STRUCTURAL CHARACTERISTICS OF ONE CLASS OF BOOLEAN FUNCTIONS

CIMEV K.N. and ASLANSKI M.

Blagoevgrad Branch of Sofia University Blagoevgrad, Bulgaria

The terminology used in this paper is from Cl-153. The paper treats the Boolean functions *f,* **which essentially depend on at least six (seven) variables and for which there** are variables $x_{\vec{i}}$ and $x_{\vec{j}}$ such that $\{x_{\vec{i}},x_{\vec{j}}\} \in S_{\vec{f}}$ and the subgraph of *f* with the elements of $R_f \setminus \{x_i, x_j\}$ as apexes has-the **shape of an elementary chain, opened or closed.**

The set of all essential variables of *f* **and all spea**rable sets of arguments of f is denoted by R_f and S_f , respectively.

Sj. 2 **stands for the set of all separable two-element sets of arguments of** *f.*

The number of all separables pairs of the function $f(x_1, \ldots, x_n)$ wherein x_i takes part, will be referred to as the order of the variables x_j for the above mentioned function.

Theorem I. **If the set** $\{x_i, x_j\}$ **is separable for a Boolean** function $f(x_1, \ldots, x_n)$ which essentially depends on $(n \ge 6)$ **variables and the subgraph of** *f* **with the elements of the set** ${x_1, \ldots, x_n} \setminus {x_i, x_j}$ as apexes has the shape of an elementary *open chain, then one of the variables* x_j, x_j *is of order* $n-1$ for *f*, and the other variable is of order not smaller than *n-4.*

Proof. Under the conditions stated in the theorem for the function $f(x_1, \ldots, x_n)$, let us accept that $\{x_{n-1}, x_n\} \in S_f$ and **that the subgranh of** *f* **with apexes** *x 13x 03...3x* **has the** *-L ci Yl о*

shape of an elementary open chain, where for every $i = 1, \ldots, n-3$

$$
\{x_i, x_{i+1}\} \in S_f.
$$

At least one of the variables x_{n-1} , x_n is of order $n-1$ **for** *f.* **Without restricting the subject examination let us** accept that x_{n-1} is of an order $n-1$ for f . We shall prove that x_n is of an order not smaller than $n-4$.

We shall do it by using the method of mathematical induction.

We shall prove the theorem when $n = 6$. We must prove that *x 6* **is of an order not smaller than 2. Let us assume the oppo**site. So x_{β} must be of order 1 for f , moreover $\{x_{5}, x_{6}\}\in S_{f^*}$

Let us denote by α the value of x^{β} for which it is **true that**

$$
x_{\beta} \in R_{f(x_{5} = \alpha)}
$$

Then it must be true that

$$
R_{f(x_{5}=\overline{\alpha})} = \{x_{1}, x_{2}, x_{3}, x_{4}\}
$$

and

$$
S_{f(x_{5}=\overline{\alpha})_{1}2} = \{ \{x_{1}, x_{2}\}, \{x_{2}, x_{3}\}, \{x_{3}, x_{4}\}\},
$$

which is impossible, according to theorem 21 from $L14$]. Let us prove the theorem for $n=7$. We must prove that $x₂$ is of **order not smaller than the 3. Let us suppose it is not true,** that is x_7 is of order 1 or 2 for $f(x_1,\ldots,x_7)$.

The variable x^2 cannot be of order 1 for $f(x^3, \ldots, x^2)$. Indeed, if $f(x^6) = \alpha$ depends essentially on x^3 , it means **that**

$$
S_{f(x_g = \overline{\alpha})_2} = \{ \{x_1, x_2\}, \{x_2, x_3\}, \{x_3, x_4\}, \{x_4, x_5\}, \}
$$

which is not possible.

So x_7 must be of order 2 for $f(x_1, \ldots, x_7)$ where $\{x_{\beta}, x_{\gamma}\}\in S_{\gamma^*}$

Thus *Xy* **forms exactly one separatable nair for** *f* **with a** variable from the set $\{x_1, \ldots, x_5\}$. Let us accept that ${x_7, x_5} \in S$ *e* Let α be a value for x_5 for which f_1 = $f(x_5 = \alpha)$ depends essentially on x_7 . According to theorem 26 from [14],

$$
R_{f_1} = R_f \setminus \{x_5\}.
$$

From theorem 21 and 26 from $[14]$ it follows that

$$
\{x_{\beta}, x_{\gamma}\} \in S_{f_1},
$$

and the subgraph of f_1 with the apexes x_1, \ldots, x_4 has the **shape of elementary open chain. Moreover** *xy* **must be of order 1, for** *fj* **with respect to the separable pairs, which contradicts to the already proved case of the theorem when** *n = 6.*

By analogy we come to a contradiction if we accept that $\{x_1, x_2\} \in S_f$. Let us accept that

$$
\{x\,\,{}_4\,,x\,{}_7\}\ \in\ S_{\,f}\,.
$$

Let C_2 be a value of x_2 for which

$$
x_1 \in R_f, \quad f_2 = f(x_2 = \sigma_2).
$$

Then

$$
R_{f_2} = R_f \setminus \{x_2\},\
$$

and x_1 will be of order 1 for f_2 and

 ${x_1, x_6} \in S_f$.

Let c_g be a value for x_g such that the function f_2 ($x_g = c_g$) depends essentially on x_7 . Then

$$
R_{f_2} = R_f \setminus \{x_1, x_2, x_{n-1}\},
$$

where

$$
f_3 = f_2 \ (x_6 = \bar{c}_6).
$$

The function *f^* **must have three variables of order 1. But** this is impossible (see [4] and [14]).

By analogy we come to a contradiction if we accent that

 ${x_2, x_7} \in S_{r^*}$

Let us accent that

 ${x \atop s}^* x^* g \in S^* f$.

Let c_3 be a value for x_3 such that the function $f_A = f(x_A = c_A)$ essentially depends on x_A . In this case x_B

must be of the order 5 for f_4 nd separable pairs for f must not be formed from the elements of the set $\{x_7\}$, $\{x_7, x_9\}$, *{x.,x },* **which is impossible.** *Q и*

This proves the theorem when $n = 7$, too. Let us accept that the theorem is true for some $n \ge 7$. We shall **prove, that it is also true for the Boolean functions, which essentially depend on** *n + 1* **variables and fulfil all the conditions of the theorem.**

Let $f(x_1, \ldots, x_{n+1})$ be a Boolean function, which essentially depends on $n + 1$ ($n \ge 7$) variables and $\{x_n, x_{n+1}\}\in S_f$. **According to the conditions of the theorem the subgraph of** *f* with the elements of the set $\{x_1, \ldots, x_{n-1}\}$ as apexes has the **shape of an elementary open chain. For example let us accept** that for every $i = 1, \ldots, n-2$,

$$
\{x_i, x_{i+1}\} \in S_f.
$$

At least one of the variables x_n , x_{n+1} , is of order n. For example, let x_n be of order n for the function $f(x_1, \ldots, x_{n+1})$, with respect to the separable pairs. We shall prove that x_{n+1} is of order not smaller than $n-3$ for $f(x_1, \ldots, x_{n+1})$.

We shall prove that under the conditions given in the theo- $\text{rem } \{x_1, x_{n+1}\} \in S_f \text{ or } \{x_{n-1}, x_{n+1}\} \in S_f.$

Let us assume this is not true, i.e.

$$
\{x_1, x_{n+1}\} \not\in S_f \text{ and } \{x_{n-1}, x_{n+1}\} \not\in S_f.
$$

Let C_2 be a value for x_2 such that

$$
x_1 \in R_{f_5}
$$
, $f_5 = f(x_2 = c_2)$.

 $-27 -$

Then

$$
R_{f_{5}} \supseteq \{x_{3},\ldots,x_{n-1}\}.
$$

The variable x_j must be of order 1 for f_5 . Thus $x_n \in R_{f_5}$. We shall prove that $x_{n+1} \in R_{f_s}$. If we assume the opposite **and choose a in such a way that**

 $x_1 \in R_{f_5}(x_n = \alpha)$,

then the function

$$
f_{6} = f_{5} (x_{n} = \overline{\alpha})
$$

will depend essentially on n-3 variables and its graph will have the shape of an elementary open chain; and this is impossible. Therefore $x_{n+1} \in R_{\mathcal{L}}$. **n** + 1 **J**_i

Since we have assumed that $\{x_{n-1}, x_{n+1}\} \notin S_f$, $\{x_{n-1}, x_{n+1}\} \notin S_{f_5}$. Let α be a value for x_n such that

 $x_1 \in R_{f_5}(x_n = \alpha)$.

Then the function

 $f_{\beta} = f_{5} (x_{n} = \overline{\alpha})$

will essentially depend on $n-2$ variables. So x_{n+1} will be of order 1 for f_{θ} and $\{x_{n-1}, x_{n-2}\} \in S_{f_{\theta}}$. Therefore it must be true that $\{x_3, x_{n-2}\} \in S_{f_{\beta}}, \text{ and } \{x_3, x_{n-2}\} \in S_f$ where *n > 7.* **The last statement contradicts to the initially given conditions.**

We proved that

$$
\{x_1, x_{n+1}\} \in s_f \quad \text{or} \quad \{x_{n-1}, x_{n+1}\} \in s_f.
$$

Let us discuss the case when $\{x_1, x_{n+1}\}\in S_f$. Let C_1 be **a value for** *Xj* **such that**

$$
\{x_n, x_{n+1}\} \in S_{f_2}, \quad f_j = f(x_1 = c_1).
$$

$$
1 \in R_{f_{\delta}}(x_n = \alpha)
$$

on
$$
n-3
$$
 variables
mentary open chain;
 R_{ϵ} .

on
$$
n-3
$$
 variables
mentary open chain;

But

$$
R_{f_7} = \{x_2, \ldots, x_{n+1}\}\
$$

and the subgraph of $f₂$ with the elements of the set ${x_2, \ldots, x_{n-1}}$ as apexes has the shape of elementary open chain.

From the inductive assumption it follows that one of the variables x_n , x_{n+1} is of order $(n-1)$ for f_n , and the **other one is of an order not smaller than** *n-4.*

Therefore the variable x_{n+1} will be of order not smaller than $x-4$ for f_7 . Thus x_{n+7} will be of order not smaller than $n-3$ for f .

By analogy we can prove the theorem if $\{x_{n-1}, x_{n+1}\} \in S_f$. **The theorem is proved. □**

Is it possible to strenghten theorem 1 in the sense that, under the conditions of the theorem, one of the variables *x.,* x_j is of order $n-1$ ($n \ge 6$) and the other one is at least **of order** *n-3* **for** *f,* **in regard to the separable pairs? The answer is NO.**

For example, let us take the Boolean function

 $f = x_1(x_2x_3 + \overline{x}_3x_4) + \overline{x}_1(x_4x_5 + x_5\overline{x}_6)$ (mod 2).

The subgraph of f with apexes x_2 , x_3 , x_4 , x_5 has the shape of an elementary open chain. The pair $\{x_j, x_{\beta}\}\$ is separable for f , x_1 is of order 5 and x_6 is of order 2 for f **in regard to the separable pairs.**

Theorem II. If the set $\{x_{\overrightarrow{i}},x_{\overrightarrow{j}}\}$ is separable for the Boolean function $f(x_1,\ldots,x_n)$, which essentially depends on n ($n \geq 7$) variables and the subgraph of f with the elements of the set $\{x_1, \ldots, x_n\} \setminus \{x_i, x_j\}$ as apexes has the shape of an elementary closed chain, then one of the variables x_i , x_j **is of order** *n-1* **for** *f,* **and the other one is or order not smaller than** *n-4.*

$$
\{x_{n-1}, x_n\} \in S_f,
$$

and that the subgraph of *f* **with the elements of the set** ${x_1, \ldots, x_{n-2}}$ as apexes has the shape of a closed elementary chain, and for every $i = 1, ..., n-3$

$$
\{x_i, x_{i+1}\} \in s_f \text{ and } \{x_{n-2}, x_1\} \in s_f.
$$

At least one of the variables x_{n-1} , x_n is of order $n-1$ for *f.* Let us accept that x_{n-1} is of order $n-1$ for *f.* We shall prove that x_n is of order not smaller than $n-4$ for f .

It is impossible for *xn* **to be of order 1 for** *f.* **Let us assume the opposite. If a is a value of** *xn_j* **such that**

$$
x_n \in R_{f(x_{n-1} = \alpha)}.
$$

then the graph of $f(x_{n-1} = \overline{\alpha})$ must have the shape of a closed **elementary chain, which is impossible.**

From what we have assumed it follows that there is a variable x_{i} , $i \in \{1, \ldots, n-2\}$ such that $\{x_{i}, x_{n}\} \in S_{f}$ Let x_i be such a variable and let c_i be a value such that

$$
\{x_{n-1}, x_n\} \in s_{f(x_i = c_i)}.
$$

But in this case

$$
R_{f(x_i = c_i)} = R_f \setminus \{x_i\},\
$$

and the subgraph of $f(x_i = c_i)$ with the elements of the set ${x_1, \ldots, x_{n-2}} \setminus {x_i}$ as apexes has the shape of an elementary open chain. According to theorem 1 the variable x_n must be of order not smaller than $n-5$ for $f(x_i = c_i)$. Then x_n will **be of order not smaller than** *n-4* **for** *f.*

Thus the theorem is proved.

$-30 -$

REFERENCES

- **1. S.V. JABLONSKI, -Functional constructions in the к-valued logic (in Russian), Trudy Mat. Inst. Steklov, 51 (1958), 5-142 .**
- **2. O.B. LUPANOV, On a class of schemes consisting of functional elements (in Russian), Problemy Kibernet., 7(1962), 61-114.**
- **3. N.A. SOLOV'EV, On the question of essential dependence of Boolean functions (in Russian), Problemy Kibernet., 9 (1963), 333-335.**
- **4. JU. JA. BREITBART, Essential variables of Boolean functions (in Russian), Doki. Akad. Nauk SSSR, 172 (1967), 9-10.**
- **5. A. SALOMAA, On essential variables of functions, especially in the algebra of logic, Ann. Acad. Sei. Fenn. Ser. A. I., 339 (1963), 3-11.**
- **6 . R.E. SCHWARTZ, Existence and uniqueness properties of subfunctions of Boolean functions, SIAM J. Appl. Math., 18(1970), 454-461.**
- **7. J. DEMETROVICS J., L. HANNAK, S. MARCHENKOV. Some remarks** on the structure of P₃. C.R. Math. Rep. Acad. Sci. Canada, **vo1. II (1980), 4, 215-219.**
- **8. CÍMEV, K.N. On some properties of functions. Colloquia Math. Soc. Janos Bolyai. Finite algebra and multiple- -valued logic, Szeged (Hungary), 1979, 97-110.**
- 9. K.N. ČIMEV, Dependence of the functions of P_k on their **arguments (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Mat., 4:3 (1967), 6-13.**
- **10. K.N. ClMEV, Dependence of the functions of к-valued logic on their arguments (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Math., 6:2 (1970), 58-62.**
- **11. K.N. ClMEV, Separable pairs of function (in Bulgarian), Godisnik Viss. Tech. Ucebn. Zaved. Math., 7:3 (1971), 7-12.**
- **12. K.N. ÖIMEV, Separable subsets and strongly essential variables of functions (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Mat., 10:4 (1974), 7-13.**
- **13. K.N. ÖIMEV, Some properties of functions (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Mat., 7:1 (1971), 23-32.**
- **14. K.N. ÖIMEV, Subfunctions and separable sets of arguments of functions (in Bulgarian), Mathematics and education in mathematics, Sunny Beach, April 1982, 108-122.**
- **15. K.N. ÖIMEV, Separable sets of arguments of functions (in Bulgarian). Blagoevgrad, 1982, 207.**

ÖSSZEFOGLALÁS

A BOOLE FÜGGVfiNYEK EGY OSZTÁLYÁNAK STRUKTURÁLIS TULAJDONSÁGAIRÓL *K.N. Cimev, M. Aslanski*

A szerzők a cikkben n{>. 6) változós Boole függvényeknek egy osztályára adnak jellemzést. Bebizonyítják, hogy a függvény változói közül egynek a rendje n-1 és egy másiknak a rendje legalább n-4.

О СТРУКТУРАЛЬНЫХ СВОЙСТВАХ ОДНОГО КЛАССА БУЛЕВЫХ ФУНКЦИЙ

К .Н . Чимев, М. Аслански

В статье дается характеризация одного класса Булевых функций п(>6) переменных. Доказывается, что для функций из одного класса одна из двух переменных имеет порядок п-1 и порядок другой не меньше п-4.