CONGRUENCES ON CLOSED SETS OF SELF-DUAL FUNCTIONS IN MANY-VALUED LOGICS AND ON CLOSED SETS OF LINEAR FUNCTIONS IN PRIME-VALIED LOGICS

V.V. Gorlov and D. Lau

A congruence on a closed set *M* in the *k*-valued logic P_k , *k*≥2, is an equivalence relation on *M* which is compatible with the operations (permutation and identification of variables, addition of fictitious variables and substitution) of P_k .

In this paper we prove that the congurences on closed sets of self-dual functions of P_k are determined by congruences on closed sets of non-self-dual functions.

Moreover, we determine all congruences on the closed sets of linear functions (see [1] and [8]) in prime-valued logic.

1. Basic concepts

Let E_k denote the set $\{0, 1, \dots, k-1\}$, where $k \ge 2$. Let P_k^n denote the set of all functions $f^n: E_k^n \rightarrow E_k$ $(n \ge 1)$ and put $P_k = \bigcup_{n\ge 1} P_k^n$. If there is no danger of confusion, the super-

script n of the function f^n is omitted.

The set of all function of P_k^1 having exactly 1 values we denote by $P_k^{[1]}$.

The functions $e_i^n \mathcal{GP}_k$ $(1 \le i \le n)$ defined by $e_i^n(x_1, \ldots, x_n) = x_i$ are called projections. The *n*-ary constant function with value a is denoted by e_n^n .

The operations on P_k are ζ , τ , Δ , ∇ , *, which are defined by

 $\begin{aligned} & (\zeta f) (x_1, \dots, x_n) = f(x_2, x_3, \dots, x_n, x_1) \\ & (\tau f) (x_1, \dots, x_n) = f(x_2, x_1, x_3, \dots, x_n) \\ & (\Delta f) (x_1, \dots, x_{n-1}) = f(x_1, x_1, x_2, \dots, x_{n-1}) \\ & (\nabla f) (x_1, \dots, x_{n+1}) = f(x_2, x_3, \dots, x_{n+1}) \end{aligned}$

 $(f^*g)(x_1, x_2, \dots, x_{n+m-1}) = f(g(x_1, \dots, x_m), x_{m+1}, \dots, x_{n+m-1}),$ where f^n , $g^m \in P_k$ (see [5] or [6]).

Superpositions over the set A_P_k are functions obtained from A by using the operations $\zeta, \tau, \Delta, \nabla, *$ finitely many times. The closure [A] of a set $A \subseteq P_k$ is the set of all superpositions over A. A set A is said to be closed if [A]=A.

An equivalence relation κ on a closed set A is called a congruence on A iff $f \sim g(\kappa)$, $s \sim t(\kappa)$ imply $f \ast s \sim g \ast t(\kappa)$ and $\alpha f \sim \alpha g(\kappa)$ for all $\alpha \in \{\zeta, \tau, \Delta, \nabla\}$ and for all $f, g, s, t \in A$. A.I.Mal'cev showed in |5| that every closed set $A_{-}P_{k}$ has three trivial congruences κ_{0} , κ_{α} and κ_{1} :

 $f \sim g \ (\kappa_0) : \iff f = g \Lambda \{f, g\} \underline{c} A$ $f^n \sim g^m \ (\kappa_a) : \iff n = m \Lambda \{f, g\} \underline{c} A$ $f \sim g \ (\kappa_1) : \iff \{f, g\} \underline{c} A.$

Let K and K' be two congruences on A. We write $K \leq K'$ iff $f \sim g$ (K) implies $f \sim g$ (K') for all f, $g \in A$.

For the other undefined notations we refer the reader to [1]-[8], particularly to [6].

For the proofs of our theorems we need the following lemma which is well known.

1.1 LEMMA ([2]). Let A be a closed set in P_k containing the projections. If κ is a congruence on A with $\kappa \not \leq \kappa_a$, then $\kappa = \kappa_1$.

2. Congruences on closed sets of self-dual functions of Pk

Let $s(x)=x+1 \mod k$ and let S be the set of all functions of P_k preserving the relation $\{(a, s(a)) \mid a \in E_k\}$. The functions of S are called self-dual functions. If k is a prime number then S is a maximal closed set of P_k ([7]). In [3] for a maximal closed set of self-dual functions it was proved that a function $f^n \mathcal{GP}_k$ is a function of *S* iff there exists a function $F^{n-1}\mathcal{GP}_k$ with the property

$$f(\tilde{x}) = \sum_{i=0}^{k-1} j_i(x_1) \cdot s^i(F(s^{k-i}(x_2), \dots, x^{k-i}(x_n))) \mod k, \quad (1)$$

where $s^{i}(x)$: $x+i \mod k$; $j_{i}(x) = \begin{cases} 1 & if \ x & i \\ 0 & otherwise \end{cases}$ and

 $F(x_1, \ldots, x_{n-1}) = f(0, x_1, \ldots, x_{n-1})$. The proof in [3] does not use the property that k is prime. Therefore (1) is right for every k. Because of this property we can define a bijective mapping α of $S(_P_k)$ onto $P'_k: \{f^n: E_k^n \to E_k\}$ as follows:

 $\alpha : f \rightarrow F.$

2.1 LEMMA. The mapping α has the following properties:

(i) For the operations $\hat{\zeta}, \hat{\tau}, \hat{\Delta}, \hat{\nabla}, \hat{*}$ defined by

 $(\hat{\zeta}f) (x_1, \dots, x_n) = f(x_1, x_3, x_4, \dots, x_n, x_2)$ $(\hat{\tau}f) (x_1, \dots, x_n) = f(x_1, x_3, x_2, x_4, \dots, x_n)$ $(\hat{\Delta}f) (x_1, \dots, x_{n-1}) = f(x_1, x_2, x_2, x_3, \dots, x_{n-1})$ $(\hat{\nabla}f) (x_1, \dots, x_{n+1}) = f(x_1, x_3, x_4, \dots, x_n)$ $(f^*g) (x_1, \dots, x_{n+m-2}) = f(x_1, g(x_1, x_2, \dots, x_m), x_{m+1}, \dots, x_{n+m-2})$ $is \alpha(\hat{\zeta}f) = \zeta F, \alpha(\hat{\tau}f) = \tau F, \alpha(\hat{\Delta}f) = \Delta F, \alpha(\hat{\nabla}f) = \nabla F \text{ and}$ $\alpha(f^*g) = F^*G, \text{ i.e. the algebra } \langle S; \hat{\zeta}, \hat{\tau}, \hat{\Delta}, \hat{\nabla}, \hat{\ast} \rangle \text{ is isomorphic} \\ \text{to the algebra } \langle P'_k; \zeta, \iota, \Delta, \nabla, \hat{\ast} \rangle.$

(ii) For every closed subset $A(\neq \emptyset)$ of S is $\alpha(A)$ a closed set, $\alpha(A) \not\in S$ and $A \in \alpha(A)$.

PROOF. (i) is easy to check. Let A be a closed subset of S. Then by (i) we get that $\alpha(A)$ is likewise a closed set. Assume $\alpha(A) \subseteq S$. Then

 $F(x_2,...,x_n) = s^i (F(s^{k-i}(x_2),...,s^{k-i}(x_n)))$

for $i=0,1,\ldots,k-1$ and for every $f^n \in A$ (see [3]). Thus by (1) we get that the variable x_1 in every function $f \in A$ is fictitious. however, this is not possible. Therefore is $\alpha(A) \not \in S$. Let $f \in A$. Then is $\nabla f \in A$ and therefore $\alpha(\nabla f) = f \in \alpha(A)$, i.e. $A \subset \alpha(A)$.

2.2 THEOREM. Let A be a closed subset of S, κ a congruence on A and let $\alpha(\kappa)$ defined by

 $F \sim G(\alpha(\kappa)) : \longleftrightarrow \alpha^{-1} F \sim \alpha^{-1} G(\kappa)$

an equivalence relation on $\alpha(A)$. Then

(i) $\alpha(\kappa)$ is a congruence on $\alpha(A)$ and

(ii) $\alpha(\kappa)_{A}$, i.e. the congruences on A we can get by restriction of the congruences on $\alpha(A)$ to A.

PROOF. (i). Since \ltimes is a congruence on $A \ltimes$ is also compatible with the operations $\hat{\zeta}, \hat{\tau}, \hat{\Delta}, \hat{\nabla}, \hat{\ast}$. Then by 2.1 (i) follows that $\alpha(\ltimes)$ is a congruence on $\alpha(A)$. (ii) By 2.1 (ii) is $A \subseteq \alpha(A)$ and therefore $\alpha(\ltimes)_{/A}$ is a congruence on A. Let f and g be functions of A. If $f^{\sim}g(\ltimes)$ then $\nabla f_{\bullet} \nabla g(\ltimes)$ and by definition of $\alpha(\ltimes)$ is $\alpha(\nabla f) = f_{\bullet}g = \alpha(\nabla g)(\alpha(\ltimes)_{/A})$, i.e. $\underline{\subseteq} \alpha(\ltimes)_{/A}$. If $f_{\sim g}(\alpha(\ltimes)_{/A})$ then by definition of $\alpha(\ltimes)$ we get that $\alpha^{-1}f_{\sim} \alpha^{-1}g(\ltimes)$. Since f and g are functions of s is $\alpha^{-1}f = \nabla f$ and $\alpha^{-1}g = \nabla g$. Therefore is $\nabla f_{\sim} \nabla g(\ltimes)$ and $\Delta(\nabla f) = f_{\sim}g = \Delta(\nabla g)(\ltimes)$, i.e. $\alpha(\ltimes)_{/A} \subseteq \ltimes$. Thus $\alpha(\ltimes)_{/A} =$.

3. Congruences on some closed subsets of $[P_k^I]$

In this section we prove a theorem which we need for the determination of the congruences on the closed subsets of linear functions.

Let $C \subseteq P_k^{[1]}$, G a subgroup os $\langle P_k^{[k]}; * \rangle$, where the functions of G preserve the set C, U a normal subroup of the group G and let μ be an equivalence relation on C which is preserved by the functions of G.

It is easy to check that the equivalence relation U^{μ} , on [GUC] defined by

$$f^{n} - g^{m}(\kappa^{U, \mu}) : \longleftrightarrow n = m\Lambda(\exists i \exists f', g' \in GUC: f(\tilde{x}) = f'(x_{i})\Lambda$$
$$g(\tilde{x}) = g'(x_{i})\Lambda(f' * U = g' * UVf' - g'(\mu)))$$

is a congruence on [GUC].

3.1 THEOREM. Let G be a subgroup of $\langle P_k^{[k]}; * \rangle$, $C \subseteq P_k^{[1]}$ and G $\subseteq Pol C$. Then exactly on [GUC] there exist the congruences $\kappa_0, \kappa_a, \kappa_1$ and congruences of the type $\kappa^{U,\mu}$, where U is a normal subgroup of G and μ is an equivalence relation on G which is preserved by the functions of G.

PROOF. Let κ be a congruence on [GUC] and $\kappa \neq \kappa_1$. Then by 1.1 is $\kappa \subseteq \kappa_a$. We have to ditinguish the following cases: Case 1: There exist κ -congruent functions f^n and g^n with $\Delta^{n-1}f \in G$ and $\Delta^{n-1}g \in C$. Then is $\Delta^{n-1}f \sim \Delta^{n-1}g(\kappa)$. Thus $e_1^1 \sim \Delta^{n-1}g =: e_a(\kappa)$, $a \in E_k$. By this we have for every function $h^m \in [GUC]$: $e_1^1 * h = h \sim e_a^m = e_a * h(\kappa)$, *i.e.* $\kappa = \kappa_a$. Case 2: There exist κ -congruent functions f^n and g^n with $f(x_1, \ldots, x_n) = f'(x_i), g(x_1, \ldots, x_n) = g'(x_j), \{f', g'\} \subseteq G$ and $i \neq j$.

Without loss of generality we can assume that i=1 and j=2. The inverse functions of f' and g' we denote by f'' and g'', respectively. Then we have

$$\begin{split} f(f''(x_1),g''(x_2),x_2,\ldots,x_2) &= e_1^2(x_1,x_2) \\ &\sim g(f''(x_1),g''(x_2),x_2,\ldots,x_2) &= e_2^2(x_1,x_2) \quad (\texttt{K}). \text{ Therefore is} \\ &e_1^2(s(\widetilde{x}),t(\widetilde{x})) &= s(\widetilde{x}) \sim t(\widetilde{x}) &= e_2^2(s(\widetilde{x}),t(\widetilde{x})) \quad (\texttt{K}) \text{ for every } s \\ \text{and } t \text{ of } [GUC]^m, m \geq 1, \ i.e. \ \texttt{K} &= \texttt{K}_a. \end{split}$$

Case 3: Two *n*-ary functions f and g are κ -congruent if and only if either $\{f,g\} \subseteq [C]$ or there exist an i and $f',g' \in G$ with $f(x_1,\ldots,x_n) = f'(x_i), g(x_1,\ldots,x_n) = g'(x_i).$

In this case the congruence κ is exactly determined by $\kappa_{/G}$ and κ_{IC} .

As we know, the congruence on a group G are determined by a normal group U of G and $f \sim g($) iff $f^*U = g^*U$ for all f, $g \notin G$.

Obviously, C is an equivalence relation on C which is preserved by every function of G. Thus = U, C.

4. Congruences on closed sets of linear functions in prime-valued logics

Let p be a fixed prime number. L denote the set of all linear functions over $\langle E_p; +, \cdot \mod p \rangle$ in P_p , i.e.

$$L:=\bigcup_{n>1} \{f^n \mathcal{GP}_p | \exists a_i: f(\tilde{x}) = a_0 + \sum_{i=1}^n a_i \cdot x_i \mod p\}.$$

In |1| it was proved that L has exactly the following closed subsets:

$$LAS = \bigcup_{n \ge 1} \{f^{n} \in L \mid a_{1} + a_{2} + \dots + a_{n} = 1 \mod p\},$$

$$LAPol(a) = \bigcup_{n \ge 1} \{f^{n} \in P_{p} \mid \exists a_{i} : f(\tilde{x}) = a + \sum_{i=1}^{n} a_{i} \cdot (x_{1} - a)\},$$

$$a \in E_{n},$$

LASAPol(0) and closed subsets A with $A \leq [L^{1}]$. If $A \leq [L^{[1]}]$, then it is easy to see that the closed set A has only congruences of the type κ^{μ} and of the type κ^{μ}_{a} defined by

$$f^{n} \sim g^{m}(\kappa^{\mu}): \longleftrightarrow \Delta^{n-1} f \sim \Delta^{m-1} g(\mu) \quad \text{and}$$

$$f^{n} \sim g^{m}(\kappa^{\mu}_{a}): \longleftrightarrow n = m \Lambda \Delta^{n-1} f \sim \Delta^{n-1} g(\mu),$$

where μ is an any equivalence relation on A^{1} . If $A \notin [L^{[1]}]$ and $A \subseteq [L^{1}]$ then the congruences on A follow by theorem 3.1.

We denote by κ_c an equivalence relation defined by

$$f^{n} \sim g^{m}(\kappa_{c}) : \longleftrightarrow n = m\Lambda(\exists a: f(\tilde{x}) = a + g(\tilde{x}) \mod p).$$

Obviously, κ_c is a congruence on *L*. We will show that κ_c is the only nontrivial congruence on $A \subseteq L$ for $A \notin [L^1]$.

- 4.1 THEOREM ([4]). κ_0 , κ_c , κ_a and κ_1 are the only congruences on L.
- 4.2 THEOREM. κ_0 , κ_a and κ_1 are the only congruences on $L\Omega Pol(a)$ for every $a \in E_p$.

PROOF. Clearly, the closed sets $L\cap Pol(a)$, $a \in E_p$, are mutually isomorphic. Therefore we can assume that a=0. Let κ be a congruence on $L\cap Pol(0)$. The following two cases are possible:

Case 1: $\kappa \not \leq \kappa_a$. By 1.1 is $\kappa = \kappa_1$. Case 2: $\kappa_0 \not \subset \kappa \not \subseteq -\kappa_a$.

Then there exist κ -congruent functions f^n , g^n and an n-tuple $\tilde{a}=(a_1,\ldots,a_n)$ with $f(\tilde{a})\neq g(\tilde{a})$. Therefore is $f(a_1\cdot x,a_2\cdot x,\ldots,a_n\cdot x)=:a\cdot x \cdot b\cdot x :=g(a_1\cdot x,a_2\cdot x,\ldots,a_n\cdot x)$ (κ), where $a\neq b$.

The functions $h(x,y)=x-y \mod p$ and $t(x)=(a-b)^{-1}\cdot x$ belong to $L\cap Pol(0)$. Thus we get $h(ax,ax)=c_0\sim h(ax,bx):=h'(x)$ () and $c_0^1=t*c_0^1\sim t*h'=c_1^1$ (K). This implies that $c_0^1*r^m=c_0^m\sim r=c_1^1*r$ (K) for every $r^m \in L\cap Pol(0)$, $m \ge 1$. Therefore $K = K_a$.

- 37 -

4.3 THEOREM. κ_0 , κ_c , κ_a and κ_1 are the only congruences on LOS.

PROOF. Obviously, $\alpha(LAS)=L$. Therefore, using 2.2 and 4.1 we have the theorem.

4.4 THEOREM. κ_0 , κ_a and κ_1 are the only congruences on LOSOPOl(0).

PROOF. The theorem follows from $\alpha(LASAPol(0)) = LAPol(0)$, 2.2 and 4.2.

We also remark that the structure of the congruences becomes more complicated, if k is not a prime number. If k is square-free, then follows by [8] and by [4] (theorem 3.6) that every closed subset of L has only a finite number of congruences. But, if k is not square-free then there exist closed subsets of L with an infinite number of congruences. Finally we give an example for a closed subset with a such a property.

Let Z:= $\bigcup_{n \ge 1} \{f^n \in P_4 | \exists a_i \in \{0, 2\} : f(\tilde{x}) = \sum_{i=1}^n a_i \cdot x_i \mod p\}$, let r(f)

be the number of the non-fictitious variables of the function f.

Further let χ_i be an equivalence relation defined by

$$n^{n} \sim g^{m}(\chi_{i}): \iff f = g \vee (n = m \Lambda r(f) \leq i \Lambda r(g) \leq i),$$

 $i=1,2,\ldots$. If is easy to prove that χ_i for all $i\geq 1$ is a congruence on Z of P_A .

REFERENCES

- J. Bagyinszki; J. Demetrovics, The lattice of linear classes in prime-valued logics, Banach Center Publications, PWN, 8 (1979).
- [2] V.V. Gorlov, On congruences on closed Post classes (in Russian), Mat. Zametki, 13 (1973), 725-734.
- [3] D. Lau, Bestimmung der Ordnung maximaler Klassen von Funktionen der k-wetigen Logik. Zeitschr. f. math. Logik ung Grundl. der Math., Bd. 24 (1978), 79-96.
- [4] D. Lau, Congruences on closed sets of k-valued logic. Colloguia Mathematica Soc. J. Bolyai, Vol. 28. 417-440.
- [5] A.I. Mal'cev, Iterative algebras and Post's varieties (in Russian), Algebra i Logika, 5 (1966), 5-24.
- [6] R. Pöschel; L.A. Kaluznin, Funktionen- und Relationalgebren, DVW, Berlin 1979.
- [7] I.G. Rosenberg, Über die funktionale Vollständigkeit in den mehrwetigen Logiken. Rozpr. CSAV Rada Mat. Prir. Ved. Praha, 80, 4 (1970), 3-93.
- [8] A Szendrei, On closed sets of linear operations over a finite set of square-free cardinality, EIK 14 (1978) 11, 547-559.