STRUCTURAL CHARACTERISTICS OF ONE CLASS OF BOOLEAN FUNCTIONS

CIMEV K.N. and ASLANSKI M.

Blagoevgrad Branch of Sofia University Blagoevgrad, Bulgaria

The terminology used in this paper is from [1-15]. The paper treats the Boolean functions f, which essentially depend on at least six (seven) variables and for which there are variables x_i and x_j such that $\{x_i, x_j\} \in S_f$ and the subgraph of f with the elements of $R_f \setminus \{x_i, x_j\}$ as apexes has-the shape of an elementary chain, opened or closed.

The set of all essential variables of f and all spearable sets of arguments of f is denoted by R_f and S_{f} , respectively.

S_{f.2} stands for the set of all separable two-element sets of arguments of f.

The number of all separables pairs of the function $f(x_1, \ldots, x_n)$ wherein x_i takes part, will be referred to as the order of the variables x_i for the above mentioned function.

Theorem I. If the set $\{x_i, x_j\}$ is separable for a Boolean function $f(x_1, \ldots, x_n)$ which essentially depends on $(n \ge 6)$ variables and the subgraph of f with the elements of the set $\{x_1,\ldots,x_n\}\backslash\{x_i,x_j\}$ as apexes has the shape of an elementary open chain, then one of the variables x_i, x_j is of order n-1for f, and the other variable is of order not smaller than n-4.

Proof. Under the conditions stated in the theorem for the function $f(x_1, \ldots, x_n)$, let us accept that $\{x_{n-1}, x_n\} \in S_f$ and that the subgraph of f with apexes $x_1, x_2, \ldots, x_{n-2}$ has the

shape of an elementary open chain, where for every $i = 1, \ldots, n-3$

$$\{x_{i}, x_{i+1}\} \in S_{f}$$

At least one of the variables x_{n-1} , x_n is of order n-1 for f. Without restricting the subject examination let us accept that x_{n-1} is of an order n-1 for f. We shall prove that x_n is of an order not smaller than n-4.

We shall do it by using the method of mathematical induction.

We shall prove the theorem when n = 6. We must prove that x_6 is of an order not smaller than 2. Let us assume the opposite. So x_6 must be of order 1 for f, moreover $\{x_5, x_6\} \in S_{f}$.

Let us denote by α the value of $x_{\,5}^{}\,$ for which it is true that

$$x_6 \in R_{f(x_5=\alpha)}$$

Then it must be true that

$$R_{f(x_{-}=\overline{a})} = \{x_{1}, x_{2}, x_{3}, x_{4}\}$$

and

$$S_{f(x_{c}=\overline{\alpha}),2} = \{\{x_{1},x_{2}\},\{x_{2},x_{3}\},\{x_{3},x_{4}\}\}$$

which is impossible, according to theorem 21 from [14]. Let us prove the theorem for n=7. We must prove that x_7 is of order not smaller than the 3. Let us suppose it is not true, that is x_7 is of order 1 or 2 for $f(x_1, \ldots, x_7)$.

The variable x_7 cannot be of order 1 for $f(x_1, \ldots, x_7)$. Indeed, if $f(x_6 = \alpha)$ depends essentially on x_7 , it means that

$$S_{f(x_{6}=\overline{\alpha}),2} = \{\{x_{1},x_{2}\},\{x_{2},x_{3}\},\{x_{3},x_{4}\},\{x_{4},x_{5}\}\},$$

which is not possible.

So x_7 must be of order 2 for $f(x_1, \ldots, x_7)$ where $\{x_6, x_7\} \in S_f$.

Thus x_7 forms exactly one separatable pair for f with a variable from the set $\{x_1, \ldots, x_5\}$. Let us accept that $\{x_7, x_5\} \in S_f$. Let α be a value for x_5 for which $f_1 = f(x_5 = \alpha)$ depends essentially on x_7 . According to theorem 26 from [14],

$$R_{f_1} = R_f \setminus \{x_5\}.$$

From theorem 21 and 26 from [14] it follows that

 $\{x_{6}, x_{7}\} \in S_{f_{1}},$

and the subgraph of f_1 with the apexes x_1, \ldots, x_4 has the shape of elementary open chain. Moreover x_7 must be of order 1, for f_1 with respect to the separable pairs, which contradicts to the already proved case of the theorem when n = 6.

By analogy we come to a contradiction if we accept that $\{x_7, x_7\} \in S_f$. Let us accept that

 $\{x_4, x_7\} \in S_f$.

Let C_2 be a value of x_2 for which

 $x_1 \in R_f, \quad f_2 = f(x_2 = \sigma_2).$

Then

$$R_{f_2} = R_f \setminus \{x_2\},$$

and x_1 will be of order 1 for f_2 and

 $\{x_1, x_6\} \in S_{f_2}.$

Let C_6 be a value for x_6 such that the function $f_2 (x_6 = c_6)$ depends essentially on x_7 . Then

$$R_{f_{z}} = R_{f} \setminus \{x_{1}, x_{2}, x_{n-1}\},$$

where

$$f_3 = f_2 (x_6 = \bar{c}_6).$$

The function f_3 must have three variables of order 1. But this is impossible (see [4] and [14]).

By analogy we come to a contradiction if we accept that

 $\{x_{2}, x_{7}\} \in S_{f}$

Let us accept that

 $\{x_{3}, x_{7}\} \in S_{f}$.

Let C_3 be a value for x_3 such that the function $f_4 = f(x_3 = c_3)$ essentially depends on x_7 . In this case x_6

must be of the order 5 for f_4 nd separable pairs for fmust not be formed from the elements of the set $\{x_7\}, \{x_1, x_2\}, \{x_4, x_5\}$, which is impossible.

This proves the theorem when n = 7, too. Let us accept that the theorem is true for some $n \ge 7$. We shall prove, that it is also true for the Boolean functions, which essentially depend on n + 1 variables and fulfil all the conditions of the theorem.

Let $f(x_1, \ldots, x_{n+1})$ be a Boolean function, which essentially depends on n + 1 $(n \ge 7)$ variables and $\{x_n, x_{n+1}\} \in S_f$. According to the conditions of the theorem the subgraph of fwith the elements of the set $\{x_1, \ldots, x_{n-1}\}$ as apexes has the shape of an elementary open chain. For example let us accept that for every $i = 1, \ldots, n-2$,

$$\{x_i, x_{i+1}\} \in S_f.$$

At least one of the variables x_n , x_{n+1} , is of order n. For example, let x_n be of order n for the function $f(x_1, \ldots, x_{n+1})$, with respect to the separable pairs. We shall prove that x_{n+1} is of order not smaller than n-3 for $f(x_1, \ldots, x_{n+1})$.

We shall prove that under the conditions given in the theorem $\{x_1, x_{n+1}\} \in S_f$ or $\{x_{n-1}, x_{n+1}\} \in S_f$.

Let us assume this is not true, i.e.

$$\{x_1, x_{n+1}\} \not\in S_f$$
 and $\{x_{n-1}, x_{n+1}\} \not\in S_f$.

Let C_2 be a value for x_2 such that

$$x_1 \in R_{f_5}, f_5 = f(x_2 = c_2).$$

Then

$${}^{R}f_{5} \supset \{x_{3},\ldots,x_{n-1}\}.$$

The variable x_1 must be of order 1 for f_5 . Thus $x_n \in R_{f_5}$. We shall prove that $x_{n+1} \in R_{f_5}$. If we assume the opposite and choose α in such a way that

$$x_1 \in R_{f_5}(x_n = \alpha),$$

then the function

$$f_6 = f_5 (x_n = \overline{\alpha}),$$

will depend essentially and its graph will have the shape of an el and this is impossible. Therefore x_{n+1}

, $x_{n+1} \notin S_f$, so we for x_n such that Since we have assur $\{x_{n-1}, x_{n+1}\} \notin S_{f_5}$. Le

$$x_1 \in R_{f_5}(x_n = \alpha).$$

Then the function

$$f_6 = f_5(x_n = \overline{\alpha})$$

will essentially depend on n-2 variables. So x_{n+1} will be of order 1 for $f_{\mathcal{G}}$ and $\{x_{n-1}, x_{n-2}\} \in S_{f_{\mathcal{G}}}$. Therefore it must be true that $\{x_3, x_{n-2}\} \in S_{f_6}$, and $\{x_3, x_{n-2}\} \in S_f$ where $n \geq 7$. The last statement contradicts to the initially given conditions.

We proved that

$$\{x_1, x_{n+1}\} \in S_f$$
 or $\{x_{n-1}, x_{n+1}\} \in S_f$.

Let us discuss the case when $\{x_1, x_{n+1}\} \in S_f$. Let C_f be a value for x_7 such that

$$\{x_n, x_{n+1}\} \in S_{f_2}, \quad f_7 \neq f(x_1 = c_1).$$

$$a \in R_{f_5}(x_n = \alpha)$$

ementary open chain;
$$\in R_{f_5}$$
.

$$\in R_{f_5}$$
.
med that $\{x_{n-1}, x_n\}$

et
$$\alpha$$
 be a value

But

$$R_{f_7} = \{x_2, \dots, x_{n+1}\}$$

and the subgraph of f_7 with the elements of the set $\{x_2, \ldots, x_{n-1}\}$ as apexes has the shape of elementary open chain.

From the inductive assumption it follows that one of the variables x_n , x_{n+1} is of order (n - 1) for f_7 , and the other one is of an order not smaller than n-4.

Therefore the variable x_{n+1} will be of order not smaller than x-4 for f_7 . Thus x_{n+1} will be of order not smaller than n-3 for f.

By analogy we can prove the theorem if $\{x_{n-1},\ x_{n+1}\}\in S_f.$ The theorem is proved. \Box

Is it possible to strenghten theorem 1 in the sense that, under the conditions of the theorem, one of the variables x_i , x_j is of order n-1 ($n \ge 6$) and the other one is at least of order n-3 for f, in regard to the separable pairs? The answer is NO.

For example, let us take the Boolean function

 $f = x_1(x_2x_3 + \bar{x}_3x_4) + \bar{x}_1(x_4x_5 + x_5\bar{x}_6) \pmod{2}.$

The subgraph of f with apexes x_2 , x_3 , x_4 , x_5 has the shape of an elementary open chain. The pair $\{x_1, x_6\}$ is separable for f, x_1 is of order 5 and x_6 is of order 2 for f in regard to the separable pairs.

Theorem II. If the set $\{x_i, x_j\}$ is separable for the Boolean function $f(x_1, \ldots, x_n)$, which essentially depends on n $(n \ge 7)$ variables and the subgraph of f with the elements of the set $\{x_1, \ldots, x_n\} \setminus \{x_i, x_j\}$ as apexes has the shape of an elementary closed chain, then one of the variables x_i, x_j is of order n-1 for f, and the other one is or order not smaller than n-4.

$$\{x_{n-1}, x_n\} \in S_f,$$

and that the subgraph of f with the elements of the set $\{x_1, \ldots, x_{n-2}\}$ as apexes has the shape of a closed elementary chain, and for every $i = 1, \ldots, n-3$

$$\{x_i, x_{i+1}\} \in S_f \text{ and } \{x_{n-2}, x_1\} \in S_f.$$

At least one of the variables x_{n-1}, x_n is of order n-1for f. Let us accept that x_{n-1} is of order n-1 for f. We shall prove that x_n is of order not smaller than n-4 for f.

It is impossible for x_n to be of order 1 for f. Let us assume the opposite. If α is a value of x_{n-1} such that

$$x_n \in R_{f(x_{n-1}=\alpha)}$$

then the graph of $f(x_{n-1} = \overline{\alpha})$ must have the shape of a closed elementary chain, which is impossible.

From what we have assumed it follows that there is a variable x_i , $i \in \{1, \ldots, n-2\}$ such that $\{x_i, x_n\} \in S_f$. Let x_i be such a variable and let c_i be a value such that

$$\{x_{n-1}, x_n\} \in S_{f(x_i=c_i)}.$$

But in this case

$$R_{f(x_{i}=c_{i})} = R_{f} \{x_{i}\},$$

and the subgraph of $f(x_i = c_i)$ with the elements of the set $\{x_1, \dots, x_{n-2}\} \setminus \{x_i\}$ as apexes has the shape of an elementary open chain. According to theorem 1 the variable x_n must be of order not smaller than n-5 for $f(x_i = c_i)$. Then x_n will be of order not smaller than n-4 for f.

Thus the theorem is proved.

- 30 -

REFERENCES

- S.V. JABLONSKI, -Functional constructions in the k-valued logic (in Russian), Trudy Mat. Inst. Steklov, 51 (1958), 5-142.
- O.B. LUPANOV, On a class of schemes consisting of functional elements (in Russian), Problemy Kibernet., 7(1962), 61-114.
- N.A. SOLOV'EV, On the question of essential dependence of Boolean functions (in Russian), Problemy Kibernet., 9 (1963), 333-335.
- JU. JA. BREITBART, Essential variables of Boolean functions (in Russian), Dokl. Akad. Nauk SSSR, 172 (1967), 9-10.
- A. SALOMAA, On essential variables of functions, especially in the algebra of logic, Ann. Acad. Sci. Fenn. Ser. A. I., 339 (1963), 3-11.
- R.E. SCHWARTZ, Existence and uniqueness properties of subfunctions of Boolean functions, SIAM J. Appl. Math., 18(1970), 454-461.
- J. DEMETROVICS J., L. HANNAK, S. MARCHENKOV. Some remarks on the structure of P₃. C.R. Math. Rep. Acad. Sci. Canada, vol. II (1980), 4, 215-219.
- CIMEV, K.N. On some properties of functions. Colloquia Math. Soc. Janos Bolyai. Finite algebra and multiple--valued logic, Szeged (Hungary), 1979, 97-110.
- 9. K.N. ČIMEV, Dependence of the functions of P_k on their arguments (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Mat., 4:3 (1967), 6-13.
- 10. K.N. ČIMEV, Dependence of the functions of k-valued logic on their arguments (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Math., 6:2 (1970), 58-62.

- 11. K.N. ČIMEV, Separable pairs of function (in Bulgarian), Godisnik Viss. Tech. Ucebn. Zaved. Math., 7:3 (1971), 7-12.
- 12. K.N. ČIMEV, Separable subsets and strongly essential variables of functions (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Mat., 10:4 (1974), 7-13.
- K.N. ČIMEV, Some properties of functions (in Bulgarian), Godisnik Viss. Tehn. Ucebn. Zaved. Mat., 7:1 (1971), 23-32.
- 14. K.N. ČIMEV, Subfunctions and separable sets of arguments of functions (in Bulgarian), Mathematics and education in mathematics, Sunny Beach, April 1982, 108-122.
- K.N. ČIMEV, Separable sets of arguments of functions (in Bulgarian). Blagoevgrad, 1982, 207.

Ö S S Z E F O G L A L Á S

A BOOLE FÜGGVÉNYEK EGY OSZTÁLYÁNAK STRUKTURÁLIS TULAJDONSÁGAIRÓL K.N. Čimev, M. Aslanski

A szerzők a cikkben n(≥ 6) változós Boole függvényeknek egy osztályára adnak jellemzést. Bebizonyitják, hogy a függvény változói közül egynek a rendje n-1 és egy másiknak a rendje legalább n-4.

О СТРУКТУРАЛЬНЫХ СВОЙСТВАХ ОДНОГО КЛАССА БУЛЕВЫХ ФУНКЦИЙ

К.Н. Чимев, М. Аслански

В статье дается характеризация одного класса Булевых функций n(≥6) переменных. Доказывается, что для функций из одного класса одна из двух переменных имеет порядок n-1 и порядок другой не меньше n-4.