MTA SZTAKI Kézlemények 32/1985 105-121

A DATA STRUCTURE FOR QUADTREE CODES
AND APPLICATION

PHAM NGOC KHOI

Institute of Technical Cybernetics
SAV - Bratislava
Czechoslovakia

ABSTRACT

This paper describes a data structure for Quadtree code
representation and the operators defined on it. Algorithms
are presented for finding adjancent blocks, calculating
geometric properties of region: area, perimeter and centroid.
The efficiency of quadtree representation is evaluated in re-

lation to Run length code and Chain code representation.

1. INTRODUCTION

For image data compression, a lot of representation algo-
rithms is based on the various codings for a region: Run
length codes, Chain codes, Quadtrees... [1,11]. Especially the
tree representation which offers a number of advantages has
attracted much attention in recent years [2-1L1. A collection
of algorithms has been studied for converting between
guadtrees and other representations and measuring geometric
features of regions represented by quadtrees [L-7, 13-1L47,

In this paper, we shall be concerned with a data structure for
quadtrees as a tool for calculatino region features of image.
The epphasis is on alcorithmic procedures, which are effi-
cient especially from implementation point of view. The last
section deals with the comparison of efficiency of image

coding based on Quadtrees, Run lenagth codes and Chain codes.
In the following by a binary image, we always mean a

n

2

respectively to the color of pixel: black or white. The set of

w array, each element of which has value O or 1,

=1 5105 =

- 106 -

1's pixels in a connected component of array is called a

region.

2. DATA STRUCTURE FOR OUADTREES

Quadtree codes are an recent region representation method.
It is based on successive subdivision of the array into
gquadrants until we obtain blocks possible simple pixel that
are entierly contained in the region or-'entierly disjoint from
it. Note that if the image is an 24 by 5 array of pixels,

then after the k-th subdivision, each gquadrant has Zn_k by

2n_k size. For example the region in Fig. 1a corresponds to
raffinement process as shown in Fig. 1lb. This process can be
represented by a tree of degree 4 or a guadtree in which the
entier array is a root node, the four sons of a node are its
quadrants and the leaf nodes correspond to 1's or O's pixel
blocks and have their color BLACK or WHITE. The no-leaf nodes
correspond to those blocks for which the further subdivisién
is still continued and have their color GRAY. The gquadtree
representation for Fig, 1b is shown in Fig. Jlc. Note that
here the blocks must have standard size and positions. Since
the array was assumed to be size of i by 2n, the tree height
is at most n, This region representation method was proposed

by Klinger [2].

T 107 =

The aguadtree can be defined as a tree whose nodes are
either leaves or have four sons. A node can be gray, white or
black and is, in general, stored as a record with six fields,
five of which are pointers to the NW, NE, SW and SE quadrants
and the sixth is a colors identifier. In the following, we
propose a data structure advantageous to calculate some region

features of image.

Assume that a square block has its four cuadrants indexed

as follows:

correspondently to guadrants NW, SE, SW, SE. Each guadrant
in image is associated to a node in auadtree, which has four
sons enumered from left to right in the order 0,1,2,3. We

present each node - of quadtree a integer pair (,k), where:

= L 1is level of node, i.e. distance from the root to the

node, 0 < L < n

- K 1is defined by

L-1 .
¥ = ¥ m.2* 0 <n. < 3
e 7z - 7 -
=0
where (nL_],... n],no) is the path from the root to tthe
node P.

We denote

K = n, sl

L= 1o
B o= (&, K
Level(P) = L
Code (P) = K .

We can use the following recurrent formula to determine

the pair (L,K) for all nodes of a quadtree:

- 108 ~

- The root has presentation (0,0)
- If a node P 1is represented by (L,K) then its four

sons have the representations

i * 1y 2K + &) 0 £ iv< 3
This data structure was introduced by L.P. Jones and S. Iyengan
(12] and is called virtual quadtree.
On this data structure we define the following operators:
1- "2's borrow" substraction: Sub?

Sub2 B = (L', K%Y

where
LY = 5

~

r = 3 ! . I
K" = sign Myp_qg sse NN

n! are recursively computed as follows
L
2

(n .+4 = b.)mod 4
7 7

O df s b
T e %

b;s1) 2 otherwise b A= Gy lyn e BNE
. . 5 by _1 =0
sign &=
b i bL—Z = 2

Por example: Bubif3,.371) = (8,137)

Sub9(5,111) = {5,~5539

- 109 -

2~ Clockwise rotation: Rot+

We first define operator Rot on the finite set 10,702,331

Rot?(0) = 1
Rot (1) = 3
Rot?(2) = 0
Rot(3) = 2

Now , Rot” is naturally extended on the infinite set
{0,1,2,3}"
Rot? (za) = Rot® (x)Rot? (a)

*
where =z € {0,1,2,3} , a € {0,1,2,3}
Once again, Rot+ is extended on the set of quadtree nodes

Rot? (L,K) = (L,Rot*(k))

Rot” (P) gives the representation of the same neode P

after 90°-clockwise rotation of the image.

3- Counterclockwise rotation: Rot

Operator Rot is defined in a similar manner to Rot,

but it manipulates on the set {0,1,2,3} as follows

Rot (0) 2

Rot™ 1) = 0

Ro# (2) = §
Hot 13) = 1 .
= +. -1
In the other word, Rot = (Rot) s

Rot (P) gives the representation of the same node P after

90°-counterclockwise rotation of image.

= 1O =

4~ Rounding: Rnd

Hnd(P) = (L',K")

where L4 = L = 1

K!' = n

App(P,7) determines i-th son of P in Quadtree.

3; CALCULATING SOME PROPERTIES OF REGION

3.1. ADJANCENCY

In connection with the adjancency of blocks, we have the
theorem [133]:
Theorem: Given a variable side in the set {Northern, Western,
Estern, Southern}, which is encoded respectively by {0,1,2,3}.
Let P be a quadrant of image. The quadrant ¢ is determined
by

@ = Rot~ 2%9€ (g,pa(rot™ S92 (p)))

Thus if sign(Code(Sub2(Rot+Side(P)))) > 0 then @ is the
quadrant which is adjancent to P in the side direction and
which has same size as P.
Bas%ng on the theorem, we can jave the procedure finding all
quadtree leaves adjancent to a given leaf P in a given

direction side

= q11 =

procedure JOINBLOCK (P,side,JOIN)
/¥ input P: leaf of cuadtree
gide: direction
output JOIN : set of all leaves adjancent to P in
direction side */
node P,Q
integer side
set of node JOIN
aguadtree QTREE
begin JOIN := @ ;
Q := Rot-Side(SubZ(Rot+Side
SEARCH (Q,QTREE,side,JOIN)
end / joinblock /

(BY)i)s

procedure SEARCH (Q,QTREE,side ,JOIN)
node Q
integer side
set of node JOIN
quadtree QTREE
begin if Code(Q) < O then EXIT /* not adjancent block ¥/
else if Q not in QTREE then
begin SEARCH (Rnd(Q) ,QTREE,side,JOIN1);
JOIN := JOIN+JOIN1
end
else if Color(Q) # GRAY then JOIN := Q

else

=t L2 —

begin

+side

SEARCH (App (Q, Rot (2)) ,QTREE,side ,JOIN1) ;

JOIN := JOIN + JOINIT;

side

SEARCH (App (Q,Rot "’ (3)) ,QTREE,side,JOIN1) ;

JOIN := JOIN + JOINI]
end

end /¥ search ¥/

This algorithm can be efficiently used in some problems
such as tracing the boundary of region, calculatihg the

perimeter of regioen: ..

3.2. AREA AND PERIMETER OF REGION

v

in order to calculate the perimeter of region, we visit,
say, in postorder all black leaves of the quadtree. For each
of them, we find all white leaves adijacent to it and the
boundary segments. The sum of boundary segments yields the
perimeter of region. The area of region is simply sum of area

of all black leaves.

procedure GEOM(QTREE,n ,PERI,AREA)
/* image is of size 24n x 2tn ¥/
node P,0Q
quadtree QTREE
integer PERI,AREA
begin P = (0,0)

/* find a black or white block in upper-left

corner ¥/

while Color(P) = GRAY do P := App(P,0);
PERI := O; AREA := O
repeat /¥ cycle calculating perimeter and arca */
while P not in QTREE do P := Rnd(P)

while Color(P) = GRAY do P := App(P,0)

T B

1f Color(P) = BLACK do

beogin
AREA := AREA+(n-Level(P))+2;
for 1 2= 0C to 3 do
begin
JOINBLOCK (P,i,JOIN) ;
if JOIN = @ then PERI := PERI+ (n-Level(P))

else for all Q@ in JOIN do
.if Color(Q) = WHITE then
PERI := PERI+min(n-Level(P),
n-Level (Q))
end -t
end

P := (Level(P),Code(P)+1);
until Code(P) = 44 (n-Level(P))

end /* geom */

It is easy to see that the average execution time of the
algerithm is proportional to the number of leaf nodes in
quadtree,

3.3. CENTROID

The centroid of a binary image is a point (z,y) such
that 2% 1is the average value of the z-coordinates of all
the black points of the image and y is the average of the
y~-coordinates of the black points. In other words, if
there are m black points in the image (xl,yl),...(xm,ym),
the centroid is

(Z,y) = (Zz,/m, Ly ;/m)

procedure CENTROID (QTREE,n,XCENT,YCENT)

/* calculate the centroid of quadtree for image of size
24n x 24n, XCENT, YCENT are the centroid value */

node P

integer n

= 114"~

aquadtree QTREE
begin
P := (0,0);
XCORD := O; YCORD := O3
MOMENT (P ,n,XCORD,YCORD,X,Y,MASS) ;
if MASS = O then begin
XCENT := O;
YCENT := O
end
else begin
XCENT := X/MASS;
YCENT := Y/MASS
and /* centroid ¥*/

procedure MOMENT (P,n,XCORD,YCORD,X,Y,MASS)

/¥ calculate the moments of order O and 1 for block P

XCORD, YCORD are are coordinates of upper-left corner of P

X 1is the moment of order 1 m10
Y 1is the moment of order 1 mo1
MASS 1is the moment of order O Moo */

node P

integer n,XCORD,YCORD,X,Y,MASS

begin
X &= O3 Y := 0; MASS := 0O;
if Color P = GRAY then for i 3= 0 to 3 do
begin

MOMENT (App (P,1i) ,n,XCORD+24 (n-Level(P)-1)*i mod 2,
YCORD+24 (n-Level(P)-=1)*i div 2,X1,Y1,M1);

X := X+X1; Y := Y+Y1; MASS := MASS+M]

end

else 1if Color(P) = BLACK then

begin

= 115 =~

X := (2¥XCORD+2+(n-Level(P))~1)*24 (2% (n-Level(P))-1);

Y := (2*YCORD+2+4 (n=-Level(P))—-1)*24 (2% (n-Level(P))-1);
MASS := 24 (2% (n-Level(P)))
end

end /¥* moment ¥/

It is to see, once again, that in the procedure each black
leaf in the tree is visited once and only one. The other

moments can be calculated in an analogous way.

4, EFFICIENCY OF QUADTREE REPRESENTATION

This section is devoted to the discussion of the efficiency
of cuadtree representation in relation to the other codings.
Basing on cuadtree codes we ogive the evaluations of storage
space for run length codes, “‘chain codes. Assume that an image
of size 2™x2" is represented by quadtree with @ nodes.
Each node £ of has 3 attributes: Level(P), Code(P) and

Color(P), which need respectively log bits, 2n bits and

n
8
2 bits to store them in memory space., Thus, the amount of

storage needed for @ is

Q(2+2n+loggnj

If 2n bits for Ceode(P) have the representation

Code(P) = YTy o0 Ug¥gs gy Yy = 0,1

then the coordinates (x,y) of upper-left corner of P is

determined as follows [8,103]

Bl w é . 2n-LeveZ(P)+ie1

n=Level (P)+7-=1

“ 138 =
and the size of P is

4 (P) = 2n~LeveZ(P)

4.1. EFFICIENCY OF QUADTREE REPRESENTATION IN RELATION
TO RUN LENGTH CODE

Let B < @ be the set of black levels of quadtree. We
have the integer set BY defined as follows:

BY = {y(P) | Pe B} u {y(P) + s(P) + 1 |P € B}.

With the equivalence relation "=" in the usual sense on
BY, we have the set BY = BY/_. Denote by & the cardinal-
ity of BY. Each 'gj € BY determines the image row where

may be arise a new run cenfiguration (Fig. 2.)

In order to determine the number of runs, for each
ngEEY, the associated set Hj<:B and the relation
Yj c Hj X Hf are defined as follows

By = {Pp € B]ngEy(P),y(P)+s(P)]}
Pij Py o= alB,J) & x(P1)+s(P1)+ 1 |
Pty €&,
or x(P,) = x(P J)#a(P)+ 1 ¢
m m

Next, if let y* be the reflexivi, transizive closure of Yj
on Hj’ then we have the set Hj = Hj/y , each element
of which contains the blocks successivelly adjacent in
horizontal direction.

The total number of runs in run length representation

will be

= = n
Ype1 ~ :

Ir Mo

vn o *
(yj+]—gj)card A where

J=1

s 1 ¢ O

Thus, the amount of run length code storage needed for image

is %

2(n+1) b}

= = *
4 (yj+1 " yj)card Hj bits

z

Now we can conclude that given a region represented by
quadtree with ¢ nodes, run length code will be used effi-~

ciently when

bo_ 5 « Q(2+2n+log n)
jiz(yj+1 - yj)card Hj < :

2(n+1)

4.2. EFFICIENCY OF QUADTREE CODE REPRESENTATION IN RELATION
TO CHAIN CODE

For each B in the set of black leaves B , by the
procedure JOINBLOCK we can determine the set

Ng = {Pp € B| P is adjancent to P}

The boundary part, which belongs to B is calculated by

4(n-Level(BJ) < L min n<Level(B),n-Lepel(P))
PENB

Therefore the number of directional vectors in chain

representation is

4 I n<=Level(B) - I T min(n<Level(B), n<Level(P))

BEB BeB PEN 5

We obtain the formula.calculating the amount of chain code

storage needed

3(4 I n~Level(B)) =- L 0% min(n-Level(B), n—Level(P)))
BEB BEB PeN,

~e =

At this point, we can arrive to the conclusion that
given a region represented by quadtree, chain code will be

used efficiently when

4 I on-Level(B) = ¥ I min(n=Level(B), n<Level(P)) <
BEB BEB‘PENB
\Q(2+2nilog2n)
< :
3

5. CONCLUSION

For describing quadtree representation of region, a data
structure has been presented with the operators defined on
it. This operators can be easily implemented in usual
programming languages. Based on the data structure, the
algorithms have been described for finding adjancent blocks,
calculating geometric features of region: area; perimeter
and centroid. These algorithms are useful still in the case
where a region may have holes, Basing on the data structure,
we can study the algorithms of converting quadtree into chain
codes and run length codes [13,14]. The last section deals
with the analysis of representation efficiency of run length
codes and chain codes in relation to a given quadtree. The
explicite formulas have been presented for evaluating storages
space memory needed for representations. By simple procedures,

the calculation of these formulas can be done efficiently.

REFERENCES

[1] E.L. Hall: Computer image processing and recognition.

New York - Academic Press 1979.

= 119 .=

[2] N. Alexandiris and Klinger: A picture decomposition, tree
data structure and identifing directional symmetries as
node combinations. CGIP Vol8 1978, p. 43<77

£3]1 A. Rosenfeld: Quadtrees and Pyramids for Pattern
Recognition and Image Processing. IEEE 1980 5-th Int.
Conference on PR. Miami Beach 1980, p. 802-807.

(L] H. Samet: Region representation: Quadtrees from boundary
codes. C ACM Mar 1980 p., 163=170

[51 C.R. Dyer et al.: Region representation: Boundary codes
from Quadtrees. C ACM Mar 1980 p. 171-179 .

[6] M. Shneier: Calculation of Geometric Properties Using
Quadtrees. CGIP Voll6 N°3 July 1981, p. 296<302

[7]J H. Samet: Computing Perimeters of Regions in Image
Represented by Quadtrees. IEEE Trans. on PAMI,
Vol PAMI-3, N°6, Nov 1981 p, 683<687

[8] I. GARGANTINI: An Effective Way to Represent Quadtrees.
C ACM Vol 25 N°12 Dec 1982, p. 905<910

£9] H. Samet: Neighbour findineg Techniques for Images
Bepresented by Quadtrees CGIP 1982, p. 37<57

[10] S.X. Li and M.H. Loew: Quadcodes and their application
in Image Processing, George Washinaton University,
Department of EE&CS Rept. N°IIST 83<15. Oct. 1983

[11] G. Ram: On the Encoding and Representing of Images.,.
CGIP 26 1984, p. 224-=232

121 L.P. Jones and S.S. Iyengar: Space and Time Efficient
Virtual Quadtrees IEEE Trans. on PAMI Vol PAMI-6,
N°2 Mar 1984, p. 244-248

e 130" =

£13] P.N. Khoi and H. Kiem: Code conversion in image
processing. Institute of Technical Cybernetics.
SAV-Bratislava. Rept. N°14/1984

(141 P.N. Khoi et al: Conversion and Synthesis of Imate
Representation. Proceeding of the Conference on Applied

Mathematics. Hanoi 1985 (to appear)

= 2T~

A "négyzetes fa" /quadtree/ kédok adatstrukturdja alkalmazasokkal

PHAM NGOC KHOI

Osszefoqladld

A szerzT a "négyzetes fa"-kdédok reprezentdcidja szamara bevezet
egy adatstrukturat és operatorokat definidl rajta. Algoritmu-
sokat ad meg a kiegészitd blokkok megkeresésére, valamint a
tartomanyok geometriai jellemzdi /pl. terililet, keriilet, suly-
pont/ meghatarozasara.

Osszehasonlitva a "futds-hosszusig" és "lanc" kéd reprezentéa-

cidkkal, értékeli a "négyzetes fa" reprezentdcid hatékonysagat.

CTpyKTypa OaHHHX IJif "KBagpaTHYECKOIro nepeBa"-KOHOB C NpHMEHe-

HHEM
[Ixam Hron Kxou
PeswMme

B cTaThe OINHCHBAETCs CTPYKTypa IaHHHX IJIA NpencTaBJIEHHA KOIOOB
Tuna "kBaOpaTHYECKHX IepeBbeB" Hu onpemesleHH ONnepaTopH Ha 3TOWH
CTpYKType. JlanTCsA aJCOPHUTMH IJIST HaXOXOEHHUA HNONOJIHHTEJIbHHX 6J10-—
KOB M IUIS BHYUCJIEHHS IeOMeTpHYEeCKHX CBONCTB /njiomansb, NMEepHUMETp,

neHTpoun/ o6racTei.

lpencTaBleHue TuNa "KBaZpaTHYECKHX OepeBbeB" CpaBHHBAeTCA C

npelcTaBleHMeM Tuna "pnuHa npo6era" u "uenn".

	Pham Ngoc Khoi: A data structure for quadtree codes and application��
	Oldalszámok������������������
	105����������
	106����������
	107����������
	108����������
	109����������
	110����������
	111����������
	112����������
	113����������
	114����������
	115����������
	116����������
	117����������
	118����������
	119����������
	120����������
	121����������

