THE ALGEBRAIC STRUCTURE OF PRIMITIVE RECURSIVE FUNCTIONS

István Szálkái

student of Eötvös Loránd University,

Budapest

ABSTRACT

In this article I looked at the set of primitive recursive functions as an algebraic structure with two operations: composition o and iteration, see below. I prove that there is **no endomorphism on this structure besides ID and 0 (see Theorem I). After this I prove that certain sets of functions from N to N (for example the set of primitive recursive functions) cannot be generated with one function with the help of operations o and** \Box (see Theorem II and III). In my paper **I also write some problems concerning this topic.**

INTRODUCTION

Denote by N the set of non-negative integers. We say that the function *f* **is generated from the functions** *g* **and** *h* **by** primitive recursion if there is a k such that

 $f: N^{k+1} \rightarrow N, g: N^{k+2} \rightarrow N, h: N^{k} \rightarrow N$

and for every $\underline{m} \in \text{N}^k$: $f(0, \underline{m})=h(\underline{m})$ and $f(n+1, \underline{m})=g(n, \underline{m}, f(n, \underline{m}))$. **Let us define three special functions as follows:**

These are called basic functions.

In general denote by *a* **the constant function from N to N** having the value c , $c \in \mathbb{N}$.

A function f from N^k to N , $k>1$, is called primitive recur**sive if it can be generated from the basic functions with the help of primitive recursion, composition and projections from** N^k to N in finite steps. Since there is a calculable (i.e. **k primitive recursive) bijection between N and N we can restrict ourselves to functions from N to N. Denote by** *PR* **the set of the primitive recursive functions from N to N. For the usual definition of primitive recursive functions see [2], [4] or [5].**

For an arbitrary function f from N to N denote by f^{\square} the "iterand-function" of *f* from 0 , i.e. let $f^{\Box}(0) = \emptyset$ and for every $n \text{ if } f^{-1}(n+1)=f(f(n))$. Furthermore we shall denote by quadres (n) **the quadratic residuum of** *n,* **i.e. the distance between** *n* **and the greatest square number no greater than** n. **For example quadres** $(16)=0$, quadres $(53)=4$, etc. Denote by o the operation **of composition and by + the operation of addition of two functions. R.M. Robinson [l] proved that every primitive recursive function from N to N can be generated from the basic function** *S* **and the quadres with the help of the operations o, + and The starting point of my investigations was this fact. Denote** by $\langle PR, o, \Box \rangle$ the set PR as an algebraic structure with opera**tions о andD. The main purpose of this paper is to investigate** the algebraic properties of *<PR*, *o*, **□** >.

It is easy to see that <PR, o> is a semigroup with a unit **element id (since** $id = s^{\mathbf{D}} \in PR$ **)**, where the only left-hand-singular **elements are the constant ones and there is no right-handsingular element. Obviously Q is a unary operation from** *PR* **to** PR and Ker \Box \Im *Im* . It easy to see that Ker \Box = $\{f:f(0)=0\}$ and

 $-76 -$

quadres G Ker\Z\\Im **Q.**

For every $f = f^{\text{III}} = 0$, so the only fixpoint of \Box is 0 . **(To prove this we have to use algebraic considerations only:** we have to observe that if $f^{\mathbf{a}}=f$ then $f^{\mathbf{a}}=f$ and $0=f^{\mathbf{a}}=f^{\mathbf{a}}=f$.)

If $= \langle A, g_1, \ldots, g_m \rangle$ is an arbitrary algebraic structure, **then every homomorphism from** *A* **to** *A* **is called endomorphism. Denote by** *End()* **the set of these endomorphisms. The iden**tity operation ID on A (i.e. $ID(a)=a$ for every $a \in A$) is trivial**ly an element of** *End().* **If contains a null element** *0* **for every operations of then the null-operation** *0_* **(i.e.** *0_(a)=-0* **for every element of** *A)* **is also an endomorphism on . It is** obvious that 0 is the null element of PR , i.e. $0.00=0$ and $0^{\frac{1}{10}}=0$. **So we got that ID and** *0_* **are elements of** *End<PRio3* **>. In the** next section I prove that *End<PR*, *o*, **□**>={0, *ID*} (see Theorem I). **After this I examine a more general question: what are the similar structures such that for them this theorem holds (see Theorem I.A and I.B). As I know well, these questions have not been investigated yet. Only the automorphisms of degrees were studied in [5] and [б]. In this paper I investigate the structure of null degree itself.**

Above we have seen two equivalent definitions of primitive recursive functions (the usual one and the definition of R.M. Robinson.) There are still more equivalent definitions of them (see [з], [4]) and there are a lot of open problems concerning how to generate *PR* **in a more simple way. I prove a theorem concerning this (see Theorem II) which seems to be an interesting one.**

Namely the theorem says the following:

In what follows denote by $\langle a \rangle$ the set of functions f from N to **N which can be built from the function** *a* **with the help of operations о and О in finite steps. Let** *a* **be an arbitrary function from N to N. Then the Theorem says that**

either there is no bijection in *<a>*

or VfG<a> f **is either injective or R***(f)* **is finite.**

(R*(f)* **denotes the range of** *f,* **i.e. R** *(f)={f(i) :iGN}).* **Denote by** *PR+* **the monotone increasing elements of** *PR.* **The corollary of the above Theorem says that there is no** *aGPR* **such that** $\langle a \rangle$ =PR or $\langle a \rangle$ =PR⁺ (see Theorem III). It is not known whether **the operation + can be eliminated from the definition of primitive recursive functions or not. To be more exact the problem is the following:**

PROBLEM 1.: Are there *u***,** $vGPR$ **such that** *PR* **can be generated from** the functions *u* and *v* with the help of the operations o and ?

To solve this problem I suggest to choose another σ_0^1 (see **in [2], §.7.16.)**

If such *u* and *v* exist then Theorem III implies that the result **of R.M.Robinson is sharp. A similar result was proved in [з],** *— 2* **Theorem 6. Let** *f* **(inversion) denote the following operation:** for every surjective f let f^{-1} be a function such that $f^{-1}(x) = min\{y : f(y) = x\}$. **J. Robinson** [3] proved that *R* cannot be **generated from only one function with the help of operations _o** and f^{-1} (R denotes the set of general recursive functions). **In her proof she eliminated the operation + with the help of a *, a "mirror-operation".**

My Theorem I shows that her method is not applicable in our case because *** **is an endomorphism on** *R* **.**

The results of this paper seem to be the first ones concerning the properties of *<PRio***i□ >. I think it is interesting and useful to investigate similar problems, for example**

to study other properties of the operators о and □

to investigate other operations on *PR*

(for example $(\Sigma f)(n)=f(0)+f(1)+...+f(n)$ **or** f^{-1} **)**

to raise other usual and unusual algebraic questions in the algebraic structure *<PR*, *o*, **□** >, etc.

I thank Emil W. Kiss and B. Uhrin for their useful remarks.

ENDOMORPHISMS

The main purpose of present section is to prove Theorem I. To do this we need some abbreviations and two lemmas, but first I explain some remarks on the endomorphisms on *PR.*

Let $c \in \mathbb{R}$, $c \neq 0$ and let *L* be the following endomoprhism: for *VfEPR* **let** *L(f)=a* **i.e.** *L:PR* **-* {g }. Since c is a left-hand**singular element of PR , so it is easy to see that $L\epsilon End\langle PR, \rho\rangle$. Since $c^{\mathsf{D}}(0)=0$ so $c^{\mathsf{D}}\neq c$ so $L\notin End^{, \Box > i.e. we have got that$ LGEnd<PR, o >\End<PR, π >. Conversely let $\hat{s}g=(S \circ 0)^{\mathbf{D}}$ be the usual $signum function: $sg(0)=0$ and $sg(n)=1$ for $n\neq0$.$

Let *L (f)=sgofosg* **for every** *fGPR.* **Then it is easy to see** that $L\epsilon E\text{ and } \epsilon PR$, \Box >. (We have to examine where f is equal to 0 and **where it is not.) Furthermore by Lemma 1 we can say that** *L0End<PR3o>* **so** *LGEnd<PR3D>\End<PR3o***>. If we want an easier example for** $L\epsilon End < PR$ **,** $D > N$ $End < PR$ **,** $o >$ **then let** $L(f)=f^{\mathbf{0}}$ **for every** *fGPR.*

The following lemma is useful both to the above elementary investigations and to prove the main theorem.

LEMMA 1. Let u , v *GPR* be arbitrary functions such that v $u \neq id$ and u is not a constant function. Let $L(f)=u f v$ for every *fGPR.* Then $L\not\in End < PR$, o .

PROOF: Let x^3 x^3 y^2 \in N be such that $(v \circ u)(Z)=y\neq Z$ and $u(x^3) \neq u(x^3)$ Furthermore let f ³g F R be szch that

 $g(v(0))=z$ and $f(z)=x^3$, $f(y)=x^3$.

Such f and g obviously exist. For example let $g(n)=0$ for $n\neq v(0)$ and $f(n)=0$ for $n\neq 2$ and $n\neq y$. From the usual definition of primitive recursive functions it is easy to see that if $f(n)\neq 0$ **only for finite n then** *f* **is primitive recursive (see for example [2].)**

Then $L(f \circ g)(0) = (u \circ f \circ g \circ v)(0) = u(x_1) \neq u(x_2) = (u \circ f \circ v \circ u \circ g \circ v)(0)$ *=(L (f)°L(g))(0)*

 $\mathbf{so} \ L(f \circ g) \neq L(f) \circ L(g) \ \mathbf{i.e.} \ L \notin End \leq PR_0 \circ >.$

Concerning this lemma the following problem arises: PROBLEM 2: Are there functions *u* **and** *v* **such that for every** *fGPR:*

$$
f^{\Box} = u^{\circ} f^{\circ} v
$$
?

The corollary of the next lemma will be useful for the proof of Theorem I.

 -1 **LEMMA 2. Let** *fGPR* **and** *f(0)=0* **Assume that / exists (from this** $\frac{1}{7}$ **point** *f* **will denote the usual invers function of** *f* **for the** o perations o , i.e. f^{-1} ^o $f=f$ o $f^{-1}=id$.) Furthermore let f^{-1} ϵ *PR*. Then $\exists !$ *qGPR* such that $f = g^{\mathbf{u}}$. **PROOF:** Let $g=f\circ S\circ f^{-1}$ then $g\in PR$ and $g^{\mathbf{G}}(n)=(f\circ S\circ f^{-1})\circ (f\circ S\circ f^{-1})\circ f$ **** -y **--**

— 2 **...** *(fosof)(0)* **i.e. a suitable** *g* **exists. If** $f = g$ **^{d**} then $f(n+1) = g$ **Q** $(n+1) = g$ (g **Q** (n)) = g ($f(n)$) **i.e.** $f \circ S = g \circ f$ **i.e.** $f^{\circ}S^{\circ}f^{-1} = g$ i.e. there is only one correct g .

COROLLARY: $id = f^{\mathbf{D}}$ \iff $f = S$.

THEOREM I. If *LGEnd<PR3o3tJ>* **then** *L=0_* **or** *L=ID.* **PROOF: There are two cases:**

a.) $L(id)=id$ and b.) $L(id)\neq id$

CASE a.) *L (id)=id*

/

n times

Then $id=L(id)=L(S^{\square})=(L(S))^{\square}$ and from this we get that $L(S)=S$ using the corollary of Lemma 2. For every $c \in N$ and func t ion f from N to N let $f^c = f \circ f \circ \ldots \circ f$ for $c \neq 0$ and $f^c = id$. **N--- у —/ о** *times* For an arbitrary constant function c $c = S^{\mathcal{C}} \circ \theta$ and $L(c) = L(S^{\mathcal{C}} \circ \theta) =$ $L(S^{\mathcal{O}}\circ id^{\blacksquare}) = L(S)^{\mathcal{O}} \circ L(id)^{\blacksquare} = S^{\mathcal{O}} \circ id^{\blacksquare} = S^{\mathcal{O}} \circ \tilde{\varrho =_{\mathcal{C}}}.$ Furthermore, for every f^{GPR} and c^{GN} $f(c)=L(f(c))=L(f^{\circ}c)=L(f^{\circ})c=$ *=L(f)(a)* i.e. $f(c)=L(f)(c)$ which implies $f=L(f)$ **i.e.** *L=ID.* $CASE b.) L(id) \neq id$ **To spare place, for every** *fGPR* **denote** *f'=L(f)* **and let** *N'* **=U{R***(f) : fGPR}* **i.e. all elements of N contained in** *R(f')* **for any** *fGPR.* **At first I examine whether** *N'* **equals to N or not.** For every $f\in PR$ $idof=f$ so $id'of' = f'$ i.e. $\#c\in N$ $id'(f'(c)) = f'(c)$. **In other words** *'i& '(d) =d* **if** *dGN '* **since** *f'(e)GN'* **or** *VdGN ' id'(d)=d.* Denote this fact by $id' \big|_N$, $=id \big|_N$, Obviously by the definition **of** *N ' ,R(id ') C. N '.* **Conversely** *VdGN' id' (d)=d* **so** *R(id')* **13** *N'* **i.e.** *R(id')=N'.* From this $N' \neq N$ follows because *id'* $|_{ll}$,=*id* $|_{N}$, and *id'* \neq *id*. Obviously $0' = (id^{Dn})' = id^{Dn} = 0$. **At this point we prove the following proposition:** if $f' \mid N$ *,* =g'_N, (i.e. $\forall d \in N'$ $f'(d) = g'(d)$) then $f' = g'$.

Since for every $y \in N$ (f')(y)=(f' id')(y)=f'(id'(y))=g'(id'(y))= *g' id') (y)-(g ') (y)* **so** *f'=g'.*

For every *aGN* **we know that**

 $a' = (S^{\alpha} \circ 0)' = S'^{\alpha} \circ 0 = S'^{\alpha} \circ a = S'^{\alpha} \circ a = id' \circ a$ *i.e. (*) VaGN id'oa'* **=** *id'oa .*

Especially if $a \in N'$ then $a' = a$.

Then $id'' \cdot a = id'' \circ a' = (id' \circ a)' = (a)' = a' = a$ \int **so** $id''|_{N}$, = $id'|_{N}$, = $id'|_{N}$. **and by the previous proposition** *id" = id'.* **Furthermore for every** *fGPR* **and** *yGN (id 'o foid ') (y) GN '* **and** $f' = id'$ ^o f' ^{oid}' so $(id'ofoid')(y) = [(id'ofoid')(y)]' = [id'ofoid']$ *= id"of' oid' oy '* **=** *id 'of 'oid 'oy* **'. using** $(*)$ we got = $id'^\circ f'^\circ id'^\circ y = f'^\circ y = f'(y)$ $i.e.$ $id'0f0id' = f'.$

We know that $R(id') = N' \neq N$, so $id'oid' \neq id$. Moreover $id'(0)=S'^D(0)=0$ in other words $R(id')\ni 0$. If id' is a constant **function (in other words if there is one element in R***(id')* **only) then** *id'* **must be the function** *0.* **Then for every** *fGPR* $L(f) = 0$ because $f' = id'$ $f' = 0$ of $i = 0$ i.e. $L = 0$.

Now suppose that $id' \neq 0$, in other words id' is not constant. **So we can apply the Lemma 1 choosing** *u=v=id'* **because we have æen,** that $f' = id' Qf \circ id'$ for every $f\theta PR$ and $id' \circ id' \neq id$. On the Lemma 1 **we can say that** *L*∉*End<PR, o>* so *L*∉*End<PR, o,***□**>. This contradict **to our assumtion and this contradiction proves our theorem.0**

The following corollary shows the importance of this theorem:

COROLLARY: Let $g'_{1}, g_{2}, \ldots, g_{k}$ *GPR* and $0_{1}, \ldots, 0_{n}$ be operations on *PR.* **Suppose that** *PR* **can be generated from the functions** $\mathcal{G}_1, \ldots, \mathcal{G}_k$ with the help of operations $\mathcal{O}_1, \ldots, \mathcal{O}_n$. Further suppose **that there is a finite procedure how to calculate the function** f^{\Box} from the functions $f\in PR$, $g_1, \ldots g_k$ with the help of the **above operations. (See the usual proofs of equivalence of the different forms of primitive recursive functions.) Let** *(*)* **denotes the following condition:**

(*) $L\theta End < PR$, θ_1 , ..., θ_n and $L(g_i) = g_i$

for $i=1,2,...,k$

 $-82 -$

If $(*)$ holds then $L\epsilon End < PR$, o , \Box > so $L = ID$. **The corollary says that our theorem is true in many usual strucutres of primitive recursive functions.**

The proof of Theorem I shows that we used only a few properties of our structure $\langle PR, \rho, \mathbf{D} \rangle$. This implies the following **generalization of this Theorem:**

THEOREM I.A. Let *<P3o3***D > be an arbitrary algebraic structure such that the following axioms hold:**

a.) *<P3o>* **is a semigroup with unit element id b.) 3!***S6P :* **S°** *=%d*

Denote by *PS* **the set of the left-hand-singular elements of** *<P3o>* **then**

c.) $\forall f$, $g\theta P$: ($\forall c\theta PS$: $f\circ c = g\circ c$) \Rightarrow $f = g$ d.) $\mathbf{3}c_{o}$ $\theta PS \text{ } \mathbf{F} \mathbf{F} \mathbf{G} P$: $f^{\mathbf{B} \mathbf{G}} = c_{o}$ **e.**) Vc *ePS* $\mathbf{3}k$ θ N : $c = \text{SoS0...OS0}$ *к times a*

Then: if $L \in End \langle P_2 \circ \Box \rangle$ and $L(id) = id$ then $L = ID$

PROOF: (only sketch) Analogous to the proof of case a.) of Theorem I:

b.) \Rightarrow $L(s) = s$, **d**.) \Rightarrow $L(c_o) = c_o$ $e.$) \Rightarrow $Ve\theta PS$: $L(c)=c$ and finally from c.) we get $L(f)=f$ **for every** *fGP* **i.e.** *L=ID*

This theorem is a generalization of Case a.) only. Theorem I.В below says how to generalize the whole Theorem I in similar way.

THEOREM I.B. Let $\langle P_{,0} \rangle$ > be an arbitrary algebraic structure and **suppose that all the axioms a.) - e.) hold. Suppose that the following axiom hold too.**

f.) if $vol \neq id$, $u\#PS$ and $L(f)=u$ ofov for every $f\#P$ then L *∉End*<*P*, *o* >.

Then for every $L \in End < P$, o , \Box > $L = ID$ or $L = 0$ **PROOF: (sketch, analogous, to the proof of Theorem I). There are two cases : CASE a.)** *L(id)=id3* **see Theorem I.A.** $CASE b.) L(id) \neq id.$ **In this case let** *f'=L(f)* **as in the proof of Theorem I.** Let $R(g)$: = ${g \circ c : c \in PS}$ for every $g \in P$ (this is the **analogue of the range of a function). Denote by** *N'* **the set** $\mathbf{U} \{ \mathbb{R}(q) : q \in \mathbb{P} \}$ **. By the axiom a.)** $\mathbb{R}(id') =$ $= N' \sum z$ *PS* and $id' \mid N' = id \mid N'$ and $N' \neq PS$ because $id' \neq id$. By d.) $c'_{o} = c_{o}$ and R(c_{o}) = {c_o} because c_{o} *GPS*. **<u>Proposition:</u>** if $f'|_{N}$,=g' $\mid N$, then $f'=g'$. **Proof:** by a.) $f' \mid pS = g' \mid pS$ and by c.) $f' = g'$. **Especially for every** *oGPS o'=o.* **From this** *id"=id'* **follows because** $id''|_{N}$, $=id'$ $|_{N}$, by a.) and the above proposition. From **the above results we get that for every** *fGP f '=id 'ofoid '3* **using e.).** If $id'FPS$ then $id'=_c_{\alpha}$ or in other words $L=[0,1]$. **If** *L^O* **then** *id'0PS* **and by f.) we get that** *L0End<P3o>* **i.e.** Le² <P, o, \Box >. This contradict to our assumption. This contra-

At this point some problems arise. For example: PROBLEM 3. Are the axioms a.) -e.) independent or not?

diction . proves the theorem.

One can ask similar question about the axioms a.) -f.). PROBLEM 4. To give more general algebraic form of these theorems above.

Similar problems arise in the next section concerning Theorem II and Theorem III.

GENERATIONS

The main result of this section is Theorem III which is a consequence of Theorem II. Theorem III says that *PR+* **and even** *PR* **cannot be generated from one function with the help of our operations о and D . In this section I am dealing with arbitrary functions from N to N, not only functions from** *PR,* **except in Theorem III. The proof of Theorem II is made throught some lemmas.**

LEMMA 3. Let f be an arbitrary function from N to N. If f^Q is not surjective then $R(f^{\mathbf{Q}})$ is a finite set.

PROOF: It comes from the definition of f that if $f^{a}(n) = f^{a}(m)$ for any $m > n$ then $R(f^{a}) = \{f(0), f^{a}(1), \ldots, f^{a}(m)\}$.

REMARK: In the case above f^{\square} is a periodical function and its **period is** *m-n.* **We can ask whether for every periodic function** f there is a function g such that $f=g$ **D**. The answer is the f ollowing: Let $a_i = f(i)$, $i \in \mathbb{N}$ and the sequence (a_i) is periodic from the place *n* and its period is $m-n$ (i.e. $Vj\in\mathbb{N}$ $a_{n+j}=a_{m+j}$.) Then there is a function g such that $f=g^{\mathbf{G}}$ if and only if the numbers a_{0} , a_{1} , ..., a_{m-1} all are distinct and $a_{0} = 0$.

Obviously, f^{\Box} is bijective if and only if f^{\Box} is surjective. **Moreover it is easy to see that if** *g* **is an injective function,** $R(g)$ ^{\cancel{p}} then g ^{\Box} is an injective one, too. The following lemmas **investigate this problem in more details.**

LEMMA 4. If f is not injective then f^{\Box} is not surjective. **PROOF:** Let $k_1 \neq k_2$ and $i=f(k_1)=f(k_2)$. Suppose that f^{\Box} is surjective. Then there are h_1 , h_2 \in N such that $k_1 = f^{\square}(h_1)$ and $k_2 = f^{\square}(h_2)$ and $h_1 \neq h_2$.

Then $i=f(k_1)=f(f^{\mathbf{G}}(h_1))=f^{\mathbf{G}}(h_1+1)$ and on similar way we get that $i=f^{\mathbf{D}}(h_{0}+1)$. We know that $h_{1}+1\neq h_{0}+1$ and by Lemma 3 R(f) **is a finite set i.e.** *f* **is not a surjective function. This contradiction proves the lemma, ц**

From this point for an arbitrary function *a* **from N to N denote by** *<a>* **the generation of** *a* **with the help of the operations о and □ i.e. the set of those functions from N to N which we can built from** *a* **with the help of the above operations in finite steps.**

LEMMA 5. If a is an arbitrary injective function then for every element *f* **of** *<a>*

f **is injective or** *R(f)* **is a finite set.**

PROOF: Let us investigate how we build the elements of *<a>* **in more detail. Then prove the lemma by induction. For every natural number** *m* **and function** *f* **from N to N** $f^m \circ f^m = f^m \circ f^m$ and $(f^m)^m = f^m \circ (f^m)$

Taking these identities into account we get the following scheme, when we construct *<a>* **on the basis of the system below:**

the 0^{th} layer is $\{a\}$ we get the r+1th layer on the basis of the followings: first from the elements of the rth layer

using □ or mth power of о

second from the different elements of the rth layer using o third from the different elements of the rth layer and **layers number less then r using o.**

We can see easily with induction on the number of layers that for every element f of $\langle a \rangle$ f is injective or $R(f)$ is a **finite set.**

(Because if for *h* **and** *g: h* **is injective or** *R(h)* **is finite and** respectively for g then $h \circ g$ and $h^{\mathbf{p}}$ have the same property, **too.) ■**

 0 th layer **1**st layer **2**nd layer

Scheme

LEMMA 6. For every element f of $\langle a \rangle$ either there is a suitable k such that $f=a^k$ or $R(f)^k \subseteq R(a^d)$.

PROOF: Similar to the proof of the previous lemma. An induction as above shows how to build the elements of $\langle a \rangle$. **We can see easily with induction on the number of layers that for every function** *f* **laying in the part of the above figure** fenced with dotted line that $R(f) \subset R(a^{\square})$. Because for every function *g* and *h* R(hog) \subseteq R(h) and R(g) R(g) {0} $furthermore if: R(h) \subseteq R(a) then R(a^m \circ h)$ $R(a^m \circ a^q) \subseteq R(a^q).$ **The reader can prove this lemma in detail himself.**

With the help of above lemmas there is no difficulty in proving our main theorems.

THEOREM II. Let *a* **be an arbitrary function from N to N.**

Then either there is no bijection in *<a>* **or** *YfG<a> f* **is injective or R** *(f)* **is finite.**

PROOF: If a is injective then see Lemma 5. If a is not injective then a^m is not injective as well. In **this case I prove that there is no bijection in** *<a***>. Proving by indirect way, suppose that there is a bijective element** *f* of $\langle a \rangle$. Since f is injective $f \neq a^m$ for all $m \in \mathbb{N}$. But f is sur**jective and by Lemma 6** *a°* **must be a surjective function. By Lemma 4 this is a contradiction, which proves the theorem.**

From this theorem it is easy to show the main theorem:

THEOREM III. There is no primitive recursive function such that it can generate all the monoton increasing primitive recursive functions even not all the primitive recursive functions. In other words:

 \overrightarrow{a} *da* \overrightarrow{e} *PR : <a>*=*PR⁺ or <a>* = *PR*

PROOF: By Theorem II *id* and \cdot (its definition see in the **Introduction) cannot be at the same time in** *<a>* **for every function** *a* **from N to N.** This proves the theorem.

One can put the following problem similar to Problem 4:

PROBLEM 5. To give more algebraic form of the above theorems in similar way as it was shown in Theorem I.A and I.B. To solve this problem (other exercise) I suggest to take each element *f* **of p as a function mapping from** *ps* **into** *ps***: let** *f(c)=foo* **for every element** *c* **of** *PS.*

PROBLEM 6. We have seen that for example *<S>_PR+.* **So far I have** not found any element of $PR^{\uparrow} \leq S$ yet. So the problem is to show any element of $PR^+ \leq S$.

REMARK: One can investigate other subspaces of *PR* **and prove** that they cannot be generated from one element only. For **example there is no difficulty in showing that the following subspaces have this property:**

 $PR_{fin} = \{ f : R(f) \text{ is a finite set } \}$ **PR n = {** *f* **: in R***(f)* **there are at most n elements }** \mathcal{F} $PR_{inj} = \{ f : f \text{ is injective or } R(f) \text{ is finite } \}$ $PR_{con} = \{ c, c^{\mathbf{D}} : c \in \mathbb{N} \}$ $PR_{per} = \{ f : f \text{ is periodic} \}$ **PR = { pern** *f* **:** *f* **is periodic and its period contains no more than n elements }** $PR_{0} = \{ f : f(0)=0 \}$ = Ker \Box $PR_{\text{bij}} = \{ f : f(0) \text{ and } f \text{ is bijective } \}$ PRsurj= $\{ f : f \mid \text{is no surjective } \}$

REFERENCES

 \sim

- **[1] ROBINSON, R.M. Primitive recursive functions. Bull. Amer. Math. Soc. 1 (1947), 925-942.**
- **[2] PETER,R. Recursive Functions. Akadémia, Budapest, 1967.**
- **[3] ROBINSON,J. General recursive functions. Proc. Amer. Math. Soc. 1 (1950), 703-718.**
- **[4] MONK, D.J. Mathematical Logic. Springer-Verlag, New-York, 1976.**
- **[5] SHOARE, R.I. Recursive enumerable sets and degrees. Bull. Amer. Math. Soc. (1978. nov.) 1149-1162.**
- **[6] HERRINGTON,L. et SHOARE, R.A. Definable degrees and automorphisms of v. Bull. Amer. Math. Soc. (1981. jan.) 97-99.**

A primitiv rekurziv függvények algebrai struktúrájáról

Szálkái István

Összefoglalás

E cikkben a primitiv rek. fv.-ek halmazát algebrai struktúraként tekintettem: a kompozició (o) és a O-tól való iteráció (□) műveletekkel.

Belátom, hogy e struktúrában az ID és О endomorfizmusokon kivül nincsen más endomorfizmus (Id. I. Tétel).

Ezután részletesen megvizsgálom, hogy N^N mely részhal**mazai generálhatók egy függvénnyel a fenti két operáció segítségével. (Id. II. Tétel).**

Ebből speciálisan adódik, hogy a prim. rek. függvények halmaza nem generálható egy függvénnyel, (Id. III.Tétel). Néhány idevágó problémát is emlitek, a tételek algebrai általánositásai után.

АЛГЕБРАИЧЕСКАЯ СТРУКТУРА ПРИМИТИВНЫХ РЕКУРСИВНЫХ ФУНКЦИЙ

И. Салкаи

Резюме

Статья занимается множеством примитивных рекурсивных функций как алгебраической структурой. В этой структуре существуют две операции: композиция (ö) и итерация с места О / О , см. во Введении/ . Доказывается, что над этой структурой существуют только два эндоморфизма: *ID* **и 0_. /см. Теорема I./ После этого статья занимается вопросом: какие подмножества** *NN* **/функции из .Vb** *N /* **можно получить из одной функции, /см. Теорема II/. Из этой теоремы получается важная Теорема III : подмножество примитивных рекурсивных функций нельзя составлять из одной функ ции. Кроме этих доказываются теоремы в общей алгебраической фор ме и дано несколько проблем.**