram Program", JCSS 8, 1974.

P.EP - Y.Velinov, "Polycategories. Elementary Properties"
University Annual - Applied Mathematics, tome 17,
book 1, Technica, Sofia, 1981.

Y.Velinov, "Polycategories and Strict Monoidal Cate-

PSMC I
gories I", University Annual - Applied Mathematics,
tome 17, book 4, Technica, Sofia, 1981.

PSMC II - Y.Velinov, "Polycategories and Strict Monoidal Ca-
tegories II", University Annual - Applied Mathema-
tics,, Technica, Sofia, 1984.

P - Y.Velinov, "Polycategories", Proc. "Second Symposium
N-ary Structures", Varna, 1983.

CFP - Y.Velinov, "A Construction of Free A -polycategories",
Proc. "Second Symposium N-ary Structures", Varna,
1983,

PR - Y.Velinov, "Polycategories and Recursiveness", Proc.
"First Symposium N-ary Structures", Skopje, 1982.

CAP - Y.Velinov, "Combinatorial Arrows in a Polycategory",

Proc. "First Symposium N-ary Structures", Skopje,
1982.

o v A

Halok, polikategdridk és a parhuzamos programok

szemantikaja

Y.P. Velinov
Osszefoglald

A szerzd bizonyos Osszefiiggésekre mutat ra, amelyek a Petri
haldk és polikategéridk k&zétt van. Ezen 8sszefiliggések alapjan
a programok szemantikajanak kategdéria-elméleti targyalasat

kiterjeszti a parhuzamos programokra.

CeTu, NOJUKATErOPHH U CEMaHTHKH rnapaJiyieJibHeIX TTPOI'DaMM

U. I[I. BeanHOB
Pe 3wnwMe

B cTaThpe yCcTaHaBJIMBAETCS CBA3b MEXOY CETAMH [leTpyd U

NoJIMKaTeropusaMu. Ha OCHOBE 3TOM CBA3U pacuupseTcsa KaTeropudec-

KUH MoIOxXol K ceMaHTHKe IporpaMM Ha foJjiee HMMPOKHUH KJlacc napali—

JIEJIbHBIX TMPOI'PaMM.

	Y.P. VelinoV: Nets, polycategories and semantics of parallel programs��
	Oldalszámok������������������
	95���������
	96���������
	97���������
	98���������
	99���������
	100����������
	101����������
	102����������
	103����������
	104����������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������

