
MTA SZTAKI Közlemények 32/1985 13-25

AN E X P E R I E N C E W I T H D Y N A M I C D A T A I N D E P E N D E N C E

N. BUKOVSKI
Institute "Interprograma"

Sofia, Bulgaria

I. I N T R O D U C T I O N
Information handling in Data Dictionaries (DD) is main

tained by program components, performing the data access, the
data storing and organization. One way to implement such
program components is by using Data Base Management Systems
(DBMSJ: self-made or packages. In this paper we will discuss
how a DBMS, as a part of the DD, can be used to satisfy the
DD requirements for handling its information. For simplicity
purposes by DBMS we will imply the program components, real
izing exactly this DD function (although it would be more
precise to denote it as DD DBMS). The DD has a fixed logical
data structure, but nevertheless some changes could be made
during the processes of DD installation and operation, e.g.,
adding user's information types, or physical data restructur
ing. This requires from the DBMS, upon which the DD is built,
to support dynamic data independence. So the rest of the DD
software is isolated, thus avoiding its recoding or recompila
tion. The way the dynamic data independence concept was in
corporated into the DBMS of a Data Dictionary is presented
in this paper. The DD concerned is an integrating tool in the
PLUS complex - a program development environment [l], [2]
and provides information for the numerous PLUS components.
It, together with the DD extensibility feature, supporting
user-defined information types, recruires that all programs,
accessing the DD, should be independent of its data structure
and organization. We shall discuss how a self-made (autonomous)
DBMS was designed to support dynamic data independence to
gether with the advantages and drawbacks of the approach
chosen.

13

14

II, I N I T I A L R E Q U I R E M E N T S
A DD consists of two software components: a DBMS, accessing

the DD database, and functional software, implementing the DD
functions - selective report generation, cross-referencing,
etc. The information contained in the DD database comprises
entities of different classes and the relationships among
them. Each entity or relationship type consists of attributes:
description, keywords, etc.

Considering the DD information and functions needed and
its including in the PLUS complex, the following initial re
quirements for the DD were established:

(1) Data independence. The DBMS should allow changes in
the data structure without recoding or recompilation
of the application programs accessing them (by appli
cation program we imply here and later in the paper
any program of the DD functional software or of the
PLUS environment which accesses the DD information).
These changes include:
- logical structure modifications, for example, the

adding of entity attributes or classes;
^ physical data restructuring intended to improve DBMS

performance in compliance with the specific condi
tions of the DD usage. For example, another segmen
tation of the logical record can be chosen, depend
ing on the specific usage frequency of its data
elements, or the parameters of the hash address
method can be adjusted to the prevalent data volume
or changeability.

We will point out that these changes are required in
the process of the DD operation which affects especi
ally strongly the PLUS components accessing the DBMS
of the DD.

* 15
>

(2J Interface simplicity. The simplicity of the interface,
i.e. of the data manipulation statements, used to
interface with the DBMS, requires that application
program should not be concerned with the variety and
complexity of the DD information. This has two aspects.
The first one requires that application programs, ac
cessing the DD database, should know only the data
they are processing, not the DD information as a whole.
The second objective requires a unified access method
to be provided, irrespective of the logical type of
the data needed: records or relationships. They should
be processed in a uniform way, requiring a key
- simple or composed, and a list of the necessary
attributes. This requirement is influenced by the
simplicity of the relational data model, dealing only
with relations ("flat" files} and avoiding data
structuring concepts, e.g., linked records.

Ill, P R E L I M I N A R Y D E S I G N D E C I S I O N O N D A T A I N D E P E N D E N C E4
We will make two preliminary decisions, allowing fulfill

ment of the first objective: data independence.
(. 1} Data independence requires the DBMS to perform trans

formation (mapping} of the data according to their
, schemes: external, logical and internal [3]. A choice
has to be made about the moment data mapping is per-?
formed: at run time (dynamic}, or before calling theV DBMS (static). In [3] dynamic data independence is
recommended when supporting unplanned (ad hoc) queries.
The DD supports exactly such queries, providing re'?
porting and interrogation facilities. The criteria,
through which the DD data are selected, are so nume
rous, that preliminary planning of all queries and
their structures is impossible, especially with the
DD extensibility feature. The solution to derive the

16

queries data structure from the logical schema of the
DD information burdens the programs processing these
queries with the complexity of the whole logical scheme.
So the only solution is to allow the definition of the
data needed, i.e. the program view of the data it
processes, to be done at run time.

(2) Another aspect of data independence concerns the PLUS
components, which interface with the DBMS. Any change
in the data structure or organization must not affect
their programs. They have to be totally insulated,
even their recompilation is not acceptable (though
this could be permitted for the DD programs). So this
requires that modification of the logical and physical
schemas should be allowed at any time without revision
of the programs.

These two considerations require that the DBMS should
support dynamic data independence, both at logical
and physical level.

IV, I N T E R F A C E D E F I N I T I O N
The first step of the DBMS design will be defining of its

data manipulation statements. The DBMS will be treated as a
"black box", which provides the interface to the DD informa
tion. The second step will be designing of this black box,
i.e. the DBMS,

The dynamic data independence we specified required that
programs, interfacing with the DBMS, should define in the
data manipulation statements the structure of the data they
process. On the other hand this definition has to be repre^
sented in a table-oriented way (as relations), thus satisfying
the objective for interface simplicity. So the first step in
the process of the interface definition will be specifying
these relations.

17

There are two types of relations, corresponding to the
DD information:

- entity relation. Each entity relation represents an
entity class: every tuple of the relation corresponds
to an entity, every domain ■*- to an attribute. So a sepa
rate relation is maintained by the DBMS for each entity
class. The entity relation is represented as
R (IDjAjjA2j. . .)
where R ̂ the type of the relation, i.e. the

entity class;
ID - the relation key, identifying its

tuples (usually it is the entity name);
A^3A0j... - the list of the entity attributes,

composing this relation:
- relationship relation. A separate binary relation is

maintained for each couple of entity classes, relation
ship between which is allowed. Each relation tuple
corresponds to a relationship between two entities,
every relation domain ■*- to an attribute, describing this
relationship (the so called intersection data). This
type of relation is represented as

R(IDj 4 iz>23 a23 ... j
where R - the relation type;

ID2 +ID2 ~ the composed key of this relation,
identifying its tuples. ID ̂3 I D are
the keys of the two entity classes;

A2*A23’ ' ’ ^ the list of the relationship
attributes (intersection data).

Now we shall define two data manipulation statements,
using some notions of the relational .data languages [4], [5].
We will point out that before using these operations, the
DBMS user is provided with all relations, maintained by the
DBMS and describing its information. For simplicity, only one
type of data access will be described - data retrieval.

18

The two datamanipulation operators are as follows:
- FOR. This statement retrieves seauentiallv the tuples of

a given entity relation. Each time the statement is per
formed, a tuple (i.e. an entity) is derived and only
the attributes, specified in the statement, are moved.
The statement has the following format:

FOR R(A A £ 3 . . .)
^ PREDICATE. This statement seguentiallv processes only

these entities or relationships of relations, which
satisfay the condition specified in the statement. Each
time the statement is performed, a tuple (i.e. an entity
or a relationship^ satisfying the condition is retrieved.
When given an entity relation, the condition contains
the name of the entity, which is to be retrieved. When
given a relationship relation, the condition contains
one or two names (keysj and all tuples, containing them
in their composed key, are retrieved. If one entity name
is specified, then all relationships of this entity are
traced; if two entity names, then the relationship be
tween these entities is processed. The statement has the
following format:

PREDICATE R(AJtA , . . . J : ID - X[3ID2 - Y]

where TDjj I D - specify the condition;
Xt Y — names, used in the condition.

For example, if having a relationship "R^ " between the
entity classes "C^" and "C^ " with relationship attributes
"A n3 A„ j. . . , A - 7 ", the relationship between two entities with
keys "NAMEj" and "NAME2 " can be traced using the following
statement :

PREDICATE R12 (Ai3A z,A4): ID2=NAME^ID=NAME2

and as a result the relationship attributes "A ̂ 3 A ̂ 3 A 4" will
be retrieved.

19

Finally, two features of the two statement will be men
tioned:

- by means of the attribute list the programs are able
to specify only the attributes they need, not all of
the relation attributes;

- the list of the attributes can comprise only attributes,
belonging to the corresponding relation. This restric
tion means that the list can be only a subset of the
re lation.

V, D D D B M S D E S I G N
The main feature of the DBMS discussed is the dynamic data

independence, so the DBMS design will be presented having in
mind primarily this aspect.

Dynamic data independence means that a run time the DBMS
performs a mapping between the three schemas: external, logical
and integral. This requires that the three schemas should be
interpreted at run time, when calling the DBMS. In this way
they can be modified at any time without amending the programs
using them. On the other hand interpretation of the schemas
requires their storing in object format, as coded tables.

We already discussed the way the programs provide their
view of data (i.e. the external schema) in the statements FOR
and PREDICATE. This allows an easy transformation of these
operators into coded tables to be done at compilation or at
run time. Now we will discuss the way the logical and physical
schemas are formed as coded tables in order to allow their
interpretation.

The logical schema, describing the logical structure of
the DD information, is built upon three types of tables:

(Entity Structure Table (EST). A separate table is
maintained for each entity class. This table describes

20

its contents of attributes, their logical sequence, and
the key used to identify the entities.

(2) Relationship Table (RT). A table is provided for every
couple of entity classes a relationship between which
is allowed. This table contains the keys of the classes
(usually the entity names) and the contents and the
logical sequence of the relationship attributes (inter
section data).

These tables correspond to the relations, describing the
program view of data (external schema) in the statements
FOR and PREDICATE and allow specifying of the pro
grammer4 s information needs in the data manipulation
statements.

(3) Attributes Table (AT). This table describes each entity
or relationship attribute: format-variable or fixed,
length, type-numerical or coded, etc.

The internal schema is presented by means of the
Physical Organization Table (POT). It describes the
physical data structure and organization: storage al
location, block and record length, addressing para
meters, etc.

The DBMS architecture and the algorithm of logical and
physical mapping are shown in Fig. 1. The sequence of the
algorithm actions, represented as circle numbers, is the
following:

(1) The Application program calls the DBMS, providing the
following information in the data manipulation state
ments :

- the type of the statement: FOR or PREDICATE;
- the type of the relation. VTe will note that from

program point of view this type specifies an
entity class or a relationship between two
classes;

21

- the contents and the secruence of the attributes
needed;

- the condition for the PREDICATE operator;
- the work area, in which the data are to be moved.

(2) The Logical Mapping Processor reads the table, cor
responding to the specified relation. From this table
it derives the required attributes within the logical
sequence of the attributes, composing the table.

(3) The Logical Mapping Processor obtains from the attri
butes table the format and the length (if varied) of
each attribute, specified bv the application program.

(4J The Logical Mapping Processor calls the Physical
Mapping Processor, providing it with the information
thus obtained.

C5) The Physical Mapping Processor derives from the POT
information about the physical location of the block,
containing the required data, say volume, file relative
block address, etc.

(6J The Physical Mapping Processor calls the I/O Processor,
providing it with the physical address of the necessary
block.

(7) The I/O Processor reads the block from the metadatabase
into the buffer pool. 8

(8) The Physical Mapping Processor, using the information
about the attributes format and length and the records
blocking, performs the following:
— locates the position of the required attributes within

the block;
- moves them into the work area of the application

program in accordance with the sequence specified by it.

22

VI, R E S U L T S

The so designed DBMS allows dynamic performance of the fol
lowing changes, concerning the data structure and organization
without revision of the application programs which relied on
the previous structure:

(1) Changes of the logical structure. They include changes
in the following:
•г- entity contents and structure. For example, adding

of attributes or changing their order are allowed.
This affects only the corresponding entity structure
table;

^ relationship between entities (e.g., the relation
ship between two classes can be deletedj. This re
sults in the modification of the corresponding rela
tionship table;

— attribute format, e.g., changing of the attribute
length-or type (fixed or variable^, etc.

The logical dynamic independence permits the insulation
of the programs, accessing the DBMS, from changing information
requirements (these changes can be transparent at the program
ming leve 13 , This flexibility greatly simplifies the program
maintenance.

(2) Physical organization modification. This includes
changes in addressing parameters, record and block
length, storage allocation, etc. These changes allow
tuning in accordance with the DBMS usage in order to
improve its performance.

Dynamic data independence thus achieved provides to addi
tional advantages:

- flexibility. The application programs access the DBMS
in a way, independent of the data structure and organi

23

zation, so their algorithm is not tied to the particular
data representation. This reduces the efforts needed
when changing the programs;

- simplicity. The interface to the DBMS represents the
data in a table-oriented way, using some ideas of the
relational data model. This simplifies application
program development and maintenance.

Generally, dynamic data independence maintenance has two
drawbacks: first,,maintenance of' tables with data description,
and second, run time overhead due to the interpretation of
these tables. In our case, the choice of dynamic data indepen
dence is justified. The first disadvantage can be compensated
since the DD functional software needs such tables in order
to process the DD information in a unified way, regardless of
its type. The second drawback - the overhand, is not so signi
ficant because the volume of the DD information is not too
great. VII,

VII, C O N C L U S I O N
This paper discusses the way a DBMS of a Data Dictionary

was designed to support dynamic data independence. The experi
ence is gathered during the design and implementation of the
PLUS program development environment (thouah integrated with
the PLUS complex, the DD can be used independently). The
dynamic data independence, embedded inthe DBMS of the Data
Dictionary, greatly reduces the efforts for integrating the
DD with the PLUS components. The experience and the results
achieved can be used in all Data Dictionaries having an
extensibility feature on integrated with a program development
environment. Generally, the approach is applicable not only to
DBMS of Data Dictionaries, but also to any DBMS with dynamic
data independence as a key requirement.

24

R E F E R E N C E S

1. Shoshlekov, I., PLUS language in the data base environment,
Proceedings of the sixth international seminar on Data
Base Management Systems, Hungary, 1983.

2. Bukowski, N. , Metadata Handling in the PLUS Complex,
Proceedings of the sixth international seminar on Data
Base Management Systems, Hungary, 1983.

3. Martin, J. , Computer Data Base Organization, Prentice-Hall,
Inc., New Jersey, 1975.

4. Schmidth, J.W. , Some high level language constructs for
data of type relations, ACM Transactions on Data Base
Systems, Vol. 2, No. 3, September 1977. 5

5. Beck, L.L., A Generalized Implementation Method for
Relational Data Sublanguages, IEEE Transactions
of Software Engineering, Vol. SE-6, No. 2, March 1980.

25

Dinamikus adat-függetlenséggel kapcsolatos tapasztalatok

N. BUKOVSKI

összefoglaló

A cikkben a szerző bemutatja, hogyaú lehet a dinamikus adat-
-függetlenség fogalmát felhasználni az Adat Szótárakkal kap
csolatos Adatbázis Kezelő Rendszerekben.

Опиты касаюциеся динамической независимости данных.

Н. Буковски

Резюме

Показывается возможность исползования понятия независимости
данных для систем обработки баз данных связанных с словарями
ланных.

	N. Bukovski: An experience with dynamic data independence��
	Oldalszámok������������������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������

