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ABSTRACT

One operation met usually in the relational expressions ig the
selection of a relation R on a conditional expression Ezfgl E;.
In this paper, basing upon the estimations of probability of
the tuples reR satisfying E,, we shall show one simple O(nlogn)
algorithm, where n is the length of E, rearranging the sub-
expressions of E and so, the average probabilistic complexity of

the algorithm for finding

oE(R)={r€R/r satisfies E}

is minimal.

§0. INTRODUCTION

On operation met usually in ‘expressions of relational algebra
is the selection of a relation R on a conditional expression?f.
In general, it requires time O (N), where N is the number of the

tuples:h1@“ to perform that selection. However, when it is
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discussed in the common situation with respect to other
operations, for instance, projection, join, cartesian product
... the following principle is in priority: "Perfoam the
selections and the projections as early as possible.”

The transformation

O'&(%) == O’gl (062(...08[51@) s -))

when 8_is of the form

m
&=/\£il
i=1

is performed for the above principle. When an initial parse
tree of a relational expression is reduced to a better form by
the general optimization principles for relational expressions
Ll,3,4], it is possible that in the obtained parse tree there
is a conjunctive selection

of a relation R,on

Due to the commutativity and the associativity of the

operation A, the relational expression

o] IR (R)
n=1%1
can be reduced to
o n (R)
Er
i=1 0 s
where r={rl,...,rn} is a permutation of {1l,...,n}. That is why
we want to find the best permutation r={rl,...,tn} such that

the time complexity (cost) to find oE(R) is minimal. In this
paper, basing upon the estimations of probability of the
tuples r€R satisfying the logical expressions Ei and the
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definition of the average probabilistic complexity of an
algorithm,the best ordering T={rl,...,rn} of the sub-
expressions Ei’ i=l,n will be obtained such that the average
probabilistic cost (complexity) of the algorithm finding

OE(R)= {r R/r satisfies E} is minimal.

When E is an arbitrary a logical expression (as defined in §1)

it can be reduced to the conjunctive - disjunctive normal form

n ni i
E=.\/ AN E.
i=1 j=1 J

¢

where E; is of the form either A©B or Aeéc or cOA, where A, B
are attributes, ¢ is a constant and © is a comparision
operator @€ {3, >, <, €, =, #}.

As the algorithm for a conjunctive selection can be used for a
disjunctive selection with some modifications, so for a given
arbitrary logical expression E, it is possible to find the
best ordering ofthe subexpressions of E such that the average
probabilistic cost of the algorithm finding OE(R) is minimal.

It is interesting that when the cost to find the best ordering

is added to the cost of the algorithm finding

oE(R)= o o
C
T

I>5

the total cost remains desirable i.e. is less than the cost of
the algorithm finding

o. (R)= © (R)
E E

) S 9

>

with large N . The algorithm shown here for finding the best
ordering t of the subexpressions of E can be implemented in
the computers as a subroutine without any access to the secon-
dary memory devices containing the file R. Its time complexity
is of O(nlogn) where n is the length of E.
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§1. BASIC DEFINITIONS

Definition 1l: A relation R with a set of attributes

U=a(R)={Al,...,Ak} and the corresponding ranges Dl""'Dk is

defined as follows

Qu
M
H

| ¥i lgigk r(A;)€D,}

o
ey
La}
<
c =
o

or

Q
0]
H

R {r= <t

l,t2,...,tk>|V1 l¢ick t;€D.}

Eack réR is called a tuple of R.

Definition 2: A logical expression E in R with the set of
D

attributes U=a (R) and the ranges D can be defined

l,oo.,k

recursively as follows:

1) An expression of the form A6B, A6c, c6A, A,BeU,
k
ceE U Di' e, >, &, <5 =, %}, is a simple logical
i=1
expression.

2) If E E, are logical expressions, then

l'

ElV’Ez, El/\Ez,’ﬂ El are also logical expressions.

Definition 3: A logical expression E in R which is of the form

E=E1A\... AN En is called conjunctive logical expression.

Definition 4: Given a logical expression E in a relation R

with the set of attributes v and the ranges Di’ i=1l,k, and a
tuple r of R.

We say that r satisfies E if when subfituting the names of the

attributes A in E by the value r. A€ Di of the tuple r €R,

i=1l
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the obtained logical expression has the value "true".

Definition 5: Given a relation R and a logical expression E.

The selection of the relation R on the condition E, denoted by

OE(R) is defined as follows:

op(R) = {r€R|r satisfies E}

If E is a conjunctive logical expression, the selection OE(R)

is called a conjunctive selection.

Definition 6: Let Q be a probability space of finite cardi-

nality, i.e. in Q is defined a probability measure

o: 2% — [0,1] satisfying the probability axioms. Put

0 = {wl,wz,...,wg}
and

= p({wi}), i=i,qg
Then, the avérage probabilistic value of the real valued
function f defined on Q corresponding to the probability

measure p is defined as

§2. AN APPROACH TO THE PROBABILITY ESTIMATIONS

Let a relation R be given with the set of attributes v and
the ranges Di’ i=l,k. As defined in definition 2, a logical
expression can be constructed by the simple logical ex-

pressions and the logical operators {A,v,—}.

The following statistical parameters obtained and collected
during the manipulation of R can be estimated:
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1) The distribution of values of the attributes in wv.
2) The exact upper bound and lower bound for the attributes in
U during the manipulation.
3) The number of distinct values of an attribute. One of the
simple assumptions is that the values of every attribute
X €v are uniformly distributed in the segment [Xm,XMl
where X =min R (%], Xy=max R[X]. (H1).
With the assumption (Hl1), it is easy to give the probability
estimations Pr (E) for the tuple r€R satisfying E.

For instance, for X, YE€Uu ; a,beR[X], we have

1

Pr (X=a) = m H (2:21.)

Pr (Xza) = 9 (2:2)

1) B il
Pr(X>a) = Pr (Xza) m (2..3)
[ b-a
X =X ! xmsa<b<xM
M m
Pr (a<X<b) = { (2.4)
X -a
M 1
- ¢+ X ga<b =X
i Xy~X, card R[X] - M
Pr(X=Y) = O 1f Xm<XM<Ym<YM (2.25)
or Ym<YM<Xm<XM
Pr (X=Y) = : (2.6)
card R[X]- card R[Y] :
" if Xm<XM = Ym<YM .
or Ym<YM - xm<xM



1
Pr (X=Y) = (2.7)
X =Y X -Y
max (Xﬂ:im card R[x], §M:?E card R[Y])
M m M m
3o Xm<Ym<xM<YM
or Ym<Xm<YM<XM’
l .
Pr (X=Y) = (2.8)

max (card R[X], card R[Y])
if Xm = Ym<XM = YM

(a special case of (2.7)).

Remark 1. To compute Pr (E) for a non simple logical expression,

we use the following rules:

a) Pr(ElAEz) — Pr(El)'Pr(Ez) where E,vE, are independent.

b) Pr(EiVEz) Pr(El)+ Pr(E2)-Pr(ElAE2);

c) Pr(‘vEl) =1 - Pr(E,).

1

Remark 2. In [2], for the computation of Pr (X=Y), the authors
gave only formula (2.8), with the assumption (H1l). Of course,
when taking attention to the relative positions of the
segments [X ,X,] and [Y ,Y,], this simple formula is not
complete.

Remark 3. For other distribution types, the idea of this paper
is also useful. One must only considered an appropriate method

for computing the probability estimations.
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§3. THE MAIN PROBLEM

Given a relation R with the set of attributes U=a(R) and the
ranges Di’ i=l,k. E is a logical expression in R. The
selection T=0E(R) can be obtained by the following algorithm:

T:=0
for each réR do (L)
A€ test (r,B) then add r to T

The function test (r,E) performs two operations:
i) Replaces the names of attributes A€U by the values r.A of
the tuple re€R .
ii) Computes the obtained logical expression and assigns the
result to the function test.
Given a tuple r€R. Denote cost (r,E) the cost paid to perform
the function test (r,E). In this section, we always consider
that E is a conjunctive logical expression
n
E= /\ E. .
: i
i=1
The function test (r,E) can be computed by two different ways:

Way 1: Compute all functions test (r,Ei) and then set

n
/\ test (r,Ei).

test (r,E) =
i=1
We have the algorithm:
test (r,E): = true ; (2)
for 1 : =1 to n do test (r,E)=test(r,E) A

A test (r,E.).
5 B

The one-pass compilers compute often the conjunctive logical

expressions in this way, for instance the compiler on the
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hypothetical computer P-code for language PASCAL-S.

/
Way 2: It is obvious that if there is some io during the

computation of test (r,Ei) such that test(r,Eio)=false then
it is possible to conclude immediately that test(r,E)= false
and to halt the calculation of test (r,E). This is expressed

in the algorithm as follows.

Test (r,E): = false
for 1 & = 1 to n do

(3.)
if =4 test (r,Ei) then goto L;

test (¥,E) : = true ;

Intuitively, it is easy to see that the method in the
algorithm (3) is very natural. (Of course it is better than
the algorithm (2).) However, it is very interesting if we
know the probabilities of the tuples ?€R satisfying the
expressions Ei in R and so we can expect that there exist a
best ordering of the subexpressions Ei such that the average

probabilistic cost of the algorithm (3) is minimal.
To make clear this idea we do as follows:

At first, basing on the probability estimations si=Pr(Ei),i=TTH
of Ei in R and the costs ci=cost(r,Ei) i=l,n paid to compute
the functions test (r,Ei), we can compute the average
probabilistic cost of the algorithm (3). Then, analyzing the
mathematical expression cost (r,E) represented by Cir Sy
i=1l,n, we try to find the best ordering r={rl,...,rn}—

a permutation of {1,...,n}, such that the value of the expres-

sion cost (r,E) is minimum.

Note that to compute test (r,E) for a given E and reR, the
replacements in step i) are necessary and the time cost is the

same for every re€R.



e =
It is obvious that:
cost (r’Ei)= c;>0 (constant) V¥ré€R (4)
Assume that for each Ei’ by the rules as in §2 we can define
i=Pr(Ei), i=1,n and the logical subexpressions are independent

of each other.

The relation R is partitioned into T and Ti’ i=l,n as follows:

T = oE(R)= {rérR/test (r,E) = true}

By * {rér/¥j, j=1,1i-1 test(r,Ej) = true,}

test(r,Ei)= false j

it is evident that

™T; = ¢,3 = I,n

Define 5 {1
p* (T) = _g Sy p*(T,) = g sj(l—si), i=2,n
i=1 j=1
o*(Tl) = l--sl
We have
n n i-1 n
p*(T) + = p*(Ti)= ¥ I s.(l-s.)+ 1 s. =1
i=1 i=1 j=1 A 7
l ]
Indeed, set h, = I s., h =1
i i - j )
j=1
i-1
* = - = - =
o) (Ti) jgl sj(l Si) hi—l .y $=2;n

Il
=
|
0
Il
=)
I
=y

*
P* (Ty) 1 o i
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M3
[ e Rt}

e* (T, ) +p*(T)=

-h,)+h =h_ =1
1 i o 2

il O

i
Moreover in T i.e. for the tuples réR for which test (r,E)=true,
it is necessary to compute all test (r,Ei), i=1l,n for the final

n
result of test (r,E), therefore it requires gy <c, .

\ i=1l -
In Ti’ because test ﬁr,Ei)= false, the computation of test(r,E)
11l 7 g 2

halts and it takes L cj. By the definition 6, the average

J._
probabilistic cost of the algorithm (3) is

n
cost3(r,E) = p*(T)cost (reT,E)+ 2 p*(Ti)cost(reTi,E) =
i=1
n n n i-1 i
= (2 ¢,) T 8, + 32 I ‘8:01-830 38 o) (5)
i=1 Y i=1 *  i=1 4=2 J Tog=1

Return to the algorithm’ (2) computing the function test(r,E),
the worst-case cost and the average probabilistic cost are the

same. We have:

e (6)

costz(r,E)= i

™3

i=1

The following result is obvious.

Proposition 1.

cost3(r,E) < cost2(r,E)

where cost3(r,E) and costz(r,E) are expressed by the formulae
(5), (6) respectively.

Proof. It is not difficult to see that:

n i-1 n
s; + I I s.(l—si)l = B Ee =
1 i=1 j=1 J i=

c.)[
1 =4

M3
nh=as

cost3(r,E) < |
i
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= costz(r,E)

The above proof shows thatthe algorithm (3) has always the
cost less than the cost of algorithm (2).

Now, (5) can be transformed in the following way:

n n n i-1 i
cost,(x,B) = (2 ¢,) U 8, + L (1-8.) 0 s.(2 c.)
- ful * get * 4wl T dey d4ey 2
Set g
9 = jz Cj: 90=0
alwal) = n
ERdty (EyB) = gl ¥ e} Ry g~RgIgy =
n n
= g h + z o S = z h.g =
nn 4y > i Hads £ j=3 171
n n-1 n n
P L R e T e =L
n n i-1
= % h. .4g9.~g;. -) = B & H 38,
j=1 & 1 W SR U j=1 1+ g1 3

From here the following problem can be formulated:

Given the numbers cy O, i=1,n
13 Si > O
Find the best permutation t= {rl,...,rn} of {1,...yn} such - that
n i-1
A(t) = E e, B E. —> min .

If it is possible to find the best permutation T such that

A(t) — min, then by the commutativity and the associativity of
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the logical operator /\, we have

OE(R) =0 E_(R)= o

1 i

>5
>5

1

<

This transformation should allow us to calculate the function
test (r,E) by the algorithm (3) not with the ordering {1,...,n}
of Ei‘but with the ordering {tl,...,rn}. And so, the algorithm

(3) becomes:

Test (r,E) : = félse ;
for i : =1+t n do , (84}
if =i test (r'ETi) then go to L ;
test (r,E) : = true
N B

For this algorithm, the function test (r,E) can be computed
with the average cost

The following proposition will show the way to find the best T.

Proposition 2.

Let sy > 0,i=1,n, T, T' be two permutations of {1,...,n}

whose io-th and (io+l)—th elements are changed with each other,

e,
14 14
T;.. = T, T =
io G . 2 18 i +1
o lo
i E5: i u_c uT
iO i +1
tr - c g tT B (.
5l +1 T
o) Ty i ¥ +1



Then

Proof.

when i<i

]

when i=i
(o)

when i=io+l

when i>io+1

n i-1
A(Tt) = 2 cT I 8.
i=1 i j=1 3
n i-1
2{t"’)= ® e., B 8_,
i=1 Yi 4=1
Mg T Gy
i : |
i-1 i-1
Il s.,= 0.l s
4 2 Tk
1=k =i -3
Cgr T cr
i i +1
o
i -1 i -1
o)
B Hop= W OB
J=1 J J=1 j
Crr = Cq
i R i
o)
i i -1
o o
II sT, = IT s_E sT '
=t ) = 4 i
o)
Cr T Cq,
3 G
= i-1
II S g N S8y R - e . I
_ T T : by
=1 j i, 1o+l 3—10+2



A(t')-A(T) = c

—> A(T")

Proposition 3.

Given the numbers
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i-1
s o I8 - s . i s =
T T T L T
3 1O+l i, 3-10+2 j
J
i -1 i -1
o
I s + C I s -
=1 73 - Ti+1
i -1 J =1
o o
I s - C I s - s
o T s e T T,
j=1 Jj 1o+1 j=1 j i,
(cT e 5. o T - s
3 1. 41 i, i <l i, b 1 o P |
(c (1-s )- ¢C (1-s ))
T T T
Jj i +1 i, i, O 1 I
l—sT l-sr
i i +1
“ c L o ( & ) <0
1:i Tl +1 cr CT
J o i i +1
o
< AlT) .
= 'n



Set

i=1l,n-1 then A(ro) is the

e L Py {0 e anpm ) sqtisfies ti > ti+l'

minimud.

Pmof.

Let Ts{rl"“’Tn} be a permutation of {l,...,n}=ro. We have to

prowe that A(ro) g ().

n
First we remark that from {tT }_C) the sequence {ti},i=TTE

i i=1
{(corresponding to 10) can be obtained by

(1) the bubble sorting algorithm permuting sequentially the
adjacent elements t R satisfying t < £
%3 T 41 i Ti +1
and o (o) o} o
(ii) the permutations (if necessary) of the elements with equal

values in the obtained sequence.

By proposition 2, if (i) should be carried out then we should
obtain rl satisfying A(rl) <A )

Basing upon the proof of the proposition 2, we have: The
permutations of the elements with equal values in the sequence
{trl}. do not change the value of A, i.e. A(To)=A(T1).

i 1=1l.,n
From here follows A(ro)=A(rl) < A(T). When the step (i) does
not take places, it is not difficult to see that A(TO)=A(T).

The following algorithm will give the best result for any

conjunctive logical expression.
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Algorithm Al.

Input: E = EI_A eriaaidX En
k
R= {¥ & U —€>.U Di /| ¥i r(Ai)e.Di}
i=1
Output: T = {Tl,...,Tn} is the permutation of {1,...,n} such
that
v i-1
A(t) = % c I s —> min
; ;
i=1 i j=1 J

Method

1)

For each i, estimate the probability Pr(E;) by the
formulae in §2 or by the formulae given by the system
programmers basing upon the statistical parameters during

the manipulation of R.

2) If there exists i0 such that Pr(Ei ) = 0, then inform
e o
OE(R) = ¢ .
3) If there exist iO such that Pr(Ei ) = 1 then delete Ei
from E. 2 -9
More generally, denote I = {io/S(EiO)= 1}. Consider
E = E

VS e S .

Renumber the expressions Ei in

E = Ei
1e{l, s, n}~1



4)

5)

6)

7)

8)

9)
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Define Civ i=1l,n (In practice, in order to define Cyr we
compute the function test (r,Ei) for any tuple and give
c; = cost (r,Ei).

For instance: if

Ei = AGB then ¢, = 2a + b
Ei = AOc , ci = a+ b
Ei = COA , c;, = a + b
where
a 1is the cost to bustitute A by r.A; K
b is the cost paid to compare two elements in U Di'
J l=l

ot
Il

1 l-si, i= 1,n.

te = ui/ci, i=l,n .

Sort {ti} such that ti S ti+l i=]1l,n-1
Step 7 can be performed by one of the sorting algorithms,

in general, of complexity O(nlogn).

Print the best ordering obtained r={rl,...,1&-
n i-1

Print the wvalue A(T)= I cC I
i=1 i =1

Costing the algorithm Al.

\

Steps 1,2,3 are performed with the cost Kl n
step 4 has the complexity K2 n
step 5,6 K3 n
step 7 K4 nlogn
step 8,9 Kg n
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The complexity of the algorithm Al is of

Kn + H n log n = 0(nlogn)
K = K1 + K2 + K3 + K5
H = K4 .

Remark 4.

The proof of the proposition 3 is based on the bubble sorting
algorithm of complexity 0(n?) but the step 7 of the algorithm
Al uses any sorting algorithm of complexity O(nlogn). However,
there is no matters about the correctness of the algorithm Al.

The algorithm Al can be implemented without any access to the

secondary memory devices containing the file R.

Theorem 1.

n
Let R be a relation, card R =N, E = A Byw By = {3,051
is the best ordering of E,'s i.e. i=1
i-1
A(t ) = I s. — min
o i
J=l

Then, the cost of the algorithm (1) finding OE(R) with the
function test (r,E) computed by:

1) Aldorithm (2) is Cl = N.

[ Jl > =)
Q

2) Algorithm (3) with the best ordering T of Ei’s is

n
C"=N-°+* 2 cy I s. + F(n)
=1 j=1 I

where F(n)=Kn + Hnlogn is the cost paid to perform the
algorithm Al.
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3) Algorithm (3) with an arbitrary ordering t= {Tl,..;,rn} is

we have the inequalities:

C% > C3
i 2 :
G > € with large N
C3 P C2 with large N .
§4 Extensions
Extension 1. If E is of the form E=E1 /o s VEn then using the

symbols as above and the De Morgan'’s law

—(E; V ... VE) =E; A... AE

n
we have: the cost payed to compute test (r,E) is
n i-1
cost (r,E) = & ¢, NI s! wherég s'=l-s., j=1l,n
I=F ey W J J
Proposition 4.
Given s; = Pr(Ei) QO € s; < 1
e > 0O i=1l,n
3
t, = 8. /¢:
i SR
If Ty & {1,...,n} satisfies ti > ti+l' i=1l,n-1 then
n i-1
cost (B;B) = T €. T 53 —> min.
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Extension 2.
Algorithm A2.

Input: An arbitrary logical expression E (as defined by
def.2).
Output The best ordering of the simple logical sub-

expressions of E.

Method.
1) Reduce E to the conjunctive disjunctive normal form
n,
n i
r(E) = Vv A E, -«
i=1 =1
2) Apply algorithm Al to
g
B, = E.
j=1

i i =
to give the best ordering " of Ej, J=1sn8q -

n y
3) Apply the modified algorithm to V Ei with Gy = A(Tl) and

si=Pr(Ei) defined by the estima%f%q formulae analogous. to

one’s in §2.

n.
n 4 T
4) Print the best ordering E = V A E i
i=1 4=1 T3
n i-1
5) Print the value C = 3 ¢ I s .



CONCLUSION

Independently, our approach is quite near to the Hanani'’s one

[5].

However, our approach seems to be more straightforward,

easy for extensions and the complexity analysis of the

algorithm proposed is much elaborate.
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A reléacids kifejezéseékkivalasztadsanak optimalizilasardl

J. DEMETROVICS, HO THUAN, NGUEN THANH THUY

Osszefoglald

n
Legyen E= A E;, egy feltételes kifejezés és R egy

reldcidé. A cikkben egy O(n log n) algoritmust mutatnak be
a szerzdok, amely a OE(R):={rER/r kielégiti az E-t} mennyisé-
get J/atlagban/ minimdlis lépésszamban hatdrozza megqg [azaz,

amely komplexitdsanak varhatd értéke minimalis/.

ONTUMH3ANLKA BHOOPOK K3 PEJIALUHEHHHX BHPAaXEHHH .

M. JIemeTrpoBuu, Xo TxyaH, Hryen TxaHx TXyH

PeswmMme

n
ycTh E = A Ei €CTh YCJIOBHOE BHpaXeHue U R penauusa.
o i=1 >

B craTbe mokasuBaeTcs O/n logn/ ajropuTM KOTOpPHYN /B cpenHeM/
MHHHMH3HDPYET YHCJIO WaroB IOJsa HaxoxOeHus o/R/: = {r € R/
+crioniHgeTr E}.

r
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