
- 77 - Közlemények 31/1984. 77-94

SYSTEM DESIGN TECHNOLOGY

A. TÓTH

INORGA, Kosice, Czechoslovakia

1. INTRODUCTION

Design and implementation of computerized information and
control systems is a complicated process.

This process involves a very wide range of managerial and
technical activities such as: problem analysis’, user require­
ments specification, functional design, data structure design,
computer-equipment selection, program development, user train­
ing, system testing, etc.

The way from the idea (i.e. requirements specification)
to the final product (i.e. information or control system) of­
ten called as project life-cycle unfortunatelly is not straight­
forward :

(1-3 years)

Fig„I: System development process

The succès of our projects depends on many facts. Let us
mention only the most crucial ones of them:

78

*1 Boes the developed system satisfy the functional require­
ments specified at the project initiation?

*2 Has the project met the original budget?
*3 Was it implemented within the given time schedule?

In the case of computerized projects the answers to these
well-known questions steem from the following 'details':

What is the manpower and its professional level allocated
to the project?
* To what extent is the company management and the potential

users involved in the development process?
* The level of the project management itself?
* Which from the available methods and techniques are used for

a particular system development activity?
* The level of project documentation?
* The level of user training?
* Do the end-users know how to use and operate the system de­

veloped for them?
* etc.

Really there are too many things we should take into
account and combine them properly into a goal oriented deve­
lopment process. Unfortunatelly should only...

The usual case is that some of these details are neglected
due to shortage of time or lack of project development expe­
rience :
we often use unefficient and/or incompatible methods in design
and programming; the results of the work are incompletely do-
comented and certain details are known only by some 'key pro­
fessionals' who can quit in the middle of the job; the project
progress is not systematically evaluted so nobody knows what
has been done and has to be done; after 1-2 months the users
are already 'out of game' and are waiting for hopeful results;
eventually, if these usually delayed results missmatch the
user needs the project has to be reworked again.

Besides wasting of money and time we have to realize a dep-

79

ressive consequence of this ad-hoc system development approach
There is no garantes that these mistakes will not happen

again in the next project. Until there is no structured and
recorded knowledge neither about the system developed nor
about the development methods used this job remains

a secret art of some experienced masters „

In such situation young or less experienced fellows have
very little chance to learn alone from the case studies of im-
lemented projects. They have to work in the shadow of their
masters for long time as observers if they wanto to acquire
this system development knowledge
This is a serious problem also in the developing countries
where there is generally a lack of experienced computer pro­
fessionals .
SDT (System Desing and Development Technology) offers an op­
portunity to resolve this problem.

2. THE SDT APPROACH

In first aproximation SDT is a structured set of proved
methods combined into an activity-network for system develop­
ment process.

Immediatelly one can object each project must have a spe­
cific development strategy (and activity network) so there is
no general approach. This objection is true until we percieve
the systems development as a heuristic process.
However, after a deeper analysis, we can 'discover' many com­
mon technical and managerial features among seemingly quite
different, types of projects. For example:
* the rules of activity planning and project progress moni­

toring
* how to prepare a functional or data structure specification
* how to document a program algorithm, etc.

80

All such project independent features are incluede in the sc
called SDT-skeleton. This a 250 page guide we can consider as
a common model for system development. On the case study of a
production control project it illustrates the usage of SDT
approach. The main components of this modular document are:

AS - System development activity structure
AL - Activity list
AD - Detailed activity descriptions

AN - Activity network

WM - Optional set of working methods

WMT - methods for technical activities
WMP - methods for project management activities

DS - Project documentation standards
DSP - project progress documentation standards
DSF - final system documentation standards
DSS - sample progress and final documentation

CS - Computer-aided design facility
GL - Guidelines for SDT implementation

This skeleton is a structured knowledge-base for project
planning :
* The activity list (AL) specifies WHAT has to be done
* The detailed descriptions (AD) supported by an optional set

of working methods (WM) specify HOW to carry out each acti­
vity. Documentation standards (DS) specify HOW to document
the result (output) of each activity and the final system
developed

* The activity network (AN) determines WHEN to carry out an
activity

The computer-aided design fasility (CS) is an optional support
for SDT-users. This software-packege can interactively main­
tain all development documentation in a common project data
base.
Now let as have a brief overview what is inside the SDT-skele­
ton :

81

2.1 AL - Activity list

This is a three-level hierarchical list of activities:
- development phases
- subphases and
- project steps

We have picked out some parts from the sample production
control project activity list:

First level :
Project phases:

A - Problem analysis
Л В - Functional design

C - Data structure design
D - Process structure design
E - System implementation

2nd level:
subphases of B:

BOP - Standards training for phase В

Г Bl - Functional structure specification
B2 - Input/output specification
B3 - Functional feasibility test

B9P - Project progress monitoring

3rd level: step for Bl:
Bll - Determine time horizonsГ B12 - Specify functions for horizon
B13 - Describe the functions

(AD)

steps for B9P:
B9P1 - Check the completness of В
B9P2 - Evaluate progress in В
B9P3 - Prepare schedule for phase C

82

.'omments : - codes containing P denote project management ac­
tivités .

- an average project-life-cycle consists of about
120 project steps.

- the description of B12 we can find in section AD
(Fig.2 on the next page)

2 AP - Activity descriptions

For each activity there is a standardized activity des-
rription sheet:

11
B12 Specify functions for horizon /1

DSP-B1
A42Y2 _B12 ______1.Function

structure
B11Y1 SSA

UR
Description

1. In cooperation with UR define global system func
tion

2. Divide global function into subfunctions
3. Decide the type of function: - computer

- manual or
- mixed . 0 . _ /2

References
A42Y2: System objectives
'B11Y1: Time horizons

•
•
•

VM recommended:
WMT10: Structured analysis and design technique

Fig. 2: Activity sheets

Explanation :

83

* This step should carry out a senior systems analyst (SSA)
in cooperation with a user representative (UR)
They will need input documents A32Y1, B11Y1 and their re­
sult will be identified by B12Y2 (Function structure)
This output should be docemnted according to documentation
standard DSP-Bl (described in DSP component)
The description part of the sheet can continue on the next
page.

* Progress document coding: A42Y2 is the 2nd output(Y) of
step 2 subphase 4 phase A.

2.3 AN - Activity network

Depending on the scale of the project this is a 2-3 level
time-based precedence graph representing the activities and
their scheduled duration:

1 st level :

2nd level:

0 1 2 3 4 MonthsI--- 1---1---1-- ,-- 1-----------------------

В , .D project-netI------ 1 I------- 1 £
С EI------- 1 I---------1

1 2 3 4 5 6
I--- 3-1-- 1---1-- 1-------------
, BOP I--- 1Bll B12 I---1------ 1 |B21| B22 [

B13 ВI----1

weeks

phase В
net

B9P1 B9P2
------ 1
B9P3

Fig.3: AN-samples

84

2.4 WM - Optional set of working methods

Is a collection of proved technical and project management
methods and techniques. For example:

for technical activities :
WMT01: Information flow diagrams the ISAC method
WMT02: System an program flowcharts

• • • •
WMT10: Structured analysis and design technique
WMT11: The HIPO method

....... etc.,
for managarial activities:

WMPOl: Job assignment and evaluation
ШР02 : Bar-charts
WMP03: Time-based networks
WMP04: Project man-power planning

These methods we can find also in a wide range of publications
But here in WM one can find them together (the most relevant
ones) and already properly 'chained' to project activities: on
the activity-sheets there are recommendations for WM selection

2.5 PS - Project documentation standards

As it has been already mentioned in the Problem statement
the quality of the documentation is a key condition for pro­
ject success.
In SDT the documentation has two main functions :
* a medium for exact inter-team communications during system

development
’* a comprehensive information source for understanding and

operating the system developed

85

For that a documentation standard is a common prescription for ;
- how to record the result of work and
- how to percieve its content by other persons.

The project progress standards (DSP) are structured according
to activities (AL,AD) the final system documentation standards
(DSF) according to system structure.

Now let us see what is the standard for output B12Y1 inclu­
ded in DSP-B1 (see activity sheet, page 6):
In Fig. 4A there is a prescription for B12Y1 output specifica­
tion. This is a conventional standard for manual-mode design.
If we decide for computer-aided design mode (see pages 10-13)
then this prescription should be converted to rules of a spe­
cification language - shown on Fig.4B. In this case, however
there is no need to draw hierarchical diagrams: the computer
will draw and insert it into your progress and/or final docu­
mentation .

DOCUMENT: B12Y1 - Function structure
COMPONENTS :

(1) Hierarchical diagram
(2) Function structure description

split-up

IDENT NAME TYPE • • •
PRODM Production monitoring MIXED
DAT AC Shop-floor data collection MIXED
REPROC
• • •

Report processing
• • • •

COMP

EXPLANATION :
(1): Identifier not longer than 8 letters

(2) :
Fig„4A: Project progress documentation standard

sample - (conventional design)

86

FMODUL : CONCEPT 'Functional module'
ATTRIBUTES:

fname : TEXT40 'Module name'
: MTYPE* 'Module type'

LEGAL OWNERS: HORIZON, FMODUL
fm : FORMAT :

<ident>:MODUL<fname>TYPE<ftype>
SAMPLE :

• • •
— (see screein image on Fig.6)

Fig.4B: Project progress documentation
standard sample - (computer-
aided design mode)

2 .6 CS - Computer-aided design facility

The common feature of any conventional system development
it produces a great amount of paperwork which has to be shared
simultaneously among several professional groups:

Fig. 5: Conventional system design

87

Disadvantages of this situation are well-known:

cost and time consuming clerical work; to modify reports or
drafts is very difficult; the recorded results are often in­
consistent; we have to search for some details in many docu­
ments; the final documentation has to be compiled from prog­
ress drafts manually and in many versions for: computer ope­
rators, users, training, etc.
The solution: in SDT you can utilize the computer to execute

this clerical work!
The program support which provides these services is called:

SAD (Softvare for Advanced Design)

Disk
storage

SAD - PROGRAMS:
Programs for entry, update Query programs for

and retrievel documentation

On-line displays :

PHASE: В

FS
PRODM
DATAC
REPROC

< SAD - ME S SAGE S >
--- < AUTO > ---

STAND:BS2

TYPE Mixed
FUNCTIONAL STRUCTURE =

MODUL Production monitoring
MODUL Shop-floor data collec­

tion TYPE Mixed
MODUL Report processing TYPE Comp

DESCRIPTION =
(Entry-zone :)

: 'This module provides '
? A,R,F,I,C,M,U,D,S,T,G,E,H,=
SAD-GUIDE Fig. 6:
SDT-INEX Computer-aided design facility

88

Using SAD the outputs of project activities can be simul­
taneously entered and/or up-dated through on-line display ter­
minals into a common project data base. In Fig.6 a part of »B12Y1 activity output entry is illustrated.

The SDT standards here are stored also on disk storage so
the SAD automatically can verify the correctness of the speci­
fications entered before storing them into the project data
base. This ensures the contents and structure of the project
data base is consistent with the standards. These standards
(denoted as BS2 on the screen, Fig.6) can be selected and then
entered interactively as a set of expression rules at the pro­
ject initiation phase. Really be means of these rules we for­
mulate our specification language tailored to the 'dialect' of
particular project phases.
For early design phases (A,B) we can select natural language­
like constructs and for the final ones computer-oriented lan­
guage contructs. Here is an example for a real-time program
specification (phase D):

ocdc PROG'On-line converter data collection'
. PROGRAM INPUTS:

cbuf . . BUFFER'Host control buffer'
chspec . . . GROUP'Channel specification'

. PROGRAM OUTPUTS:
mbuf . . BUFFER'Measured values'
chnum . . . DATA'Channel number' PICT octal
valuem . . . DATA'Value measured' PICT floar

. COMMON DATA :

. . EVENT flag35 = 'Cbuf queued for satellite'
PROGRAM ALGORITHM:

ocdcl . RECEIVE cbuf
. . WAIT FOR flag35
. . CLEAR flag35

ocdc 2 . DOUNTIL'All channels processed'
. . SELECT chspec
. . . CASE 10
. . . . DO'Measure temperature'
. . . CASE 15
. SEND mbur
END ocdc

Fig.7: Program specification sample

89

The design of any specification language by SAD-language defi- ‘
nition facility is a relatively simple job:

- we define sentence types, (e.g.Program heading, etc.)
- some keywords, (PROG,BUFFER, etc.)
- attributes types (text,data,evenet,number, etc.)
- and finally specifiy feasible relations of these sen­

tences (e.g. the RECEIVE sentence can be only part of
PROGRAM ALGORITHM or a DO-type sentence)

So, you can define your own project-oriented design language!
For any case the DSP kit of SDT skeleton, contains a sample
language for each project phase of a production control pro­
ject. Addition to this standard kit there are also available
further language sets from a wide spectrum of previous SDT app­
lications. From these sources new SDT users can easily compile
their own language or directly take an existing one.

Now let us summarize the benefits of this computer-aided
design approach for:
* project management staff:

- using S (Show), T (Trace), G(Graph) commands we can obtain
an up-to-date project progress documentation on arbitrary
object and level of details.

- using the SAD query programs we can obtain immediatelly
final or semifinal system documentation from the project
data base; we can specify the format and contents of do­
cumentation required for different user levels.

* system developers:
- the result of my work I can directly and exactly specify

in A (Auto-guide) mode where the computer step by step
asks for the details of my activity output

- if I want to add or extent a specification already stored,
using R (Refer), F (Format) or I (Insert) commands I can
easily do it.

90

- if I want to change, rearrange or delete some parts of my
outputs I use the U (Update), C (Change), M (Move) or
D (Delete) commands*.

- if I need some details on results of my colleanges I can
retrieve them by S,T,G commands.

- if I forget some dialog command I type only H (Help)
* user representatives :

- we have got always up-to-data and comprehensive documenta­
tion for systems operation and for 'end-users' training

- if some system change happens we only run the document
processing programs and we obtain a new version within
a couple of minutes.

The above statements are typical responses of SDT/SAD
users. Really comparing with the conventional style of develp-
ment this

new facility can reduce the project costs and time up
to 40% and significantly increases the quality of do­

cumentation*

For this reason this facility addition to SDT is highly
recommended for project staff having access to a computer with
terminal network. SAD is now running on IBM mainframes on
PDP11/family and on some personal computers. To provide easy
portability it was developed in FORTRAN IV programming language
(the personal version in BASIC) with sensible core-memory re­
quirements (56 KB).

2.7 GL - Guidelines for SDT implementation

SDT implementation involves a set of preparatory activi­
ties providing application of the SDT skeleton for a given
project. Generally we have to complie a new skeleton let say
SDT-x which should incorporate all the pecularities of our new
project. Such a project dependent part is for example the Ac­
tivity network (AN).

91

As it is shown in Fig.8 for each SDT-x skeleton component
we have to decide how to create it:
*1 take it from an existing skeleton without modification?
*2 take if from an existing skeleton with modification?
*3 create a completely new one?

An existing skeleton can be either the master SDT or some
dedicated SDT-1, SDT-2,... skeletons from previous SDT-driven
company projects.

Existing skeletons:
SDT-x: Decisions
AL?
AD? «-----
AN? «-----
•

•

•

•

DSF - 4 ------------

I cs? I*

*2
*2
*3

*1
*1

Fig.8: SDT implementation (example)

For example if we are going to prepare SDT-x for a Blast
Furnace process control project we potentionally should utili­
ze the SDT master skeleton and an (SDT-5) skeleton of Rolling
Mill production control project implemented before.

In ideal case, if we keep our skeletons on computer sto­
rage a new SDT-x guide we can compile easily using a text
editor.

Despite the SDT implementation is principally and techni­
cally a comprehensive process assistance of an SDT-specialist
at least for the first implementation is recommemded.

92

Depending on project size and skeletons available takes
about 0,5-3 months. The implementation team configuration re­
commended :

Project manager (for coordination)
Senior systems analyst
Chief programmer
SDT-specialist

3. CONCLUSIONS

The goal of this report was to provide an overview on SDT
approach which gives an oporutnity to promote the current sys­
tems development practice from art to technology.

The challenge is not new: the traditional technical dis­
ciplines (.as engineering or building design) have made this
move decades before.

For computerized systems development this is not a moment
too soon: while the capabilities of new computer hardware in­
crease by orders of magnitude, the productivity of people
creeps forward by a few percentage points a year.

The challenge is great; the reward greater.

4. FOOTNOTES

Cili SDT has been developed by Industrial Management and
Automation Institute (INORGA), Czechoslovakia - Kosice
during 1979-83.

Í21 SDT has been implemented and verified on about 16 do­
mestic projects and on two UNDP/UNIDO projects:

DP/CZE/77/005 (Czechoslovakia)
and DP/EGY/13/002 (EGYPT)

93

5. REFERENCES RECOMMENDED

CID Teichroev D., Hershey E.A.III, PSL/PSA a computer aided
Technique for Structured Documentation and Analysis of
Information Processing Systems, IEEE Tranactions on SE-J,
(1977).

C2D E .Knuth,F.H a l á s z P .Radó: SDLA - System Descriptor and
Logical Analyzer, Proc. Information Systems Design
Methodolosies, North Holland 1982, pp. 143-171.

C3H Demetrovics,J., Knuth E., Radó P.: Specification meta
System, IEEE on Computers, May 1982. pp.29-35.

C^3 Tóth A.: SAD - Software for Computer-aided System Des­
cription on Minicomputers, IFIP TC2 Working Conference
on System Description Methodolgies, Kecskemét, 1983.

C 5 3 Békéssi A., Demetrovich J.: Contribution to the Theory
of Data Base Relations, Discrete Mathematics 27 (1979)
1-10.

СбЗ Sobik F., Sommerfeld E.: A Graph Theoretical Approach
to the Characterization of Classes of Structured Objects,
Computers and Artifical Intelligence, 3 (1984), No.3.,
235-247

073 Georgescu I: A Catesorial Approach to Knowledge-based
Systems, Computers and Artificial Intelligence, 3 (1984),
No.2, 105-113.

94

Ö S S Z E F O G L A L Á S

RENDSZER TERVEZÉS TECHNOLÓGIA
Tóth Attila

A számitógépes információs és irányítási rendszerek ter­
vezése bonyolult folyamat, amely a műszaki és irányítási tevé­
kenységek széles skáláját ölei fel: probléma analizis, fel­
használói követelményspecifikáció, funkcionális tervezés, adat
szerkezet tervezés, számitógép kiválasztás, programfejlesztés,
felhasználók oktatása, renszertesztelés, stb.

Az SDT bevált módszerek strukturált készlete, amelyek egy­
másba kapcsolódva egy olyan folytonos tevékenységhálót képez­
nek amely magába foglalja a rendszerfejlesztési projekt élet­
ciklusát .

ТЕХНОЛОГИЯ ПРОЕКТИРОВАНИЯ СИСТЕМ
Аттила Тот

Проектирование информационных и управляющих систем для
ЭВМ является сложным процессом, охватывающим широкий диапазон
деятельности: анализ проблем, спецификация требований пользова
телей, функциональное проектирование, проектирование структуры
данных, выбор ЭВМ, развитие программ, обучение пользователей,
проверку систем и т.п.

Система CDT является структурным набором проверенных ме­
тодов, которые образуют непрерывную сеть деятельностей, охва­
тывающую цикл жизни проекта выработки систем.

	A. Tóth: Rendszer tervezés technológia���
	Oldalszámok������������������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������

