
51 Közlemények 31/1984. 51-61

ON THE SEMANTICS OF DESCRIPTION LANGUAGES

P. RADÓ

Computer and Automation Institute,
Hungarian Academy of Sciences

The dynamic growth (and rate of growt) of the amount and
global cost of software products has been a tendency for the
past 20 years all over the world. This process has brought
about not only quantitative changes. The problems to be solved
have been becoming more and more complex, the solutions
- software systems - larger and larger, their construction
more and more complicated. The efforts to solve the arising new
problems have resulted in the birth of a new branch of the com­
puter sciences: software engineering.

As experience has shown, the problems capable of
making a software project unsuccessful, arise mainly at the
early phases of the project HID. After many years of research
and numerous failed software projects the importance of requi­
rement specification and design is generally recognized,
although the available tools and methods provide no unique and
universal solution for the practicioner.

One of the most promising approaches to the problem of re­
quirements specification and design description is that of
computer aided systems. It is quite natural, that the computer
can help, storing the text, producing listings of different
formats, answering interactive queries e.t.c. Of course this
much can be achieved using any text editor. The text editors
and the computer aided specification systems differ in the
latter's ability to understand the meaning (strictly defined
syntax and semantics) of the stored data. This capability adds
the valuable facility of automatic consistency checking to the
features of the system.

- 52 -

In this paper we propose a general computer aided specifica­
tion system model. A semantics definition valid for a wide class
of specification languages is given based on this model.

I. THE ARCHITECTURE OF THE COMPUTER AIDED SPECIFICATION
SYSTEM

Considering the text editor as a simple computer aided
specification system its functioning can be described relatively
simply (see Figure 1): the a specification is accepted in inter­
active mode and stored in a data file. There is possibility to
change the stored data, to obtain different listings. The text
editors support some consistency checking of the specification
as well, providing different search facilities based upon
formal criteria (all occurences of a given character string,
e . t . c.) .

description

modifications

listing

Figure 1.

The text editor

There is a principal difference between text editors and
the specific computer aided specification systems: the former
accepts any informal text, while the latter checks its input,

53

and accepts only correct sentences of a precisely defined machine
analyzable language. This description language should be ex­
tremely user friendly, easy to read, self explaining (its users
in general are not computer specialists) and at the same time
should possess sufficient descriptive power.

These points are demonstrated by a tiny PSL C2J description
fragment in Figure 2. The language is structured into sections
(indicated b y indentation in Figure 2). Each section consists of
a section header (the first line of the section), which speci­
fies the object we want to tell things about, and a section
body containing statements referring to the section header. The
meaning of the test can be easily understood, and it is quite
clear, that is structure is simple enough to be computer analy­
zable.

p r o c e s s payroll system;
uses payroll input to d e r i v e payroll output;

i n t e r f a c e administration;
g e n e r a t e s payroll input;
r e c e i v e s payroll summaries;

p r o c e s s syntax check ;
uses payroll input;
d e r i v e s payroll file;

Figure 2.

A PSL de s cription fragment

The strict description language is advantageous from the
point of view of the communication. It is not only the man-
-machine interface, which needs a formal language. In the com­
munication among people some defense is required against mis­
understanding each other's thought expressed in human language.
We refer to the well known teamwork problems, or to the apparent
inability of the user to explain the problem to be solved and

54

to understand and check the proposed solution without misinter­
pretation.

The formal languages - besides the offered advantages -
have their own weak points. In applying a particular langu­
age to the solution of some real world problem, it is often
hard to match the predefined concepts of the language with those
naturally arising from the analysis of the problem. The descrip­
tion language must be general to be widely applicable, and at
the same time should provide concepts, which are suitable to
describe the essential special characteristics of any problem
within the - preferably wide - range of applicability. This
contradiction leads to the development of the two-level or meta
specification systems cHl.

This approach - recognising the above mentioned advantages
and disadvantages - provides software, which instead of giving
supply to only one predefined language, encourages the user to
define his own language. After the definition a two-level
specification system will provide all the usual advantages of
the computer aided specification systems with the user defined
- and therefore problem oriented - concepts.

This is similar to the abstract data type definition
mechanism of some programming languages, where a type is defined
by its name and characterized by interrelationships with other
types (abstract operations) C3H. An object of a given type is
capable of possessing those and only those relationships which
are permitted for the type according to its specification. In
this regard the fixed language specification systems can be
compared with the programming languages without type definition
facility, while the two-level systems with those programming
languages, which provide it.

The architecture of the two-level specification system is
shown in Figure 3. The meta level system provides facilites to
define the specification language to be accepted by the descrip­
tion level system later on. This connection is realized by
tables created by the definition interpreter and used by all the

55

modules of the description system. We note, that the descrip­
tion level in itself can be considered as one-level self-conta­
ined specification system, once the description language has
been fixed.

As a concrete example we mention the SDLA system C5□. At
the meta level the SDLA user can define:

• the conceptual framework,
• the syntax of statements used throughout the speci­

fications ,
■ semantical constraints associated with the concepts.

Figure 4 shows a definition fragment. The defined language
coincides with a subset of the PSL fragment of Figure 2.

concept process;
concept input;
concept output ;
concept uses to derive (input, process, output);

form process; uses input to derive output;
concept usage (input, process);

form process: uses input;

Figure 4.
SDLA definition fragment 2

2. SPECIFICATION SYSTEM MODEL
First of all we note, that each specification system is a

model in itself. A descriotion language contains predefined
concepts (for example in Figure 2 apnear "process", "uses",
e.t.c.), which are abstractions of real worls entities. Their
existence is based upon the fact, that the different real
world systems have enough in common to make possible a classi­
fication of their constituent parts into general types (con­
cepts) . The statements (concents) of the PSL for example can

56

be used to describe any concrete information system, so they
can be considered as general information system model.

The two-level specification system is an even higher level
abstraction. It integrates the different specification systems
into unique framework. The meta level can be considered as a
specification system, modeling specification systems. Indeed,
the "concept" concept of the SDLA is applicable to a wide vari­
ety of specification systems Сбп, as it graphs their essence
- the use of abstract concepts (Types) to describe the proper­
ties and the relationships of real world entities by a proper
classification scheme.

The specification system can be considered as a special kind
of database management system as well. It allows the user to
classify, store, list and modify data via proper interface,
while the software provides the technical details of storage
and retrieval. A general database management system model was
proposed by the ANSI/X3/SPARC committee in 1975 C73. According
to this model a database management system consists of the user
interface (external scheme), details of storage (internal
scheme), and the conceptual scheme, invisible from outside, but
playing a most significant - if not allways explicitly stated -
role in the functioning of the database management system. The
conceptual scheme is an abstraction of the outside world to be
modeled. The mapping between the elements of the external and
the internal scheme is not direct, it is materialized by their
referring to the objects of the conceptual scheme. Although the
conceptual scheme may be invisible for the user, it is the very
model, which determines the external and internal schemes. The
conceptual scheme is the central element of the whole conception.

All three schemes have their corresponding counterpart in
the computer aided specification systems. The external scheme
corresponds to the specification language, the internal to the
data management. The counterpart of the conceptual scheme is
the method of modeling provided, the concepts available to
describe the real world. In the case of the PSL these concepts
are concrete object and relationship types and some semantical

57

constraints (see Figure 5).
type input;
type output;
type process ;
type interface;

r e l a t i o n generates (interfaces, input);
r e l a t i o n uses to derive (input, process, output);
r e l a t i o n uses (input, p r o c e s s) ;

c o n s t r a i n t uses to derive (input, process, output) i m p l i e s

uses (process, input) a n d derives (process, output);

Figure 5.

PSL conceptual scheme fragment

The definition of types is obvious (Figure 2 shows examples
of their usage), but the formalization of the semantics is a
harder task. For example the

process P;
uses I to derive 0;

PSL description fragment, that is the
uses to derive (I,P,0);

relationship automatically implies the
process P;

uses I ;
derives 0;

fragment, that is the
uses(P,I); derives (P,0);

relationships for any P,I and 0 objects. The "constraint"
statement of Figure 5 describes this property of the PSL.

Another example of conceptual scheme is that of the SDLA.

58

On the meta level there is only one conceptual object type.
Everything is expressed using

t y p e concept (attribute 1,...,attribute n) ;

where all attributes are concepts as well. Without going into
details we remark the proximity of this model to the relation­
al data model C8l.

It is also possible to define semantical constraints on
meta level. The statement

c o n c e p t A(X ,Х^f.../X^) i m p l i e s B(X^,...,X); (k < n)

for example is a generalization of the above mentioned PSL
semantic constraint. Whenever on object of type A is created
on the description level, the system automatically creates
another object of type B. Semantic constraints of this type
are called "implication" in the SDLA. While in the PSL it
works only for a fixed relationshin ("'uses to derive"), on
the SDLA meta level implication constraint can be defined
between any two concepts.

3. SPECIFICATION LANGUAGE SEMANTICS

We can use the ANSI/SPARC model to describe the function­
ing of the computer aided specification system. According to
the model, the processing of the arriving description may be
considered as realization of two mappings - from the external
scheme language (specification language) into the elements of
the conceptual language (occurrences of conceptual objects),
and then from the conceptual scheme language into data mani­
pulation commands of the internal scheme. The query is the
inverse of these two mappings, and the modification also can
be described by them.

We define the semantics of the specification languages as
a set of relationships between conceptual scheme objects.
According to this definition only those relationships are

59

semantic, which involve actions executed between the realiza­
tion of the two above mentioned mappings. For example, when a

new description fragment arrives, the semantical constraints
result in actions realized after mapping specification langu­
age statements into concept occurances, and before mapping
these into data manipulation commands.

This definition implies the way of semantics specification
As any semantic constraint is a relationship between conceptu­
al scheme objects, it should be defined in terms of the con­
ceptual scheme.

There is no problem in the case of one-'level specifica­
tion systems. For example, the conceptual scheme of the PSL
is a set of fixed types, therefore a routine executing the
necessary actions may serve as definition (or realization of
the definition) of a semantic constraint. The processing algo­
rithm of the semantic constraint from Figure 5 is quite clear
by itself, and the routines realizing it can be added to that
part of the input analyzer which deals with the "uses to derive’
relationship.

If we want to define semantics in a two-level specifica­
tion system, we face additional difficulties. A semantics
constraint statement can not be attached to a concrete object
type, as it should operate with conceptual scheme objects (in
case of the SDLA these are concepts). A formal tool, capable
of defining semantics in general, not only for a given speci­
fication language, but for a wide family of specification
languages is needed. As we have seen the SDLA’s "implies"
constraint is a generalization of a semantic property of the
PSL’s "uses to derive" statement. Its definition is correct
- relationship between any two concepts - and the facility
can be applied on meta level to specify semantic constraints
in any defined description language.

There is a number of mathematically exact, but rather
complicated, inpractical methods to describe general semantic
constraints for the procedural (programming) language 1193.

60

These methods don't seem to be applicable in case of descrip­
tion languages. It is a more realistic approach to generalize
some of the semantic constraints of the existing one level
specification systems based on the needs of the applications.
We refer to the numerous SDLA publications (ck], C 5] » C 6],
Cion, e.t.c.), which contain several examples of semantic
constraint specification in concrete systems.

REFERENCES

Cl] Boehm, B.W., Software Engineering. IEEE Transactions on
Computers, C-25 (1976) 12, 1226-1241.

C 2] Teichroew, D., E.A. Hershey; PSL/PSA: a Computer-aided
Technique for Structure Documentation and Analysis of
Information Processing Systems. IEEE Transactions on
Software Engineering, SE-3 (1977) 1 , 41-48.

C 3] Liskov, B.H., A. Snyder, R. Atkinson and C. Shaffert;
Abstraction mechanisms in CLU. Communications of ACM,
August 1977.

C U] Demetrovics, J., E. Knuth, P. Rado; Specification Meta
Systems. Computer, 15 (1982) 5, 29-35.

C 5] Knuth, P. Rado, A. Toth; Preliminary Description of SDLA.
MTA SZTAKI Tanulmányok, Budapest, 105/1980, 1-62.

C6] Knuth, E., P. Rado; Principles of Computer Aided System
Description. MTA SZTAKI Tanulmányok, Budapest, 117/1981,
1-46 .

C7] ANSI/X3/SPARC Study Group on Database Management Systems.
Interim Report, 1975.

61

C8l Codd, E.F., Extending the Database Relational Model to
Capture More Meaning. ACM Transactions on Database Systems,
4(1979) 4, 397-434.

191 Donahue, J.E.; Complementary Definitions of Programming
Language Semantics. Springer Leotwre Notes in Computer

Science,

C101 Knuth, E., F. Halasz, P. Rado; SDLA System Descriptor
and Logical Analyzer, in Information System Design
Methodologies: a Comparative Review (ed. T.W. Olle,
et al.), North-Holland, Amstardam, 1982.

Ö S S Z E F O G L A L Á S

A LEÍRÓ n y e l v e k s z e m a n t i k á j á r ó l

Radó P.

A cikk a számitógépes specifikációs rendszerek felépitését
elemezve jut el a rendszerek egy széles osztályára alkalmazha­
tó modellhez. A modell alapján általános definíciót javasol a
leiró nyelvek szemantikájára.

О СЕМАНТИКЕ ЯЗЫКОВ ОПИСАНИЯ

П . Радо
*

Анализ архитектуры систем спецификации приводит к общей
модели применяемой на широкий класс таких систем. На базе этой
модели предлагается общее описание семантики для языков описа­
ния .

	P. Radó: A leiró nyelvek szintaktikájáról��
	Oldalszámok������������������
	51���������
	52���������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������

