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ABSTRACT

In order to improve the efficienty of image matching, a lot 
of matching schemes have been proposed, based on various ap­
proaches 11-53. Here we discuss the efficiency of the synthesis 
of image matching algorithms using hierarchical schemes and 
those that use the combination of coase-fine matching algorithms. 
The method of extracting the features for regions in an image 
and perfomance of scene matching methods are considered.

This paper consists of the following parts:
- On the synthesis of image matching algorithms
- k-centroid feature extraction for image matching
- Combination of image transformation and normalization
- Synthesis scheme for image matching programs

1. ON THE SYNTHESIS OF IMAGE MATCHING ALGORITHMS

It is well known that the problem of scene matching is gi­
ven a template of a scene, determine the location of this tem­
plate in another scene. The method used to solve this problem, 
in its simplest form, is called template matching with the ba­
sic correlator, the statistical correlator. Later, some modifi­
cations using invariant moments for scene matching have been 
developed to solve the general problem involving geometrical 
and sensor variation cU-53.
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Since a template of size MxM can be shifted into (N-M+l) 
possible positions in an image of size NxN, the number of coore- 
lations can be extremely large. The tendency in the current re­
search is toward the use of hierarchical techniques for de­
creasing the number of search position. In particular, coarse- 
fine techniques are logarithmically efficient and reduce the 
number of search positions to K. log (N-M+l) / where К is a 
constant. Cl, 2,33.

However, at level of search, the number of computations 
needed to obtain the features for scene matching for example, 
invariant moment can be still large. Later, a synthesis using 
hierarchical technique and detections is proposed.

1.1 Hierarchical schemes for image matching

- At first, a structured set of pictures at different reso­
lution is defined. The level К scene is reduced to a level (K-l) 
scene with the agglomerative rule, for example:

= f { *K(Zi,2j) + FK[2i,2j+l) + FK (2i+l32j) +
+ FK(2i+l32j+l)}

where, F^b^j) - the gray seal of pixel (г, j ) at level K. Note
that, at the level K, number of possible test locations is

К 2L(N-M+1)/(2 +1)1 and at level К-l, only the locations selected 
iji level К needed to be tested.

- A matching rule to guide the search from level К-l to le­
vel К must also be defined. In the scene matching with invariant 
moments, this rule is the moment correlation which is costly in 
computation, due to the calculations needed to obtain the inva­
riant features. But it can be used to great advantage at the 
low resolution level at which other methods are not possible. 
Here, we use an approach as follows: instead of matching each 
template of scene at every location, the templates are partiti­
oned into "informative" and "irrelevant" templates by some simp­
le tests. Elimination of mismatching locations and termination
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of computation can take place at each level of test based on 
this partition.

In practice, we have used a detection that combined two 
cimple tests before matching the secene with the invariant mo­
ments :

1°. Test based on measure of the similarity of two gray le­
vel distributions (x-test).

2°. Test based on the correlation coefficient of the joint 
distributions (p-test). The x, and p measures are computed for 
each location. If both x,p are smaller than selected threshold, 
this location is rejected.

- Thus, let be a set of test locations (u,v) at search 
level K, with a matching rule R^ such that

=  { ( u 3 v) \r ^ ( u , v ) _> 0^, 1 <_ u 3 v <_ M }

where 0^ is the threshold selected to be used at search level 
K, R£ is some matching ruleat test location (u3v), M is the 
number of picture elements in the template. We can divide Rk 
into the preliminaty rule detection by simple test and the main 
rule (for example, the moment correlation rule).

Let := Г\ for a search region of size NxN, an 
2 ^(2N-2M+1) -matrix was generated by

Gk_ 1 (2 i,2 l7 ) 1 if U 3f)GNv
0 if U tj)GNk

All other entries of are set'to zero. Test*are to be
performed at the test locations for Gk_ (̂.u3v) = l. The search 
continues untill one of two conditions is encountered

1°. At search level L = n 3 G ^ ( u 3 v)  =  l for one value of ( u 3 v ) 3 
location (u,v) is declared the matched location.

2°, At the level L = 0 3 there exist severeal locations (u 3 v ) 
such that the G o ( u 3 v ) = l . Select the location with the higest 
correlation with the invariant moments.
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1.2 Theorem
The condition for savint the computation time using this 

synthesis is following:

Ф' < ф Cz-p )

where Ф' - the computation complexity of the detection at each 
location defined by the number of calculation needed.

Ф - the computation complexity of the main-matching rule at 
each location defined by the number of calculation needed, 

p - the probability of matching by the detection.

Proof :
Noting that, at level k, number of possible test locations

к 2is Z(N-M+l)/(2 +1)1 then the number of calculation needed for 
scene matching using this synthesis is

yX - £(N-M+l)/(2k+l)l2 • Ф* + l(N-M+l)/{2k + l)l2. Ф.р s

For saving the computation time using this synthesis, the 
following condition need to be satisfied:

Jf < i(N-M+l)/{2k+l)l2Ф

It follows that

Z (N-M+l )/( 2k + l )12 .<b'+Z(N-M+l)/(2k+l )12Ф.р

<C{N-M+l)/{2k+l)l2b

%Dividing both sides of the above inequality to Z(N-M+l)/ (2 +l)l 
we have

Ф ' + Ф.р < Ф

or Ф' < Ф (I-p)
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which proves the theorem.
Theorical analysis and simulation with т-test and p-test in 

scene matching by invariant moments indicated that a saving of 
computation time as well as a high degree of precision in lo­
cating a region is possible.

1.3 The r-test

2The X “test measures the difference between two frequency 
distributions. Let h (.k) be the frequency distribution of gray­
scale intensities in a model window. Let h Лк) be the frequency

 ̂ 2distribution of a test window. The significance of the x “test 
depends on the number of samples:

(й (k)-h+(k))2 £ m______t_____
к ht(k)

where, we can consider h to be a hypothetical ideal distri-— у ̂ / Q ^bution. Let T- e  A , where о is some positive constant.т is a 
measure of the similarity of two distributions (in the x 2 sense) 
If the distributions are identical, then т will be unity, if 
they are very different, т will be close to zero.

t is not sensitive to the location of pixels. It simply mea­
sures the degree of simplarity between two marginal distribu­
tion.

1.4 The p-test

Let m, be the mean of h and m n be the mean of h . .  Let a,1 m 2  t 1
be the standard deviation of h and a 0 be the standard devia-m 2
tion of h . We define the coefficient p as follows:

p y(7,1)
pl,p2

where, у(гл«/) I
n E(æ (fe)-m7)1'* (я,, m 1 t  2 •

к

x (к ) and х Л к ) are m t
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are gray velues of the к -th pixel in the model image and the 
test image, respectively.

p is in the interval L - 1 , 1 1 .  In general, if there is a li­
near functional dependence between the test and model window p 
will be 1 . If the window are independent distributions p will 
be 0. Thus, the intermediate values will measure the degree of 
dependence between the two windows.

p is a good test for the proper location of pixels. With 
the systematic change in lighting, т would be small but p would 
be large because the test and model distributions would still 
be well-correlated.

1.5 Performance of scene matching methods

To evaluate the performance of any of matching techniques 
one may consider the probability distribution that could be at 
the k - th level in the hierarchical search or the first level 
for template matching. The distribution p^(P) is the probability 
that the true match location takes on a specific similarity 
value R .  R ^ i u * , v * )  is the similarity value at the true math lo­
cation for a particular match under consideration. Let P^ be 
the probability of detection of thek-th search level (i.e. the 
probability that the similarity measure at the true match lo-
cation exceed the threshold i?_) and the p, (Д) will be assumed

1 K у 2to have a Gaussian distribution with a variance of (oD) . ThenП
p £ can be expressed ad

00 00 2 
p k - / p ^  R d R  =  — —  f  e x p ( ~ )  d R  

к  /2 т \ у
RT

where

у  =  L R kT  -  R k (u * , v * ) l / o kR

Similarly, the probability of false fix at the k - th search 
level can be computed by
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R
f  p  „ ( R ) d R  
к  J

У - R .
1 — —  f  e x p ( . — r )  d R  =  1 - Ф ( г/ ) 

/Fir -«>

к  к  кwhere у  = )/а^ is the probability density dis­
tribution of the similarity measures of all test locations ex-

k  2 кcept the true match location with a variance of (â .) j R ^ is 
the similarity measure averaged over all test locations (Fig.l) 

The error introduced by the Gaussian assumption for a non- 
Gaussian distribution may be large in the case of small values 
of p ^ ( R ) .  We can use the Edgeworth expansion for this case.

p(R)

F i g u r e  1 .  P r o b a b i l i t y  d e n s i t y  f u n c t i o n  a t  m a t c h  

l o c a t i o n  . P ^ ( R )  a n d  b a c k - g r o u n d  p ^ ( R )

O ß obtained on that level to achieve a given probability of 
a match.

ьTo select the threshold R ^ ,  the invariant moments of the 
image were correlated with the moments of the image reduced by 
a factor of 2 and rotated by 2° and 45°. The averaged correla­
tion of the three cases was then used as a bound to estimate a 
threshold sequence. Noting that the correlation were made on 
the logarithms of amplitude of the moments rather than the 
amplitude itself.
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2. FEATURE EXTRACTION FOR IMAGE MATCHING

At the fitie-matching step, the moment approach is often 
used for this purpose. However, scene match, with invariant mo­
ments is costly in computation. In many cases, the following 
approaches give us the poweful features for image matching with 
smaller computation time.

2.1 The kG-centroid (kL-centroid) features

We define a kG-centroid (kL-centroid) of the image as a
centroid of this image at gray level к (of k-th region of this

к кimage). Suppose that (x 3y ), k=l323...K are kG-centroid (kL-
G  G

centroid) and (x Q3y о~) is centroid of the image J.
k k k kLet (r j0 ) be polar coordinates of (x ,y ) in the polar

coordinate system with (x^,!/^) as the origin and the rayon
passed (x 3y )3 (x^3y^) as the initial rayon k° is a chosen

G  G  Q  G  G

value, say, k° = 1.
By converting (r^,0^) into (r^3Q^)3 where

~k k / гV = r / L V
i=l

-.k kthen (? j0 )л k=l323...K3 are invariant features in relation to 
translation, rotation and size change.

We can also derive invariant features from kG-centroid (kL- 
centroid) in the following manner.

k k k' k'Let p(k3k* ) be the distance between (x 3y ) and (x 3y )
G  O  G  O

where k3kr =13 23 . . ,K3 then {p(k3k' )^ =j 2  К  ̂ are dePenĉ ent
only on the shape of the object, but not affected by its loca­
tion, orientation or relative size.

For the normalized images, we can extract simplier features
as follows.
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2.2 Projections and Cross-Sections

Given a two-dimensional continous function f(x3y) we define 
the projection of f(x3y) in the x and y direction are

/ f(.x3y)dx and f f(x3y)dy
R R

In principle, projections in a sufficient number of direc­
tions contain enough information to reconstruct the picture C51.

For a digital image, the x(i) and y (j) projections are de­
fined as:

x(i) = E /(г_, j )
3

y(.3 ) - E ) for 1 <_ %tQ <_ N
3

More detailed information about the arrangement of gray levels 
in the region R can be obtained by using projections of f(x3y) 
in various directions.

In many cases, the projections on X-Y axes a certain amount
of information of object for recognition and the number of di-

2mension may be significantly reduced from N to 2N, (N is the 
dimension of the image). Furthermore, the numerical properties 
of projections, such as their (one-dimensional) moments, Fourier 
coefficients, Walsh coefficients, etc... can be used as the 
powerful features for recognition of the image in which, most 
of the - strokes of patterns are either horizontal or vertical 
and they generate many step segments in the projections. Some 
experiments have been made successfully by these features C131.

3. COMBINATION OF IMAGE TRANSFROMÁTION AND NORMALIZATION

As we know that, the power spectrum of an image is to be in­
dependent of translation. The Mellin transform has been show to 
be scale independent. The Polcar-Cartesian transform convers ro­
tation into translation. Hence a combination of these performed
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successively will allow shape to be matched to shape independent 
of translation, rotation and scale mo,15H.

Here we use a simple normalization scheme, the normalized 
image which also is invariant to object translation, rotation 
and size change.

- Normalization in relation to translation
The image is normalized to an image-centered coordinate 

system with its centroid is translated into a fixed point

N(x,y) = I{x o+x-x Qiy o+y-y J

where, (я . y ) be a fixed point, (.x ,y ) be the centroid ofо о с о
image.

- Normalization in relation to rotation
The image is normalized to coordinate system with its prin­

cipal axes as coordinate axes

N(xjy) = ICx jCOsQ - y. einQ y x. 8-in 9 + y.cosQ)

where
2 I

9 = i tan~2 j— 3 I = Ux-x )p(y-y )q f(x,y)
0 1 20 0 2  V q  s °

- Normalization in relation to size change 
The image is scaled to a standard size

N(x,y) = iCk .x.k .y)за x 3 у a

where Ck tk ) be the ratio of the size of the image I to stan-X у
dard size.

In this way, the normalized image dependent only on the 
shape of the object, but not affected by its location, orien­
tation, or relative size.



- дзз -

4. SYNTHETIC SCHEME FOR IMAGE MATCHING PROGRAMS

In connection with scheme of synthesis of image matching 
algorithms (Fig. 3) we propose an use manner of programs as 
follows.

Given an image of size NxN and a template of size MxM, if 
necessary, we make a geometrical correction for input image by 
using GECOR (See appendix). The next phase is coarse matching 
the template to windows of image. The propesed step matching 
is M/2. In this phase, we combine several tests (т-test, p-test) 
by using HISTO, PROFIL, THRSLD (See appendix). So we obtain the 
possible match locations.

In the next phase, with each of the possible match locations, 
we make a fine matching around those locations. For improving 
the efficiency of fine matching, both the template and the win­
dow may be modified either by transforms Polcar, Mellin, Fourier 
using TPOCAR, MELIN, TF0 (See appendix) or by normalizations: 
centered translation, rotation, scaling using TCEN, TROTA,
SCALE0 (See appendix). With these transformations (normaliza­
tions), the transformed (normalized) template and window will 
be invariant to rotation, translation, scale... After that, we 
can use the simple features such as projections for matching.
Then the fine matching may be made by computing the feature 
correlation: invariant moments, kL-centroid (kG-centroid), 
profils... using MOMENT, TOPO, PROFIL, THRSLD (See appendix).
We will present program descriptions in the appendix.

5. CONCLUSIONS

Experimental results indicated that scene matching with the 
basic seguential method provided good performance in the mat­
ching of scene that contain relatively weel-defined objects of 
varying background. This method is particularly useful in mat­
ching images taken by the same type of sensors under different 
operating conditions. Depending on the scene content, scene 
matching with invariant moments was successful in some cases.
In particulary, this method can be used to great advantage at
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Fig. 3. The scheme of synthesis of image matching
algorithms
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the low resolution level at which other methods, such as scene 
matching with edge features are not possible. Two improvements 
may be accomplished are the following:

- Weight each of the moments with an appropriate weighting 
factor before correlation.

- Generate higher-order moments. Select a set moments for 
correlation computation with the selection based on the infor­
mation contents of the images.

At the same time, we also have used some other approaches 
as follows:

- The comination of transformations Fourier, Polcar, Mellin
- The image normalization in relation to certain transforma 

tions as translation, rotation, scale ...
- The kG-centroid (kL-centroid) features.
These méthodes have resulted in superior performance and 

were accomplished at greatly reduced computation and memory 
storage requirements.
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APPENDIX I: A SET OF PROGRAMS FOR IMAGE MATCHING

Programs are written in FORTRAN-4 subroutines and were ve­
rified on PDP-11 minicomputer system. In the following subrou­
tines

IMAG is an input image, a variable-array of size NxN
I,J are coordinates of the upper-left corner of the windows

1. PROGRAM FOR GEOMETRICAL CORRECTION OF IMAGE

The call CALL GECOR(IMAG,V,N,X,Y,XF,YF,K,MOD)
V : output image of size N N 
X,Y the given points in IMAG
XF,YF : the given points in IMAG, which correspond to 

X , Y in V
К : length of X,Y,XF,YF 
MOD : correction mode

MOD=0 correction by the way of 4-neighbor average 
M0D=1 correction by the way of nearst neighbor

2. PROGRAMS FOR COARSE MATCHING

2.1 Computation of Histogram of a window
The call CALL HISTO(IMAG,I,J,K,H,LEVEL)

К : size of window
LEVEL : gray level of image
H : output histogram of size LEVEL, in which H(i) is 

number of pixels of gray level i+1.

2.2 Computation of Profil of a window
The call CALL PROFIL(IMAG,I,J,K,HX,HY)

К : size of windos
HX,HY : vectors of size K- profils on the x-axe and y-axe
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2.3 Thresholding program
The call CALL THRSLD(A,K,THR)

A : input data set of size К to be thresholded 
THR : output threshold

3. PROGRAMS FOR NORMALIZATION OF IMAGE

3.1 Determination of the image center 
The call CALL IJCEN(IMAG,N, IC,JC)

IC,JC : output center of image

3.2 Centered transformation of image
The call CALL TCEN(IMAG,CIMAG,N,M,IC,JC)

IC,JC : input coordinates of center
CIMAG : output image of size MxM 

»
3.3 Determination of the rotation angle of image 

The call CALL TETA1(IMAG,N,T)
T : output rotation angle of image

3.4 Rotation of image
The call CALL TROTA(IMAG,RIMAG ,N,T ,IT,JT)

RIMAG : output rotated image 
T ,IT,JT : given rotation angle and center

3.5 Scale of image
The call CALL SCALE0CIMAG0,IMAG,SIMAG,N,IC,JC)

IMAG,IMAG0 : input images of size NxN centered at IC,JC 
SIMAG : output scaling image

4. PROGRAMS FOR TRANSFORMATIONS OF IMAGE

4.1 Polcar Transform
The call CALL TPOCAR(IMAG,IA,N)

IA : output image of size NxN modified by Polcar transform
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4.2 Mellin transform
The call MELIN(IMAG,FA,N,M)

FA : output image of size MxM modified by Mellin transform

4.3 Fourier transform
The call CALL TF0(IMAG,FA,N)

FA : output image of xize NxN amplitude spectrum image

5. PROGRAMS FOR FINE MATCHING

5.1 Computation of invariant moments of window
The call CALL MOMENT(IMAG,K,I,J,KSI)

К : size of window
KSI : output vecotr consisting of loga of 7 invariant 

moments

5.2 Computation of kL-centroid of window
The call CALL TOPO(IMAG,I,J,CENTER,GRLV)

GRLV : gray level of image 
CENTER 2, GRLV : output array
CENTER(1,1), CENTER(2,1) is the global center of image 
CENTER(1,K), CENTER(2,K) are centers corresponding to the 

region of gray level K, K=1,...GRLV-1.
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A к ép-összeillesz tő algoritmusok hatékony szintézise. 

HOANG KI EM, R’HAM NGOC KHOI

Összefoglaló

A szerző a kép-összeillesztő algoritmusok szintézisének ha­
tékonyságára hierarchikus sémákat és "durva-finom" összeil­
lesztő algoritmusokat használ. Tárgyalja a kép egyes tartomá­
nyaira vonatkozó jellemző vonások kivonata-raódszert, valamint 
a szintér-összeillesztő módszereket.

Эффективный синтез алгоритмов прикладывания образов

Хоанг Кием, Пхам Кхои 
Резюме

Для повышения эффективности синтеза алгоритмов прикладывания 
образов авторы используют иерархические схемы и алгоритмы ти­
па "грубо-тонкие". В статье дискитируются также некоторые дру­
гие методы.
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