
Közlemények 29/1983 75-91

THE ALGEBRAIC STRUCTURE OF P R IM IT IV E  RECURSIVE FUNCTIONS

István Szálkái

student of Eötvös Loránd University, 

Budapest

ABSTRACT

In this article I looked at the set of primitive recursive 
functions as an algebraic structure with two operations: com­
position о and iterationП, see below. I prove that there is 
no endomorphism on this structure besides ID and 0 (see 
Theorem I). After this I prove that certain sets of functions 
from N to N (for example the set of primitive recursive func­
tions) cannot be generated with one function with the help 
of operations о and СП(see Theorem II and III). In my paper 
I also write some problems concerning this topic.

INTRODUCTION

Denote by N the set of non-negative integers. We say that 
the function f is generated from the functions g and h by 
primitive recursion if there is a к such that

„ „k+1 M ,Tk+2 .. , .Tkf : N -*■ N, g : N -*■ N., h : N -> N

кand for every m 6 N ; f(Oim)=h(m) and f(n+13m)=g(n3m3f(n3m)). 
Let us define three special functions as follows:



i.e.
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О : N -V {0}
S : N -*■ N
• : N ->- N

VnG N 0 (n)=0

¥né?N S (n)=n+l

VnGK , , n-1 if n>l l_(n)= r J -
10 otherwise

These are called basic functions.
In general denote by a the constant function from N to N

having the value o, c£N.
ьA function f from N to N, k>l, is called primitive recur­

sive if it can be generated from the basic functions with the
help of primitive recursion, composition and projections from
ьN to N in finite steps. Since there is a calculable (i.e.kprimitive recursive) bijection between N and N we can 

restrict ourselves to functions from N to N. Denote by PR the 
set of the primitive recursive functions from N to N. For the 
usual definition of primitive recursive functions see [2],
[4] or [5].

For an arbitrary function f from N to N denote by the 
"iterand-function" of f from 0 , i.e. let f a (0)=f and for every 
n, fn (n+l)=f(f (n) ). Furthermore we shall denote by quadres (n) 
the quadratic residuum of n, i.e. the distance between n 
and the greatest square number no greater than n. For example 
quadres (16)=03 quadres (53)=4 , etc. Denote by о the operation 
of composition and by + the operation of addition of two func­
tions. R.M. Robinson [l] proved that every primitive recursive 
function from N to N can be generated from the basic function 
S and the quadres with the help of the operations o, + and 
The starting point of my investigations was this fact. Denote 
by <PR3o3d > the set PR as an algebraic structure with opera­
tions о andD. The main purpose of this paper is to investigate 
the algebraic properties of <PR3o3n>.

It is easy to see that <PR3o> is a semigroup with a unit 
element id (since id=S°GPR)3 where the only left-hand-singular 
elements are the constant ones and there is no right-hand- 
singular element. Obviously Q  is a unary operation from PR to 
PR and Xer О Э 1 и  . It easy to see that Ker□ =  {f:f(0)=0 } and
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quadres G Ker\Z\\Im Q.
For every f fau=0, so the only fixpoint of Q  is 0.

A* *v

(To prove this we have to use algebraic considerations only: 
we have to observe that if fa=f then /Qn =f and =/° =f. )

If = < A > 3 ...3gm> is an arbitrary algebraic structure, 
then every homomorphism from A to A is called endomorphism.
Denote by End( ) the set of these endomorphisms. The iden­
tity operation ID on A (i.e. ID(a)=a for every aGA) is trivial­
ly an element of End( ). If contains a null element 0 for
every operations of then the null-operation 0_ (i.e. 0_(a)=-0
for every element of A) is also an endomorphism on . It is 
obvious that 0 is the null element of PR, i.e. 0o0=0 and 0° =0. 
So we got that ID and 0_ are elements of End<PRio3 >. In the 
next section I prove that End<PR3 о3П>={0_3 ID} (see Theorem I). 
After this I examine a more general question: what are the si­
milar structures such that for them this theorem holds (see 
Theorem I.A and I.B). As I know well, these questions have not 
been investigated yet. Only the automorphisms of degrees were 
studied in [5] and [б]. In this paper I investigate the struc­
ture of null degree itself.

Above we have seen two equivalent definitions of primitive 
recursive functions (the usual one and the definition of R.M. 
Robinson.) There are still more equivalent definitions of them 
(see [з], [4]) and there are a lot of open problems concerning 
how to generate PR in a more simple way. I prove a theorem 
concerning this (see Theorem II) which seems to be an interesting 
one.
Namely the theorem says the following:
In what follows denote by <a> the set of functions f from N to 
N which can be built from the function a with the help of ope­
rations о and О in finite steps. Let a be an arbitrary func­
tion from N to N. Then the Theorem says that 

either there is no bijection in <a> 
or VfG<a> f is either injective or R(f) is finite.
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(R(f) denotes the range of f, i.e. R(f)={f(i) :iGN}). Denote 
by PR+ the monotone increasing elements of PR. The corollary 
of the above Theorem says that there is no aGPR such that 
<a>=PR or <a>=PR+ (see Theorem III). It is not known whether 
the operation + can be eliminated from the definition of pri­
mitive recursive functions or not. To be more exact the prob­
lem is the following:

PROBLEM 1.: Are there u3v9PR such that PR can be generated from 
the functions и and v with the help of the operations о and ?

To solve this problem I suggest to choose another (see
in [2], §.7.16.)
If such и and v exist then Theorem III implies that the result
of R.M.Robinson is sharp. A similar result was proved in [з],

—  2Theorem 6. Let f (inversion) denote the following operation:
- 2for every surjective f let f be a function such that 

f 1 (x)=min{y:f(y)=x]. J . Robinson [з] proved that R cannot be 
generated from only one function with the help of operations— 7о and f (.R denotes the set of general recursive functions).
In her proof she eliminated the operation + with the help of a 
*, a "mirror-operation".
My Theorem I shows that her method is not applicable in our 
case because * is an endomorphism on R .

The results of this paper seem to be the first ones con­
cerning the properties of <PRioi□ >. I think it is interesting 
and useful to investigate similar problems, for example 

to study other properties of the operators о and □ 
to investigate other operations on PR 

(for example (T.f)(n)=f(0)+f(l)+...+f(n) or f 1 )
to raise other usual and unusual algebraic questions in the 

algebraic structure <PRtoiQ>, etc.
I thank Emil W. Kiss and B. Uhrin for their useful remarks.
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ENDOMORPHISMS

The main purpose of present section is to prove Theorem I. 
To do this we need some abbreviations and two lemmas, but 
first I explain some remarks on the endomorphisms on PR.

Let oGN3 o0O and let L be the following endomoprhism: for 
VfEPR let L(f)=a i.e. L:PR -* {g }. Since c is a left-hand- 
singular element of PR, so it is easy to see that LGEnd<PR3o>. 
Since c°(0)=0 so с°т̂ с so L0End<PR3Q> i.e. we have got that 
LGEnd<PR3o>\End<PR3U>. Conversely let sg=(SoO)vl be the usual 
signum function: sg(0)=0 and sg(n)=l for n0O.

Let L(f)=sgofosg for every fGPR. Then it is easy to see 
that LGEnd<PR30 >. (We have to examine where f is equal to 0 and 
where it is not.) Furthermore by Lemma 1 we can say that 
L0End<PR3o> so LGEnd<PR3D>\End<PR3o>. If we want an easier 
example for LGEnd<PR30>\ End<PR3o> then let L(f)=f° for every 
fGPR.

The following lemma is useful both to the above elementary 
investigations and to prove the main theorem.

LEMMA 1. Let u3vGPR be arbitrary functions such that v u0id 
and и is not a constant function. Let L(f)=u f v for every 
fGPR. Then L0End<PR3o>.
PROOF: Let x^3x^3ZG^ be such that (vou)(Z)=y0Z and u(x^)0u(x^) 
Furthermore let f3gGPR be szch that

g(v(0))—Z and f(Z)=x^3 f(y)=^2.

Such f and g obviously exist. For example let g(n)=0 for njv(0) 
and f(n)=0 for n^Z and n0y. From the usual definition of pri­
mitive recursive functions it is easy to see that if f(n)0O 
only for finite n then f is primitive recursive (see for 
example [2].)
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Then L(fog)(0)=(uofogov)(0)=u(xг)0и(x£)=(uofovouogov)(0) 
=(L(f)°L(g))(0)

so L(fog)0L(f)°L(g) i.e. L0End<PR3o>. Ш
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Concerning this lemma the following problem arises:
PROBLEM 2: Are there functions и and v such that for every 
fGPR:

f°=u°fov ?

The corollary of the next lemma will be useful for the 
proof of Theorem I.

_ 7LEMMA 2. Let fGPR and f(0)=0 Assume that / exists (from this_ уpoint f will denote the usual invers function of f for the
operations o, i.e. f °f=fof =id.)-7Furthermore let f GRR.
Then 3! gOPR such that f=g°.
PROOF: Let g=foSof~ then gGPR and ga (n)=(foSof )o(foSof )o\ -y  --Г

n times
—  2... (fosof )(0) i.e. a suitable g exists.

If f=ga then f(n+l)=g&(n + l)=g (£&(п))=g(f(n)) i.e. foS=gof i.e. 
fosof =g i.e. there is only one correct g. В

COROLLARY: id=fD <=> f=S.

THEOREM I. If LGEnd<PR3o3tJ> then L=0_ or L=ID.
PROOF: There are two cases:

a.) L(id)=id and b.) L(id)0id

CASE a.) L(id)=id
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Then id=L(id)=L( Sa) = (L(S) )a and from this we get that 
L(S)=S using the corollary of Lemma 2. For every űé?N and func­
tion f from N to N let f°=fofo...of for o^O and f°=id.N--- у —/

о times
For an arbitrary constant function a c=Sc°0 and L(c)=L(S°o0)= 
L(SC'°id°)=L(S)G°LUd)a =Saoida =S°O0=o.

«X *4«

Furthermore, for every fGPR and c£N /(c) =L ( f (e))=L ( f oQ) =l ( f) oQ= 
=L(f)(a)
i.e. f(a)=L(f)(a) which implies f=L(f) 
i.e. L=ID.

CASE b.) L(id)?id
To spare place, for every fGPR denote f'=L(f) and let 
N' =U{R(f) : fGPR} i.e. all elements of N contained in R(f') 
for any fGPR. At first I examine whether N' equals to N or not.
For every fGPR idof=f so id'of'=f' i.e. VeGN id ' ( f ' ( о ) ) =f ' ( о ) .
In other words 'i& '(d) =d if dGN ' since f'(e)GN' or VdGN ' id'(d)=d.
Denote this fact by id' N =id N 1 Obviously by the definition

of N ' ,R(id ') C. N '. Conversely VdGN' id' (d)=d so R(id') 13 N' 
i.e. R(id')=N'.

N ,=id N l and id'̂ -id.From this Л/'̂ N follows because id'
Obviously 0 ' = (id0T3) '=id a =0.

At this point we prove the following proposition:
if f N ,=9rN (i.e. VdGN' f ' ( d)=g ' ( d) ) then f'=g'.
Since for every yGN (f )(y) = (f  id ')(y)=f'(id ' (y))=g ' (id ' (y)) = 
g' id' ) (y )-( g ' ) (y) so f'=g'.
For every aGN we know that

a' = (Sao0)' = S'ao0 = S'°(a) = S'° oa = Sa'о a = id'oa ~ ~ гч; ~
i.e. (*) VaGN id'oa' = id'oa .

Especially if aGN' then a'=a .•Kr ~
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Then id"-a = id"oa’ = (id’oa) ' = (a) ' - a 
so id" , — id jy, - id’\^t.

a

and by the previous proposition id" = id’.
Furthermore for every fGPR and yGN (id 'o foid ’) (y ) GN ' and 
f ’ = id'of’oid'
so (id ’ofoid ’) (y) = [(id’ofoid')^y)’\ ’=\id’ofoid’oT̂] ’ =

= id"of’ oid' oy ’ = id ’of 'oid ’oy ’.
using (*) we got = id’of’oid’oy = f'oy = f'(y) 
i.e. id’ofoid ' = f.

We know that R (id*) = N ’/ N, so id ’oid '/id. Moreover 
id ’ ( 0 )=S ,D (0)=0 in other words R(id’) Э 0. If id’ is a constant 
function (in other words if there is one element in R(id') 
only) then id' must be the function 0. Then for every fGPR 
L(f)=0 because f ’=id' f ,=OQf r=0 i.e. L=0 .

Now suppose that id’/03 in other words id’ is not constant.
So we can apply the Lemma 1 choosing u=v=id’ because we have æen, 
that f'=id’Qfoid’ for every fGPR and id’oid ’/id. On the Lemma 1 
we can say that L0End<PR3o> so L0End<PR3о 3Q>. This contradict 
to our assumtion and this contradiction proves our theorem.0

The following corollary shows the importance of this theorem:

COROLLARY: Let g’̂3 g ̂3 . . . , g ĵ ßPR and 0^3...30p be operations on 
PR. Suppose that PR can be generated from the functions

W-*-*-*1 the help of operations 0^3...0 . Further suppose 
that there is a finite procedure how to calculate the function

above operations. (See the usual proofs of equivalence of the 
different forms of primitive recursive functions.)
Let (*) denotes the following condition:

(*) LGEnd<PR and L(g.)=gi

for i-132 к
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If (*) holds then LGEnd<PR3o3D > so L = ID.
The corollary says that our theorem is true in many usual 
strucutres of primitive recursive functions.

The proof of Theorem I shows that we used only a few pro­
perties of our structure <PR3 o3 О >. This implies the following 
generalization of this Theorem:

THEOREM I.A. Let <P3o3D >  be an arbitrary algebraic structure 
such that the following axioms hold:

a. ) <P3o> is a semigroup with unit element id
b. ) 3!S6P : S° =%d

Denote by PS the set of the left-hand-singular elements of 
<P3o> then

c. ) Vf3 gGP : (VcGPS : foo=goe)=>f=g
d. ) 3oqGPS VfGP : faa =
e. ) VeGPS 3fcc£N ; c = SoSo.^QSO<j0

к times a

Then: if LGEnd<P3o3D> and L(id)=id then L=ID

PROOF: (only sketch) Analogous to the proof of case a.) of
Theorem I:

b . ) => L(s)=s3 d.) => L(c )=cо оe.) => VcGPS : L(c)=c and finally from c.) we get L(f)=f 
for every fGP i.e. L=ID

This theorem is a generalization of Case a.) only.
Theorem I.В below says how to generalize the whole Theorem I 
in similar way.

THEOREM I.B. Let <P3o3 > be an arbitrary algebraic structure and
suppose that all the axioms a.) - e.) hold.
Suppose that the following axiom hold too.

f.) if voи ^ id3 u0PS and L(f)=uofov for every fGP then 
L0End<P3о>.
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Then for every LGEnd<P3o3 О  > L=ID or L=0_

PROOF: (sketch, analogous, to the proof of Theorem I).
There are two cases :
CASE a.) L(id)=id3 see Theorem I.A.
CASE b.) L(id)0id.
In this case let f'=L(f) as in the proof of Theorem I.
Let R(g) : = {goo : oGPS} for every gGP (this is the 
analogue of the range of a function).
Denote by N' the setUiR(g') : gGP}. By the axiom a.) R(id') =
= N ' ^ PS and id ' N ,=id \N and N'JPS because id'/id. By d.)
o' —o and R (o )= {a } because о GPS.о о о о о

Proposition : if f N' 9 N , then f'=g'.
Proof: by a.) / ' | pS~9 ’ | PS and by c.) f'=g'.
Especially for every oGPS o'=o. From this id"=id' follows 
because id"|^ ,=id ' |̂ , by a.) and the above proposition. From
the above results we get that for every fGP f '=id 'ofoid '3 
using e.). If id'GPS then id'=cq3 or in other words L- 0_.
If L^O then id'0PS and by f.) we get that L0End<P3o> i.e.
L0 <P3o3U>. This contradict to our assumption. This contra­
diction . proves the theorem. Ц

At this point some problems arise. For example:
PROBLEM 3. Are the axioms a.) -e.) independent or not?

One can ask similar question about the axioms a.) -f.). 
PROBLEM 4. To give more general algebraic form of these 
theorems above.
Similar problems arise in the next section concerning Theorem 
II and Theorem III.
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GENERATIONS

The main result of this section is Theorem III which is a 
consequence of Theorem II. Theorem III says that PR+ and even 
PR cannot be generated from one function with the help of our 
operations о and D  . In this section I am dealing with arbit­
rary functions from N to N, not only functions from PR, ex­
cept in Theorem III. The proof of Theorem II is made throught 
some lemmas.

LEMMA 3.Let / be an arbitrary function from N to N. If f° is 
not surjective then 2?(/a)is a finite set.
PROOF: It comes from the definition of / that if
f a (n)=fa(m) for any m>n then R = (0) 3 /°Г 2 ) , . . . , f°(m) } . щ

REMARK: In the case above is a periodical function and its
period is m-n. We can ask whether for every periodic function 
/ there is a function g such that f=gD. The answer is the
following: Let a.=f(i)3 iGN and the sequence (a.) is periodicъ ъ
from the place n and its period is m-n (i.e. V3GN a .=a ..)n+o m+cThen there is a function g such that f=ga if and only if the 
numbers a .a......a , all are distinct and a =0.
Obviously, /^ is bijective if and only if /a is surjective. 
Moreover it is easy to see that if g is an injective function, 
R(g)?0 then g& is an injective one, too. The following lemmas 
investigate this problem in more details.

LEMMA 4. If / is not injective then /° is not surjective. 
PROOF: Let and i=f(k1)=f(k2).
Suppose that fa is surjective.
Then there are h13 h such that k ^ f 0 (h and k2=f& (h2) 
and h ^ h 2.
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Then i=f(k1) = f ( ( h 1))=fa (h2+l) and on similar way we get 
that i=fa (h^+1). We know that h^+l^h^+1 and by Lemma 3 R(f 
is a finite set i.e. f is not a surjective function. This 
contradiction proves the lemma, ц

From this point for an arbitrary function a from N to N 
denote by <a> the generation of a with the help of the opera­
tions о and □ i.e. the set of those functions from N to N 
which we can built from a with the help of the above operations 
in finite steps.

LEMMA 5. If a is an arbitrary injective function then for every 
element f of <a>

f is injective or R(f) is a finite set.

PROOF: Let us investigate how we build the elements of <a> 
in more detail. Then prove the lemma by induction. For 
every natural number m and function f from N to N 
/"of0 = f°oSm and (/n)°=fa о (Sm) .

Taking these identities into account we get the following 
scheme, when we construct <a> on the basis of the system 
below:
the 0th layer is {a} t hwe get the r+i layer on the basis of the followings:

thfirst from the elements of the r layer
th r;using О or m power of о

thsecond from the different elements of the r layer using о
ththird from the different elements of the r layer and 

layers number less then r using o.
We can see easily with induction on the number of layers 

that for every element f of <a> f is injective or R(f) is a 
finite set.
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(Because if for h and g: h is injective or R(h) is finite and 
respectively for g then hog and hp have the same property, 
too.) ■

O / nm iDa o (S г  
0

m u  □ ~m a oa —  a oS
a mar о a

_th ,0 layer 1 s t ,1 layer ~nd л 2 layer

Scheme

LEMMA 6. For every element f of <a> either there is a 
suitable к such that f=a< or R(f)- ̂  R(aD ).

PROOF: Similar to the proof of the previous lemma.
An induction as above shows how to build the elements of <a>. 
We can see easily with induction on the number of layers that 
for every function f laying in the part of the above figure 
fenced with dotted line that R(f) C R(an ). Because for every 
function g and h R(hog) c R (h) and R(g ) _ R(g) {0} 
furthermore if R (h) C. R (a) then R(amoh) _ R(amoa°) <z. R (aa). 
The reader can prove this lemma in detail himself.

With the help of above lemmas there is no difficulty in 
proving our main theorems.
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THEOREM II. Let a be an arbitrary function from N to N.
Then
either there is no bijection in <a>
or YfG<a> f is injective or R(f) is finite.

PROOF: If a is injective then see Lemma 5.
If a is not injective then am is not injective as well. In 
this case I prove that there is no bijection in <a>. Proving 
by indirect way, suppose that there is a bijective element f 
of <a>. Since f is injective for all m£N. But f is sur­
jective and by Lemma 6 a° must be a surjective function.
By Lemma 4 this is a contradiction, which proves the theorem.

From this theorem it is easy to show the main theorem:

THEOREM III. There is no primitive recursive function such 
that it can generate all the monoton increasing primitive re­
cursive functions even not all the primitive recursive func­
tions. In other words:

~l3aGPR : <a>=PR+ or <a> = PR

PROOF: By Theorem II id and (its definition see in the 
Introduction) cannot be at the same time in <a> for every 
function a from N to N.
This proves the theorem. В

One can put the following problem similar to Problem 4:

PROBLEM 5. To give more algebraic form of the above theorems 
in similar way as it was shown in Theorem I.A and I.B. To solve 
this problem (other exercise) I suggest to take each element 
f of p as a function mapping from ps into ps: let f(c)=foo
for every element c of PS.
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PROBLEM 6. We have seen that for example <S>_PR+. So far I have 
not found any element of Pi?v4<S> yet. So the problem is to show 
any element of PR+%̂.<S>.

REMARK: One can investigate other subspaces of PR and prove 
that they cannot be generated from one element only. For 
example there is no difficulty in showing that the following 
subspaces have this property:

PRfin - < f

PRn = { f

PR. . = { in j f

PR = { con C,
PR = { per f

PR = { pern f

PRо = { f

PRbij - { f

PRsurj= { f

: R(f) is a finite set }
: in R(f) there are at most n elements }
: f is injective or R(f) is finite }

cD : e£N }
: f is periodic }
: f is periodic and its period contains 
no more than n elements }

: f(0)=0} =Ker U
: f(0) and f is bijective }
: f His no surjective }

\
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A primitiv rekurziv függvények algebrai struktúrájáról
Szálkái István

Összefoglalás

E cikkben a primitiv rek. fv.-ek halmazát algebrai 
struktúraként tekintettem: a kompozició (o) és a O-tól való 
iteráció (□ ) műveletekkel.

Belátom, hogy e struktúrában az ID és О endomorfizmusokon 
kivül nincsen más endomorfizmus (Id. I. Tétel).

Ezután részletesen megvizsgálom, hogy NN mely részhal­
mazai generálhatók egy függvénnyel a fenti két operáció segít­
ségével. (Id. II. Tétel).
Ebből speciálisan adódik, hogy a prim. rek. függvények halmaza 
nem generálható egy függvénnyel, (Id. III.Tétel). Néhány ide­
vágó problémát is emlitek, a tételek algebrai általánositásai 
után.

АЛГЕБРАИЧЕСКАЯ СТРУКТУРА ПРИМИТИВНЫХ РЕКУРСИВНЫХ ФУНКЦИЙ

И. Салкаи

Резюме

Статья занимается множеством примитивных рекурсивных функций 
как алгебраической структурой. В этой структуре существуют две 
операции: композиция (ö) и итерация с места О / О  , см. во Вве­
дении/ . Доказывается, что над этой структурой существуют толь­
ко два эндоморфизма: ID и 0_. /см. Теорема I./ После этого
статья занимается вопросом: какие подмножества NN /функции из 
.Vb N / можно получить из одной функции, /см. Теорема II/.
Из этой теоремы получается важная Теорема III : подмножество 
примитивных рекурсивных функций нельзя составлять из одной функ 
ции. Кроме этих доказываются теоремы в общей алгебраической фор 
ме и дано несколько проблем.
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