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ABSTRACT

In this article I looked at the set of primitive recursive
functions as an algebraic structure with two operations: com-
position o and iteration[j, see below. I prove that there is
no endomorphism on this structure besides ID and O (see
Theorem I). After this I prove that certain sets of functions
from N to N (for example the set of primitive recursive func-
tions) cannot be generated with one function with the help
of operations o and E](see Theorem II and III). In my paper

I also write some problems concerning this topic.

INTRODUCTION

Denote by N the set of non-negative integers. We say that
the function f is generated from the functions g and % by

primitive recursion if there is a k such that

f£.& N > Ny g & N = iNe R N sy

and for every m € Nk : f(0,m)=h(m) and f(n+l,m)=g(n,m,f(n,ml).

Let us define three special functions as follows:
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0 : N> {0} Z.e. ¥néN Q(n)=0
S +: N>N 2 ¥néN S(n)=n+1 ‘
' N > N ;' ¥néN e T S

0 otherwise
These are called basic functions.

In general denote by ¢ the constant function from N to N

having the value ¢, c€N.

A function f from Nk to N, k>1, is called primitive recur-
sive if it can be generated from the basic functions with the
help of primitive recursion, composition and projections from
Nk to N in finite steps. Since there is a calculable (i.e.
primitive recursive) bijection between Nk and N we can
restrict ourselves to functions from N to N. Denote by PR the
set of the primitive recursive functions from N to N. For the
usual definition of primitive recursive functions see [2],

[4] or [5].

For an arbitrary function f from N to N denote by fD the
"iterand-function" of f from 0, i.e. let fB(0)=§ .and for every
n, fEVn+1)=f(f (n)). Furthermore we shall denote by quadres (n)
the quadratic residuum of n, i.e. the distance between n
and the greatest square number no greater than n. For example
quadres (16)=0, quadres (53)=4, etc. Denote by o the operation
of composition and by + the operation of addition of two func-
tions. R.M. Robinson [1] proved that every primitive recursive
function from N to N can be generated from the basic function
S and the quadres with the help of the operations o, + and
The starting point of my investigations was this fact. Denote
by <PR,0,0 > the set PR as an algebraic structure with opera-
tions o and[J. The main purpose of this paper is to investigate
the algebraic properties of <PR,o0,[] >.

It is easy to see that <PR,0> is a semigroup with a unit
element id (since id:SuGPR), where the only left-hand-singular
elements are the constant ones and there is no right-hand-
singular element. Obviously [J is a unary operation from PR to
PR and Ker O DIm . It easy to see that XKer[J= {f:f(0)=0} and
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quadres € Ker[Q\Im ([.

For every f f9¥=0, so the only fixpoint of [] is 0.
(To prove this we have to use algebraic considerations only:
we have to observe that if fP=f then fBB=f and Q=fuu =% =£.)

i i = <A,g1,...,gm> is an arbitrary algebraic structure,
then every homomorphism from 4 to 4 is called endomorphism.
Denote by End( ) the set of these endomorphisms. The iden-
tity operation ID on 4 (i.e. ID(a)=a for every aqfA) is trivial-

ly an element of End( iw TE contains a null element 0 for
every operations of then the null-operation 0 (i.e. 0(a)=0
for every element of 4) is also an endomorphism on « It 1s

obvious that 0 is the null element of PR, i.e. 000=0 and 0% =0.
So we got that ID and 0 are elements of End<PR,o, >. In the

next section I prove that End<PR,0,0>={0,ID} (see Theorem I).
After this I examine a more general question: what are the si-
milar structures such that for them this theorem holds (see
Theorem I.A and I.B). As I know well, these questions have not
been investigated yet. Only the automorphisms of degrees were
studied in [5] and [6]. In this paper I investigate the struc-
ture of null degree itself.

Above we have seen two equivalent definitions of primitive
recursive functions (the usual one and the definition of R.M.
Robinson.) There are still more equivalent definitions of them
(see {3], [4]) and there are a lot of open problems concerning
how to generate PR in a more simple way. I prove a theorem
concerning this (see Theorem II) which seems to be an interesting
one.

Namely the theorem says the following:

In what follows denote by <a> the set of functions f from N to
Il which can be built from the function g with the help of ope-
rations o and @ in finite steps. Let g be an arbitrary func-
tion from N to N. Then the Theorem says that

either there is no bijection in <a> '

or ¥f6<a> f is either injective or R(f) is finite.
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(R(f) denotes the range of fr i.e. R(f)={f(Z):76N}). Denote
by PR+ the monotone increasing elements of PR. The corollary
of the above Theorem says that there is no a6éPR such that
<q>=PR or <a>=PR’ (see Theorem III). It is not known whether
the operation + can be eliminated from the definition of pri-
mitive recursive functions or not. To be more exact the prob-
lem is the following:

PROBLEM 1.: Are there u,v€éPR such that PR can be generated from
the functions u and v with the help of the operations o and ?

To solve this problem I suggest to choose another 01 (see

in. {21, §.7.16.) :

If such u and v exist then Theorem III implies that the result
of R.M.Robinson is sharp. A similar result was proved in [3],
Theorem 6. Let f-l (inversion) denote the following operation:
for every surjective f let f—l be a function such that
f_l(x)=mih{y:f(y)=x}. J.Robinson [3] proved that R cannot be
generated from only one function with the help of operations

o and f-l (R denotes the set of general recursive functions).
In her proof she eliminated the operation + with the help of a
*, a "mirror-operation”.

My Theorem I shows that her method is not applicable in our
case because * is an endomorphism on R.

The results of this paper seem to be the first ones con-
cerning the properties of <PR,0,8>. I think it is interesting
and useful to investigate similar problems, for example

to study other properties of the operators o and DO

to investigate other operations on PR
(for example (Lf)(n)=f(0)+f(1)+...+f(n) or £ 1)

to raise other usual and unusual algebraic questions in the
algebraic structure <PR,o0,(0] >, etc.

I thank Emil W. Kiss and B. Uhrin for their useful remarks.
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ENDOMORPHISMS

The main purpose of present section is to prove Theorem I.
To do this we need some abbreviations and two lemmas, but
first I explain some remarks on the endomorphisms on PR.

Let c¢6N, c#0 and let L be the following endomoprhism: for
¥fBPR let L(f)=c i.e. L:PR » {c}. Since ¢ is a left-hand-
singular element of PR, so it is easy to see that LEEnd<PR,o0>.
Since g°(0)=0 so g“#s so L¢End<PR,A> i.e. we have got that
LEEnd<PR,0>\End<PR,0>, Conversely let §g=(Sog)D be the usual
signum function: sg(0)=0 and sg(n)=1 for n#0.

Let L(f)=sgofosg for every f6PR. Then it is easy to see
that L€End<PR,0>, (We have to examine where f is equal to ¢ and
where it is not.) Furthermore by Lemma 1 we can say that
L@End<PR,0> so LEEnd<PR,O>\End<PR,0>. If we want an easier
example for LEEnd<PR,0>\ End<PR,o0> then let L(f)=f‘D for every
fEPR.

The following lemma is useful both to the above elementary

investigations and to prove the main theorem.

LEMMA 1. Let u,v6PR be arbitrary functions such that v u#id

and u is not a constant function. Let L(f)=u f v for every

féPR., Then L¢End<PR,o0>. :

PROOF: Let xl,xZ,ZGN be such that (vou) (Z)=y#Z and u(ml)#u(xz)
Furthermore let f,g6éPR be szch that

g(v(0))=Z and f(Z)=x1, f(y)=x2.

Such f and g obviously exist. For example let g(n)=0 for n#v(0)
and f(n)=0 for n#Z and n#y. From the usual definition of pri-
mitive recursive functions it is easy to see that if f(n)#0
only for finite n then f is primitive recursive (see for

example [2].)
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Then L(fog) (0)=(uofogov) (0)=u(x,)#ulx,)=(uofovoucgov)(0)
=(L(f)OL(g))(0)

so L(fog)#L(f)OL(g) i.e. LEEnd<PR,o0>. i

Concerning this lemma the following problem arises:
PROBLEM 2: Are there functions u and » such that for every
fE6PR:

fD =u0foy 7?7

The corollary of the next lemma will be useful for the
proof of Theorem I.

LEMMA 2, Let f6PR and f(0)=0 Assume that ! exists (from this
point f-l will denote the usual invers function of f for the
operations o, i.e. f-10f=fof_1=7:d.)

Furthermore let f_le'PR.

Then 3! g6PR such that f=¢9,

PROOF: Let g=foSof ! then g6PR and gB(n)=(foSof )o(fosof 1)o

7

——p—
n times

... (fosof1)(0) i.e. a suitable g exists.

If f=gB then f(n+1)=gD(n+1)=g(gB(n))=g(f(n)) i.e. foS=gof i.e.
fosof l=g i.e. there is only one correct g. @
COROLLARY : id=f0 <=> F=5.

THEOREM I. If LEEnd<PR,o,3> then L=g or L=ID.
PROOF: There are two cases:

a.) L(id)=id and b.) L(zd)#<d

CASE a.) L(id)=id
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Then id=L('L'd)=L(SD)=(L?S))U and from this we get that
L(S)=S using the corollary of Lemma 2. For every ¢éN and func-

tion f from N to N let fc=fofo...0f for e#0 and fo=id.
—_—

8 times

For an arbitrary constant function e e=5°00 and L(c)=L(5%0)=
L(5704d%)=L(5)%0L(id)P=5%:d9 =5%00=c,

Furthermore, for every f6éPR and céN ££3)=LCfif)FL(fof)=L(f)°£=
=L(f)(ec)
-~
i.e. f(e)=L(f)(c) which implies f=L(f)
i.e. L=ID.

CASE b.) L(<d)#id

To spare place, for every f6PR denote f'=L(f) and let

V' =U{R(f') : f6PR} i.e. all elements of N contained in R(f')

for any f6éPR. At first I examine whether V' equalsto N or not.
For every f6PR 1dOf=f so id'of'=f' i.e. ¥c6N Zd'(f'(c))=f"(c).
In other words “%Z§'(d)=d if déN' since f'(c)EN' or ¥déN' id’'(d)=d.
Denote this fact by id"N, =id|N,. Obviously by the definition

of ¥',R(2d') € N'. Conversely ¥déN' id'(d)=d so R(id') D N'
i.e. R(zd')=N",
From this NV'#N follows because Zd'’'

H,=id|N, and zd'#id.
Obviously 0'=(¢dB%)r=¢q'D 3 =9,

At thi; point we prove the~following proposition:
if f’|N,=g'|N, (i.e. ¥déN' f'(d)=g'(d)) then f'=g’,
Since for every yéN (f')(y)=(f"' 2d') (y)=f'(Zd"'(y))=g'(Zd"'(y))=
g' 2d')(y)=(g')(y) so f'=g’.
For every aféN we know that

14
a' = (8%0)" = §'%0 = S'n(a) = 5"86q = 58 04q = id'0a
-~ ~ -~ N - ~

-~

2.e. (*) ¥abl id'oa' = id'oa -

Especially if q€N' then aq'=a .

-~
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Then " id¥-a ="dd%a’' = (1d'og)" = (g} % g = g
so zd" N = ile, = 7d'’ vre
and by the previous proposition Zd" = Zd’.

Furthermore for every f6éPR and yéN (id'’ofozid')(y)éN' and
£ = id'oftoid’
so (id'ofoid"') (y) =['(1id'ofoid')4£y)] '=[id'ofoid’cy] "’ =

= Zd"of'oid'oy ' = id'of'oid'oy’.

using (*) we got = Zd'0f'oid'oy = floy = £ily)
1.6, tdrofoid! '= f°*,

We know that R(Zd') = N'#N, so zZd'ozd'#id. Moreover
2d'(0)=5'D (0)=0 in other words R(id')3 0. If id' is a constant
function (in other words if there is one element in R(Zd')
only) then Zd’ must be the function Q. Then for every fE€PR
L(f)=0 because f'=id' f'=0af'=0 i.e. L=0.

Now suppose that id'#0, in other words <d' is notconstant.
So we can apply the Lemma 1 choosing u=v=t¢d' because we have seen,
that f'=id'Qfoid' for every f6PR and Zd'0zZd'#id. On the Lemma 1
we can say that L¢End<PR,o0> so LfEnd<PR,o0,0>. This contradict
to our assumtion and this contradiction proves our theorem.

The following corollary shows the importance of this theorem:

COROLLARY: Let j},gg,...,ngPR and 01""’0r be operations on
PR. Suppose that PR can be generated from the functions
Ggseeesdy with the help of operations 01”"0r‘ Further suppose
that there is a finite procedure how to calculate the function
ft:l from the functions f€PR, gisee+9p with the help of the
above operations. (See the usual proofs of equivalence of the
different forms of primitive recursive functions.)

Let (*) denotes the following condition:

(*)  LEEnd<PR and L(g.)=g.

for i=1,2.s 5K
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If (*) holds then L6End<PR,o,l1 > so L = ID,.
The corollary says that our theorem is true in many usual

strucutres of primitive recursive functions.

The proof of Theorem I shows that we used only a few pro-
perties of our structure <PR,o, > This implies the following

generalization of this Theorem:

THEOREM I.A. Let <P,o0,0> be an arbitrary algebraic structure
such that the following axioms hold:

a.) <P,o0> is a semigroup with unit element id

b.) 3156ep : 59 =id

Denote by PS the set of the left-hand-singular elements of
<P, 0> then
c.) ¥f, g€P : (¥ec6PS : foe=goe)=> f=g
. pOO _
d.) 3¢, 6PS ¥f6P : f e,

e.) Ve€Ps 3kcGN : e = SoSo...OSOfO

kc times
Then: if LEEnd<P,o0,0> and L(id)=id then L=ID

PROOF: (only sketch) Analogous to the proof of case a.) of
Theorem I:
b.) = L(s)=s, d.) = L(co)=co
e.) = VeéPS : L(e)=c and finally from c.) we get L(f)=f
for every f6P i.e. L=ID -

This theorem is a generalization of Case a.) only.
Theorem I.B below says how to generalize the whole Theorem I

in similar way.

THEOREM I.B. Let <P,o0, > be an arbitrary algebraic structure and
suppose that all the axioms a.) - e.) hold.
Suppose that the following axiom hold too.
f£f.) if vou # Zd, ufPS and L(f)=uofov for every fE€P then
L@End<P,o0>.
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Then for every LEEnd<P,o0,0 > L=ID or L=0

PROOF: (sketch, analogous, to the proof of Theorem I).

There are two cases:

CASE a.) L(Zd)=id, see Theorem I.A.

CASE b.) L(id)#id.

In this case let f'=L(f) as in the proof of Theorem I.

Let R(g) : = {goe : c6PS} for every g6P (this is the
analogue of the range of a function).

Denote by N' the set U{R(g) : ¢g6P}. By the axiom a.) R(Zd') =
= N ; PS and id'lN,=id|N, and N'#PS because Zd'#id. By d.)

e!' =¢ and R(e ) ={c } because ¢ 6PS.
0 O o ) o

Proposition: if f'|N,=g'|N, then f'=g’'.
Proof: by a.) f'lPS:g’|PS and by c€.) f'=g'.

Especially for every c¢€PS c¢'=e. From this 7d"=7d' follows

because zd" :id’|N, by a.) and the above proposition. From

|
the above results we get that for every f6P f'=id'ofozd’,
using e.). If Zd'6PS then id'=e _, or in other words L= 0.
If L#0 then <d'#PS and by f.) we get that LgEnd<P,o0> i.e.
Lg <P,0,0>. This contradict to our assumption. This contra-
diction.proves the theorem. @R

At this point some problems arise. For example:
PROBLEM 3. Are the axioms a.) -e.) independent or not?

One can ask similar question about the axioms a.) -f.).
PROBLEM 4. To give more general algebraic form of these
theorems above.

Similar problems arise in the next section concerning Theorem
II and Theorem III.
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GENERATIONS

The main result of this section is Theorem III which is a
consequence of Theorem II. Theorem III says that PR+ and even
PR cannot be generated from one function with the help of our
operations o and O . In this section I am dealing with arbit-
rary functions from N to N, not only functions from PR, ex-
cept in Theorem III. The proof of Theorem II is made throught

some lemmas.

LEMMA 3. Let f be anarbitrary function from N to N. If fO is

not surjective then R(fcbis a finite set.

PROOF: It comes from the definition of f that if
FfB(n)=fBm) for any m>n then R(FfB)={f (0), fX1),...,f%m)}. g

REMARK: In the case above fP is a periodical function and its
period is m-n. We can ask whether for every periodic function
f there is a function g such that f=gB. The answer is the
following: Let ai=f(i), 26N and the sequence (ai) is periodic
)

from the place n and its period is m-n (i.e. ¥j6N a a

n+j m+g
Then there is a function g such that f=¢® if and only if the

numbers Aps@gsesesd, all are distinct and ao=0.

=1
Obviously, fa is bijective if and only if fBis surjective.
Moreover it is easy to see that if g is an injective function,
R(g)#0 then ¢B is an injective one, too. The following lemmas
investigate this problem in more details.

LEMMA 4, If fF is not injective then fPB is not surjective.
PROOF: Let kl#kz and i=f(k1)=f(k2).

Suppose that fB is surjective.

Then there are %,, h,6N such that k1=fn (h,) and k2=f57(h2)
and hI#hZ.
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Then i=f(k1)=f(fu (711))=_7"’:l (h1+1) and on similar way we get
that i=r08 (h2+1). We know that h1+1#h2+1 and by Lemma 3 R(f
i8 a finite set i.e, [ is not a surjective function. This

contradiction proves the lemma. g

From this point for an arbitrary function a from N to N
denote by <g> the generation of a with the help of the opera-
tions o and O i.e. the set of those functions from N to N
which we can built from a with the help of the above operations

in finite steps.

LEMMA 5. If ¢ is an arbitrary injective function then for every

element f of <a>

Ff is injective or R(f) is a finite set.

PROOF: Let us investigate how we build the elements of <g>
in more detail. Then prove the lemma by induction. For
every natural number m and function Ff from N to N

fof9 = f80s™ and (f"P=r%o (s") .

Taking these identities into account we get the following
scheme, when we construct <ag> on the basis of the system
below:

the oth

we get the r+1

layer is {a}

o layer on the basis of the followings:

first from the elements of the rth layer

using g or mth power of o
second from the different elements of the rth layer using o
third from the different elements of the rth layer and

layers number less then r using o.

We can see easily with induction on the number of layers
that for every element f of <a@> f 1is injective or R(f) is a

finite set.
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(Because if for # and g: h is injective or R(h) is finite and
respectively for g then hog and AP have the same property,
too.) W

- (am)rJ a0 (s™)83

+(a“)m= ano(a")m—.-l

e - amoau = a%s"
;=a“oam
0th layer ISt layer an layer ooe
Scheme

LEMMA 6. For every element f of <g> either there is a
suitable k such that f=ak or R(f) ¢ R(a® ).

PROOF: Similar to the proof of the previous lemma.

An induction as above shows how to build the elements of <g>.
We can see easily with induction on the number of layers that
for every function f laying in the part of the above figure
fenced with dotted line that R(f) € R(a¥ ). Because for every
function g and % R(hog) € R(k) and R(g ) _ R(g) {0}
furthermore if R(k) € R(a) then R(a"oh) _ R(a™0a%) & Ria®).

The reader can prove this lemma in detail himself.

With the help of above lemmas there is no difficulty in

proving our main theorems.
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THEOREM II. Let a be an arbitrary function from N to N.

Then
either there is no bijection in <a>

or ¥f6<a> f 1is injective or R(f) is finite.

PROOF: If ¢ is injective then see Lemma 5.

If ¢ is not injective then a" is not injective as well. In
this case I prove that there is no bijection in <g>. Proving
by indirect way, suppose that there is a bijective element f
of <ag>. Since f is injective f#am for all m6N. But f is sur-

jective and by Lemma 6 a® must be a surjective function.

By Lemma 4 this is a contradiction, which proves the theorem.

From this theorem it is easy to show the main theorem:

THEOREM III. There is no primitive recursive function such
that it can generate all the monoton increasing primitive re-
cursive functions even not all the primitive recursive func-

tions. In other words:
13aGPR : <a>=PR+ or <a>=PR

PROOF: By Theorem II Zd and - (its definition see in the
Introduction) cannot be at the same time in <ag> for every
function ¢ from N to N.

This proves the theorem. W

One can put the following problem similar to Problem 4:

PROBLEM 5. To give more algebraic form of the above theorems
in similar way as it was shown in Theorem I.A and I.B. To solve
this problem (other exercise) I suggest to take each element

f of p as a function mapping from pg into PS: let f(é)=foc

for every element ¢ of Ps.
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PROBLEM 6. We have seen that for example <S>_PR+. So far I have
not found any element of PRt\<S> yet. So the problem is to show

+
any element of PR \<S5>.

REMARK: One can investigate other subspaces of PR and prove
that they cannot be - generated from one element only. For
example there is no difficulty in showing that the following

subspaces have this property:

PR, = {F ¢t R(f) is a finite set }

PR, = { f : in R(f) there are at most n elements }

PRinj ={ f : f is injective or R(f) is finite }

= o .

PRcon { e, c¥ : ceN }

PRper = { : f is periodic }

PRpern= { : f is periodic and its period contains
no more than n elements ¥

PR, = {f : f(0)=0} =KerQ

PRbij = { : f(O{ and f is bijective }

PRsurj= { h o ﬁis no surjective }

I‘v
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A primitiv rekurziv filiggvények algebrai strukturdajardél

Szalkai Istvan

Osszefoglaléas

E cikkben a primitiv rek. fv.-ek halmazat algebrai
strukturaként tekintettem: a kompozicid (o) és a O-tdl vald
iteracidé (g ) miiveletekkel.

Belatom, hogy e strukturdban az ID és O endomorfizmusokon
kiviil nincsen mds endomorfizmus (1ld. I. Tétel).

Ezutdn részletesen megvizsgalom, hogy T mely részhal-
mazai generalhaték egy fiiggvénnyel a fenti két operdcid segit-
ségével. (1ld. II. Tétel).

Ebbdl specidlisan adddik, hogy a prim. rek. filiggvények halmaza
nem generalhaté egy filiggvénnyel, (1ld. III.Tétel). Néhany ide-
vagd problémat is emlitek, a tételek algebrai altalanositasai

utan.

AJITEBPAUYECKASI CTPYKTYPA NPUMHTUBHBEIX PEKYPCHBHEIX OYHKIUN

U. Cankau

Pe3soMme

CTaThba 3aHHMaAeTCs MHOXECTBOM IMPUMHTHBHHX PEKYPCHBHHX OYHKIIHHN
Kak ajrebpalyecKkol CTPYKTypoOi. B 3TOl CTPYKTYpe CymMecTBYIOT IOBe
onepauuu: Komnosuuusa (o) U uTepauus c mMmecta 0 / O , cM. BO BBe-
neHuK/. JJOKaA3HBAeTCH, YTO HAL STOM CTPYKTYPOH CYMECTBYT TOJE-
KO nBa sHAOoMopdusma: ID u 0. /cm. Teopema I./ Nocne 3TOro
CTaThs 3aHHMaeTCs BONPOCOM: KaKHWe IOIOMHOXeCTBa v /OYHKIHUH U3
¥B V / MOXHO NONMy4YUTH U3 OOHOM yHkuMM. /cM. Teopema II/.
U3 >TON TeopeMu nojiyyaeTCsa BaxHas Teopema III: NOIOMHOXECTBO
NPUMHTHBHEHX PEKYPCHBHHX QYHKLUHUN HENb3s COCTABJIATE H3 OIHOMN QYHK—
ouu. KpoMe 3THUX HOKa3HBAKTCHA TEOPEMH B Ob6med aare6panuyeckol Gop-—
Me H IOaHO HEeCKOJIBKO InpobJieM.
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