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Abstract: We study the correlators of Polyakov loops, and the corresponding gauge

invariant free energy of a static quark-antiquark pair in 2+1 flavor QCD at finite temper-

ature. Our simulations were carried out on Nt = 6, 8, 10, 12, 16 lattices using Symanzik

improved gauge action and a stout improved staggered action with physical quark masses.

The free energies calculated from the Polyakov loop correlators are extrapolated to the

continuum limit. For the free energies we use a two step renormalization procedure that

only uses data at finite temperature. We also measure correlators with definite Euclidean

time reversal and charge conjugation symmetry to extract two different screening masses,

one in the magnetic, and one in the electric sector, to distinguish two different correlation

lengths in the full Polyakov loop correlator.
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1 Introduction

At high temperatures strongly interacting matter undergoes a transition where colorless

hadrons turn into a phase dominated by colored quarks and gluons, the quark gluon plasma

(QGP). Recently, lattice simulations have shown that this transition is a crossover [1] and

its characteristic temperature has also been determined [2–6]. Deconfinement properties of

the transition can be studied by infinitely heavy, static test charges. At zero temperature

a heavy quark and antiquark pair forms a bound state (quarkonium state), but above the

deconfinement temperature, color screening and collisions with the medium would reduce

the binding between the quark and the antiquark, eventually causing a dissociation. As

proposed by Ref. [7], the behavior of quarkonia can signal deconfinement and QGP pro-

duction in heavy ion experiments. Moreover, the different melting temperatures of the

different states can be used as a thermometer, analogously to the spectral analysis of stel-

lar media in astrophysics, where the absence and presence of the different spectral lines is

used to determine the temperature.

In medium quarkonium properties are characterized by the corresponding spectral

functions, studied in several works. However, extracting spectral functions from Euclidean

meson correlators (i.e. the analytic continuation of the correlator to real time) is a difficult,

ill-posed problem. Nevertheless, lattice studies of charmonium spectral functions using the

Maximum Entropy Method have been carried out on numerous occasions [8–19]. A recent,

detailed study of charmonium spectral functions in quenched QCD can be found in [13].

Results regarding spectral functions with 2 flavours of dynamical quarks can be found in

Refs. [14, 15]. A recent study of charmonium spectral functions in 2+1 flavour QCD is

[16, 20]. Bottomonium spectral functions have also been studied with the help of NRQCD
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[17–19].

Since the direct determination of the spectral function is difficult, one can study in-

medium properties of quarkonium using approximate potential models. There are numer-

ous proposals in the literature for lattice observables which can provide input to these

models. The so-called singlet and octet potentials have been proposed [21–25], and studied

on the lattice, but these are not gauge invariant, therefore extracting physical information

from them is not straightforward. There was also a suggestion about using the analytic

continuation of the Wilson-loop [26, 27], that, however, has similar problems as the di-

rect reconstruction of the spectral functions. Here, we calculate the gauge invariant static

quark-antiquark pair free energy, a non-perturbatively well defined quantity, that carries

information on the deconfinement properties of the QGP.

In the present paper we determine the free energy of a static quark-antiquark pair as

a function of their distance at various temperatures. We accomplish it by measuring the

Polyakov loop correlator [28], which gives the gauge invariant Q̄Q free energy 1 as:

FQ̄Q(r) = −T lnC(r, T ) = −T ln

〈∑
x

TrL(x)TrL+(x + r)

〉
. (1.1)

In the above formula, x runs over all the lattice spatial sites, and the Polyakov loop, L(x),

is defined as the product of temporal link variables U4(x, x4) ∈ SU(3)2:

L(x) =

Nt−1∏
x4=0

U4(x, x4), (1.2)

or in the continuum formulation, as a path ordered exponential of the integral of the gauge

fields:

Lcont(x) = Peig
∫ 1/T
0 A4(τ,x)dτ . (1.3)

The leading order term to the correlator of Polyakov loops is a two gluon exchange dia-

gram. It was first calculated at leading order in the dimensionally reduced effective theory

(EQCD3) [29]. Due to the two gluon exchange, the r dependence in leading order is

exp(−2mDr)/r
2, where mD is the Debye screening mass. This suggests that in the r → 0

limit, where perturbation theory is applicable, the correlator should behave as 1/r2. How-

ever, this is not the r → ∞ asymptotic behavior, which we need to fit the correlation

length on the lattice. The reason is simple: even in the weak coupling limit, at distances

larger than (g2T )−1 the physics of magnetic screening becomes dominant. From the then

applicable 3D effective pure Yang-Mills theory, Ref. [30] argued that at high temperature,

the large distance behavior is exp(−mMr)/r, where mM is the magnetic screening mass.

This was confirmed by 2 flavour lattice simulations (using a somewhat heavy pion) in [31].

1More precisely, the excess free energy that we get when inserting two static test charges in the medium.
2In the literature, a factor of 1

Nc
is often included in the definition. Including this factor leads to a term

in the static quark free energy that is linear in temperature.
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A related problem is that for the gluon self-energy, perturbation theory breaks down at

the O(g2T ) order because of infrared divergences. This term contains contributions from

magnetic gluons. Therefore, the perturbative definition of the screening mass, as a pole

in the gluon propagator, is of limited use, since pertubation theory breaks down ([32]).

It is better to define the screening masses as inverse correlation lengths in appropriate

Euclidean correlators. In order to investigate the effect of electric and magnetic gluons

separately, one can use the symmetry of Euclidean time reflection [32], that we will call R.

The crucial property of magnetic versus electric gluon fields A4 and Ai is that under this

symmetry, one is intrinsically odd, while the other is even:

A4(τ,x)
R−→ −A4(−τ,x), Ai(τ,x)

R−→ Ai(−τ,x) (1.4)

Under this symmetry the Polyakov loop transforms as L
R−→ L†. One can easily define

correlators that are even or odd under this symmetry, and thus receive contributions only

from the magnetic or electric sector, respectively [31, 32]:

LM ≡ (L+ L†)/2 (1.5)

LE ≡ (L− L†)/2. (1.6)

We can further decompose the Polyakov loop into C even and odd states, using A4
C−→ A∗4

and L
C−→ L∗ as:

LM± = (LM ± L∗M )/2 (1.7)

LE± = (LE ± L∗E)/2. (1.8)

Next, we note that TrLE+ = 0 = TrLM−, so the decomposition of the Polyakov loop

correlator to definite R and C symmetric operators contains two parts3. We define the

magnetic correlation function as:

CM+(r, T ) ≡

〈∑
x

TrLM+(x)TrLM+(x + r)

〉
−

∣∣∣∣∣
〈∑

x

TrL(x)

〉∣∣∣∣∣
2

, (1.9)

and the electric correlator as4:

CE−(r, T ) ≡ −

〈∑
x

TrLE−(x)TrLE−(x + r)

〉
. (1.10)

Then, from the exponential decay of these correlators, we can define the magnetic and

electric screening masses. Note that with our definition TrLM+ = Re TrL and TrLE− =

i Im TrL , and:

C(r, T )− C(r →∞, T ) = CM+(r, T ) + CE−(r, T ), (1.11)

3Note that the Polyakov loop correlator does not overlap with the R(C) = +(−) and R(C) = −(+)

sectors. To access these sectors, other operators are needed.
4Here our definition differs from that used in [31] in a sign.
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from which it trivially follows that if the magnetic mass screening mass is lower than the

electric mass, we will have C(r, T )−C(r →∞, T ) asymptotic to CM+(r, T ) as r →∞, or

equivalently, the highest correlation length in C equal to that of CM+.

As for the asymptotic form of these correlators, similar arguments apply as with the

full Polyakov loop correlator. In the high temperature limit the asymptotic behavior will

be dominated by a glueball mass in the 3D effective Yang-Mills theory [30, 32], but because

of the symmetry properties, the quantum numbers carried by the glueballs will be different.

We will therefore fit the ansatz:

CM+(r, T )
r→∞−−−→ KM (T )

e−mM (T )r

r
, (1.12)

CE−(r, T )
r→∞−−−→ KE(T )

e−mE(T )r

r
, (1.13)

to extract screening masses, noting that the ansatz in principle is only motivated at high

temperatures, where the effective field theory applies. Nevertheless we find that even close

to Tc the ansatz describes the large r tails of our lattice data well.

2 Simulation details

The simulations were performed by using the tree level Symanzik improved gauge, and

stout-improved staggered fermion action, that was used in [33]. We worked with physical

quark masses, and fixed them by reproducing the physical ratios mπ/fK and mK/fK [33].
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Figure 1. Number of the analyzed lattice configurations.

Compared to our previous investigations of Polyakov loop correlators, reported in the

conference proceedings [34], here we used finer lattices, namely we carried out simulations

on Nt = 12 and 16 lattices as well as on Nt = 6, 8, 10 lattices. Our results were obtained

in the temperature range 150 MeV ≤ T ≤ 450 MeV. We use the same configurations as in

Ref. [5] and [35]. Figure 1 summarizes our statistics.
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3 The gauge invariant free energy

3.1 Renormalization procedure and continuum extrapolation

After measuring the Polyakov loop correlator C(r, T ) at T = 1/(Nta) temperature, we

computed the unrenormalized free energy according to FQ̄Q = −T lnC(r, T ). The a(β)

function was taken from the line of constant physics, along which we kept the ratios of the

physical values of mπ, fK and mK fixed at zero temperature. Detailed description of the

determination of the line of constant physics can be found in Ref. [35].

Approaching the continuum limit, the value of the unrenormalized free energy diverges.

In order to eliminate the divergent part of the free energy renormalization is needed. There

are various proposals in the literature for this renormalization procedure. Earlier works [22–

24] matched the short distance behavior to the T = 0 static potential, but this is ambiguous.

A more precise definition is to require that the T = 0 potential vanishes at some distance [3,

34]. This would require a precise determination of the potential at T = 0. Here, though,

we use a renormalization procedure based entirely on our T > 0 data, similarly to Ref.

[36]. The data contains a temperature independent divergent part from the ground state

energy. The difference between the value of free energies at different temperatures is free

of divergences. Accordingly, we define the renormalized free energy as:

F renQ̄Q (r, β, T ;T0) = FQ̄Q(r, β, T )− FQ̄Q(r →∞, β, T0), (3.1)

with a fixed T0. This renormalization prescription corresponds to the choice that the free

energy at large distances goes to zero at T0, and is implemented in two steps. In the first

step we have:

F̃Q̄Q(r, β, T ) = FQ̄Q(r, β, T )− FQ̄Q(r →∞, β, T ) = FQ̄Q(r, β, T )− 2FQ(β, T ), (3.2)

where the one quark free energy FQ satisfies:

2FQ(β, T ) = FQ̄Q(r →∞, β, T ) = −T log |〈TrL〉|2 . (3.3)

Note, that this first step of the renormalization procedure is completely straightfoward to

implement, at each simulation point in Nt and β we just subtract the asymptotic value

of the correlator. This gives us a UV finite quantity F̃Q̄Q, however we don’t call this the

renormalized free energy, since compared to equation (3.1) it contains less information.

Namely at all temperatures F̃Q̄Q(r = ∞, T ) = 0. The correlation length is the same as

with definition (3.1), but the information of the asymptotic value (that is the single heavy

quark free energy) is lost. That information however is retained in the second step:

F renQ̄Q (r, β, T ;T0) = F̃Q̄Q(r, β, T ) + 2F renQ (β, T ;T0), (3.4)

where the renormalized one heavy quark free energy is:

F renQ (β, T ;T0) = FQ(β, T )− FQ(β, T0). (3.5)
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Figure 2. The smeared and unsmeared free energies at a given β and Nt, after the first step of the

renormalization procedure.

Doing the renormalization in two steps like this has a technical reason that will be ex-

plained shortly.

Let us first mention that this Polyakov loop correlator behaves similarly to the baryon

correlators in imaginary time do: at large values of r we can get negative values of C at

some configurations5. For this reason, it is highly desirable to use gauge field smearing

which makes for a much better behavior at large r, at the expense of unphysical behavior

at small r. For this reason, we measured the correlators both without and with HYP

smearing. We expect that outside the smearing range (i.e. r ≥ 2a) the two correlators

coincide. This is supported by Figure 2. Therefore we use the smeared correlators for

r ≥ 2a and the unsmeared ones for r < 2a.

3.1.1 Single heavy quark free energy

First, we discuss the implementation of the renormalization of the single heavy quark

free energy, equation (3.5). Notice that if we implemented the renormalization condition

(3.1) directly, then we would just need to subtract 2FQ(β, T0) from the unrenormalized

free energy, so at first sight it looks like we are doing some unnecessary rounds by doing

this in two steps. What we gain by this is that we can extend the temperature range,

at which we can do the continuum limit. To understand this statement let us look at

Figure 3 (left). The dotted black symbols are bare values of 2FQ at given values of Nt

and β. The colored symbols are interpolations of these curves, in β to the value of β0

corresponding to the temperature T0 at each Nt. If we take for example T0 = 200MeV,

5Of course, the ensemble average should in principle be positive definite.
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Figure 3. Left: Determining FQ(β, T0) for different values of T0 with interpolation. The bare

2FQ values for different values of Nt are the black symbols. The colored symbols correspond to

different fixed T0 values for each Nt. The colored lines are interpolations between these points in

β. Right: 2F ren
Q (T ;T0) values in the continuum, calculated for different values of T0. For the final

curve, all of the curves have been shifted to the position of the T0 = 200MeV curve. The errors of

each piece decrease as we approach the corresponding T0. For the final curve, we used linear error

propagation, assuming independent errors. We also mention that calculating the continuum limit

of 2F ren
Q (T ;T0) without HYP smearing leads to results consistent with the one presented here.

corresponding to the green line in the figure, this gives us 5 points from the curve FQ(β, T0).

According to equation (3.5) this is what we have to subtract from the bare free energy at

this value of β to get the renormalized single quark free energy. The disadvantage of the

green curve, is that the β range it covers is rather limited. So, if we want to be able

to make a continuum limit from say the Nt = 8, 10, 12 lattices, the temperature range

we can cover is rather limited as well. The lowest temperature we will be able to do a

continuum limit at will be (6/8) × 200MeV = 150MeV, and the highest temperature will

be (16/12)×200MeV = 266MeV.To do a continuum limit at higher temperatures, we need

the FQ(β, T0) curve at higher values of β, and at first, it looks as like that would need

runs at higher values of Nt. This is not feasible, but there is a simple tricj to extend the

temperature range. Clearly, if we call the continuum limit of the single quark free energy

F ren
Q (T ;T0) = lim

β→∞
F ren
Q (β, T ;T0), (3.6)

than, for any value of T :

F ren
Q (T ;T0)− F ren

Q (T ;T1) = F ren
Q (T1;T0) (3.7)

is just a number6. We can use this fact to extend the temperature range of the continuum

limit by using different values of T0, that is different renormalization prescriptions, and

shift them together by the value of the RHS of equ. (3.7). This is the procedure that we

6This statement is only true in the continuum. At finite lattice spacing there is also a lattice spacing

dependent artifact in this difference.
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will follow.

To implement equation (3.5), we first calculate FQ(β,Nt) or equivalently FQ̄Q(r →
∞, β,Nt) from equation (3.3). Then at each Nt we interpolate to the β value correspond-

ing to the temperature T0, giving us some points of the function FQ(β, T0). Finally, we

interpolate these FQ(β, T0) points in β, obtaining the final curve we can use for the renor-

malization. This procedure is illustrated on Figure 3 (left). When doing this interpolation

we take into account the error on the data points of FQ(β,Nt) via the jacknife method.

The statistical errors of the single quark free energy are very small, meaning that the in-

terpolation method gives a comparable error to the final interpolated value. We estimate

the systematic error of the interpolations by constructing different interpolations. For in-

terpolations of the FQ(β,Nt) curves we use linear and cubic spline interpolations (for each

value of Nt), and for the interpolation of FQ(β, T0) we use different polynomial interpo-

lations(order 1,2), cubic spline and barycentric rational function interpolation. In total

this means 25 × 4 = 128 different interpolations, than for interpolating the bare FQ we

use spline and linear interpolations, so for the final renormalized values we have in total

128×2 = 256 different interpolations. All interpolations are taken to have the same weight.

We use the median of this as the estimate, and the symmetric median centered 68% as the

1 systematic error estimate [37]. The statistical and systematic errors turn out to be of

the same order, and are than added in quadrature.

After doing this procedure, the β range in which we can interpolate the FQ(β, T0) curve

is limited, therefore, the temperature range where we can do the continuum extrapolation

is limited. To extend the temperature range where we can calculate the single heavy quark

free energy, we use the fact that the single heavy quark free energies at different temper-

atures differ only by an additive constant in the continuum. Therefore we use different

values of T0 to do the continuum extrapolation, and shift all those curves to the position of

the 200MeV curve. We used 5 different values of T0, namely, 170MeV, 200MeV, 240MeV,

320MeV, and 390MeV. The results of this analysis can be found in Figure 3 (right).

For the continuum limits, we use the Nt = 8, 10, 12 lattices, that are available at all

temperatures. We use the Nt = 16 lattice to estimate the systematic error of the continuum

extrapolation, where it is available. If:

d1 = |cont. lim.(8, 10, 12)| − |cont. lim.(8, 10, 12, 16)|
d2 = |cont. lim.(8, 10, 12)| − |cont. lim.(10, 12, 16)| ,

then the systematic error of the continuum extrapolation is taken to be max (d1, d2). Where

the Nt = 16 lattices are not available, we approximate the relative systematic error by the

average of the systematic errors at the parameter values where we had the Nt = 16 lattices

available. This corresponds to an error level of approximately 10%. The systematic and

statistical errors of the continuum extrapolations are then added in quadrature. The linear

fits of the continuum limit extrapolations all have good values of χ2.
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Finally, we mention that the determination of the continuum limit of the Polyakov loop,

or equivalently, that single static quark free energy is already available in the literature.

For two recent determinations of the Polyakov loop see Refs. [5, 38]. The difference is

that here we take the continuum limit at significantly higher temperatures.

3.1.2 Heavy Q̄Q pair free energy

Next, we turn to the determination of F̃Q̄Q defined in equation 3.2. This quantity is UV

finite, and goes to 0 as r →∞. Similarly to the single quark free energy, the determination

of F̃Q̄Q at a given value of T and r requires two interpolations. At first we are given F̃Q̄Q at

several values of T , at each T we have a different value of the lattice spacing. If we want to

know the value of F̃Q̄Q at (T, r) = (T ∗, r∗) at some value of Nt, first we do an interpolation

in the r direction to the value r∗ at each given T , then we do an interpolation in the T

direction, where the node points for the interpolations are the interpolants in the previous

step. The statistical error than can be estimated by constructing these interpolations to

every jacknife sample. For systematic error estimation we try different interpolations in

the r and T directions. In the r direction we have: polynomials of order 1,2,3,...,7 and a

cubic spline, in the T direction we have polynomials of order 1,2,3 and cubic spline. This

is in total 4 × 8 = 32 different interpolations. Just as before, we use the median of these

values as the estimate, and the symmetric median centered 68% as the 1σ systematic er-

ror estimate. Like in the case of the single heavy quark free energies, the statistical and

systematic errors turn out to be of the same order, and are then added in quadrature.

Next, we do the continuum extrapolation. Here we also take a similar approach as

in the previous subsection. For the continuum extrapolations, we use the Nt = 8, 10, 12

lattices, that are available at all temperatures. We use the Nt = 16 lattice to estimate

the systematic error of the continuum extrapolation, exactly like before. Also, where the

Nt = 16 lattices are not available, we estimate the systematic error, as in the previous

section, by the average of the systematic error at the points where we do have Nt = 16

lattices (approximately 7%). The linear fits of the continuum limit extrapolations all have

good values of χ2.

Next, we add the values of 2FQ, determined in the previous subsection, and visible in

Figure 3 to the free energy values to obtain the final results in Figure 4 (errors are added

in quadrature). Note, that the Nt = 6 lattices were only used in the whole analysis to

extend the β range of the renormalization condition for the single quark free energy.

4 Magnetic and electric screening masses

We continue with the discussion of the electric and magnetic screening masses obtained

from the correlators (1.9) and (1.10). For this analysis we only use lattices above the

(pseudo)critical temperature, since that is the physically interesting range for screening.

Next, we mention that for this analysis, we only use the data with HYP smearing, since

we are especially interested in the large r behavior. Before going on to the actual fitting
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Figure 4. Continuum values of the static Q̄Q free energy at different temperatures. Note that the

curves seem to tend to the same curve as r → 0, corresponding to the expectation that UV physics

is temperature independent.

procedure of the screening masses let us first illustrate some simple relations, with the

raw lattice data of the electric and magnetic correlators. First CE−(r, T )� CM+(r, T ) as

r → ∞, or equivalently, that the electric screening mass is larger than the magnetic one.

This can be seen on Figure 5. The next observation is that the screening masses in both

channels are approximately proportional to the temperature. This can be seen on Figure

6. Both of these facts are expected to hold at high temperatures, but these lattice results

suggest that they hold at lower temperatures as well.

Next, we turn to the actual determination of the screening masses. So far there has

been one determination of electric and magnetic screening masses on the lattice using

the non-perturbative definition given by ref. [32]. That study used 2 flavours of Wilson

fermions with a somewhat heavy pion, and did not attempt a continuum extrapolation [31].

Since the masses are expected to be proportional to the temperature, the natural

distance unit in this problem is rT , so we give limits on the range of the fits in these units.

For the correct determination of the screening masses, special care is needed in the choice

of the fit interval. To find the proper minimum rT value of the fits, we use hypothesis

testing, similar to that in Ref. [39]. If the fits are good, than the value of χ2, defined as:

χ2 =
∑
i,j

(Cfit
i − Cdata

i )C−1
ij (Cfit

j − Cdata
j ), (4.1)

should have a χ2 distribution, with the appropriate degrees of freedom. Here Cij is the
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Figure 6. Illustrating that the screening masses are approximately proportional to the temperature.

Since the x axis of this plot is rT , if one assumes a Yukawa form of the correlator, than the slopes

of these curves are just mM/T and mE/T respectively. The fact that the graphs are approximately

parallel straight lines suggests that these ansatzes are approximately correct, and that the masses

are approximately proportional to the temperature.

covariance matrix. In this case the quantity

Q =

∫ ∞
χ2

(
Probability density of χ2

)
(x)dx, (4.2)

should have a uniform distribution on [0, 1]. If we fix the range of all the fits in rT units,

each fit (at some value of Nt and β) gives one pick from a supposed uniform distribution in

Q. This is equivalent to having multiple picks from the same uniform distribution. We will

test this hypothesis with a Kolmogorov-Smirnov test for the uniform distribution. Here
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Correlator type (rT )min (rT )max Pr (KS, uniform)

Magnetic 0.43 0.9 0.007

Magnetic 0.45 0.9 0.016

Magnetic 0.465 0.9 0.30

Magnetic 0.5 0.9 0.38

Magnetic 0.61 0.9 0.96

Electric 0.3 0.65 3 · 10−7

Electric 0.32 0.65 0.018

Electric 0.35 0.65 0.31

Electric 0.43 0.65 0.94

Table 1. Hypothesis testing, using fits at all values of Nt = 8, 10, 12 and all values of β. This

means 33 sampled values in total, with fixed values of the low range of the fit (rT )min. One can see

a rather sharp increase in the probabilities for the magnetic correlator at (rT )min = 0.465 and for

the electric correlator at (rT )min = 0.35. This table justifies our choice for the ranges of (rT )min

values used in our systematic error estimation.

one determines the maximum value of the absolute difference between the expected and

measured cumulative probability distributions. This is then used to define a significance

level or probability that the measured distribution can indeed be one originating from the

expected uniform distribution. These probabilities are listed in Table 1. We will only

use value of (rT )min where the Kolmogorov probability is at least 0.3. This test tells us,

that for systematic error estimation, we will have, for the magnetic correlator (rT )min going

from 0.465 to 0.61, and for the electric correlator we have (rT )min going from 0.35 to 0.43 7.

At this point we mention that for the continuum limit we will not use the Nt = 16

lattices, because the mass fits there have huge error bars. Nevertheless, when the con-

tinuum limit is done, we will see that the values of the masses at the Nt = 16 lattices

are consistent with the continuum estimates. Also, if we use them, we get the same re-

sults, because they do not give a contribution to the continuum limit, due to the big errors.

Now that we have estimated the proper rT range of the fits, we go on to the fitting of

the masses. The results of the fits at different values of Nt can be seen in Figure 7. The

systematic errors come from changing the lower limit of the fit, in the case of the magnetic

correlator, from (rT )min = 0.465 to (rT )min = 0.61, and in the case of the electric corre-

lator, from (rT )min = 0.35 to (rT )min = 0.43. The results coming from different values

of (rT )min are weighted using the Akaike Information Criterion(AIC) [40]. The median of

the weighted histogram gives the central value, and the central 68% the systematic error

estimate. Note that using the Q values as weights or uniform weights gives a very similar

7(rT )max was fixed on both cases. Increasing (rT )max results in a less precise covariance matrix and cor-

respondingly, somewhat worse χ2 values, but consistent screening masses. For example, if for the magnetic

correlator we choose (rT )max = 1 instead of 0.9, the final value of the Kolmogorov-Smirnov probability in

Table 1 will not be 96%, but 38% instead. Nevertheless the growing trend in the probabilities will be the

same. Also, we will get the same results within uncertainties.
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Figure 7. The fitted values of electric and magnetic screening masses at the different values of Nt.

result. The statistical error comes from a jacknife analysis with 20 jacknife samples. The

two errors turn out to be of similar magnitude (with the statistical error being somewhat

bigger) and are then added in quadrature.

Next, we fit linear functions to all screening masses at all values of Nt, and use these

to do a continuum extrapolation from the Nt = 8, 10, 12 lattices. Taking into account the

errors of the linear fits, all χ2 values of the continuum limits are very good. The continuum

limit, in addition to the statistical error, also has a systematic error estimated, from doing

a 2 point linear extrapolation from the Nt = 12, 10 lattices, and taking the difference of

the extrapolated value from fitted value to the Nt = 8, 10, 12 lattices8. The statistical and

systematic errors are added in quadrature.

We finish this section by comparing our results to those from earlier approximations

in the literature. For comparison let us use our results at T = 300MeV ≈ 2Tc. Here we

have:

• This work: 2+1 flavour lattice QCD at the physical point after continuum extrapo-

8In the previous section, we used the Nt = 16 lattices for systematic error estimation, here however, we

do not use them since they do not improve the statistical accuracy of the continuum limits.
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Figure 8. The continuum extrapolations of the screening masses and the ratio of the screening

masses. For the ratio mE/mM we also included different estimates from the literature: Lattice

results from Ref. [31], dimensionally reduced 3D effective field theory results from Ref. [41], and

results from N = 4 SYM plasma with AdS/CFT from Ref. [42].

lation:

mE/T = 7.31(25) mM/T = 4.48(9)

mE/mM = 1.63(8)

• Ref. [31]: 2 flavour lattice QCD with Wilson quarks, a somewhat heavy pionmπ/mρ =

0.65, no continuum extrapolation

mE/T = 13.0(11) mM/T = 5.8(2)

mE/mM = 2.3(3)

• From Table 1 of Ref. [42]: N = 4 SYM, large Nc limit, AdS/CFT

mE/T = 16.05 mM/T = 7.34

mE/mM = 2.19

• From Figure 3 of Ref. [41]: dimensionally reduced 3D effective theory, Nf = 2 mass-

less quarks

mE/T = 7.0(3) mM/T = 3.9(2)

mE/mM = 1.79(17)

• From Figure 3 of Ref. [41]: dimensionally reduced 3D effective theory, Nf = 3 mass-

less quarks

mE/T = 7.9(4) mM/T = 4.5(2)

mE/mM = 1.76(17)

We note, that our results are closest to the results from dimensionally reduced effective

field theory.
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5 Conclusions

In this paper we have determined the renormalized static quark-antiquark free energies in

the continuum limit. We introduced a two step renormalization procedure using only the

finite temperature results. The low radius part of the free energies tended to the same

curve, corresponding to the expectation that at small distances, the physics is temperature

independent. We also calculated the magnetic and electric screening masses, from the real

and imaginary parts of the Polyakov loop respectively. As expected, both of these masses

approximately scale with the temperature as m ∝ T , with mM < mE , therefore, magnetic

contributions dominating at high distances. The values we got for the screening masses

are close to the values from dimensionally reduced effective field theory.
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