КВАЗИМОДУЛИ, II.

До Лонг Ван, Нгуен Куок Тоан

- 0. Понятие квазимодуля было введено в [1]. В насточщей заметке мы быдем определять и рассматривать некоторые специальные типы подквазимодулей, которые, как увидим, играют здесь такие же роли, какие играют в теории групп соответствующие типы подгрупп.
- 1. Пусть дан Ω квазимодуль G . Для любых a , beg ; $\beta \in u\{1\}$ поставим

$$[a,b]_{\beta} = df a^{-\beta}b^{-\beta}(ab)^{\beta};$$

$$[a]_{\beta}^{b} = df b^{-\beta}(ab)^{\beta}$$

В следующем, вместо $[a,b]_1$ и $[a]_1^b$ мы тоже пишем просто [a,b] и $[a]_1^b$ соответственно.

<u>Лемма 1.</u> Пусть **G** произвольный Ω - квазимодуль. Тогда для любых **a, b** из **G** и любых элементов $\beta_1, \ \beta_2, \dots, \ \beta_n$ ($n \ge 1$) из Ω мы имеем

<u>Доказательство.</u> Мы докажем индукцией по n . При n=1 лемма верна тривиально. При n=2 имеем

$$\begin{bmatrix} a \end{bmatrix}_{\beta_{1}+\beta_{2}}^{b} = b^{-(\beta_{1}+\beta_{2})} (ab)^{\beta_{1}+\beta_{2}} = b^{-\beta_{2}} b^{-\beta_{1}} (ab)^{\beta_{1}} (ab)^{\beta_{2}} = b^{-\beta_{2}} b^{-\beta_{1}} (ab)^{\beta_{1}} (ab)^{\beta_{2}} = b^{-\beta_{2}} b^{-\beta_{1}} (ab)^{\beta_{1}} b^{\beta_{2}} b^{\beta_{2}} (ab)^{\beta_{2}} = b^{-\beta_{2}} b^{\beta_{2}} b^{\beta_{2}} b^{\beta_{2}} b^{\beta_{2}} b^{\beta_{2}} = b^{\beta_{2}} b^{\beta$$

т.е. лемма верна и в этом случае. Теперь допустим, что n>2 и лемма была доказана для n-1 . Тогда, из верности леммы для n=2 и из индуктивного предложения следует

$$\begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_1 + \beta_2 + \dots + \beta_n}^{\mathbf{b}} = \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_1 + (\beta_2 + \dots + \beta_n)}^{\mathbf{b}} = \begin{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_1}^{\mathbf{b}} \end{bmatrix}^{\mathbf{b}}^{\beta_2 + \dots + \beta_n} \\ = \begin{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_1}^{\mathbf{b}} \end{bmatrix}^{\mathbf{b}\beta_2 + \dots + \beta_n} \begin{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_2}^{\mathbf{b}} \end{bmatrix}^{\mathbf{b}\beta_3} + \dots + \beta_n \\ \vdots \end{bmatrix} \begin{bmatrix} \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_n - 1}^{\mathbf{b}} \end{bmatrix}^{\mathbf{b}\beta_n} \begin{bmatrix} \mathbf{a} \end{bmatrix}_{\beta_n}^{\mathbf{b}} \\ \exists \text{ начит лемма справедлива для } \mathbf{n} \end{bmatrix}$$

Значит лемма справедлива для \mathbf{n} Лемма доказана.

Лемма 2. Пусть G произвольный заданный Ω – квазимодуль и пусть β_1 , β_2 , ..., β_n $(n \ge 1)$ есть элемент из Ω такие, что каждый β_i , i= 1,2,...,n является эндоморфизмом или антиэндоморфизмом группы G. Тогда для любых a, b из G мы имеем

$$[a]_{\beta_{1}+\beta_{2}+\ldots+\beta_{n}}^{b} = [a^{\beta_{1}}]_{b^{\beta_{1}'+\beta_{2}+\ldots+\beta_{n}}}^{\beta_{1}'+\beta_{2}+\ldots+\beta_{n}} [a^{\beta_{2}}]_{b^{\beta_{2}'+\beta_{3}+\ldots+\beta_{n}}}^{\beta_{2}'+\beta_{3}+\ldots+\beta_{n}} [a^{\beta_{n}-1}]_{b^{\beta_{n}'-1}+\beta_{n}}^{\beta_{n}'} [a^{\beta_{n}}]_{b^{n}}^{\beta_{n}'}$$

где β_2' равно β_1 или O в зависимости от того, является ли β_1 эндоморфизмом или антиэндоморфизмом группы G , $i=1,2,\ldots,$ n .

<u>Доказательство.</u> Легко видеть, что если β_{i} является эндоморфизмом группы G , то $\begin{bmatrix} a \end{bmatrix}_{\beta_{i}}^{b} = \begin{bmatrix} a^{\beta_{i}} \end{bmatrix}_{\beta_{i}}^{b}$; а если β_{i} антиэндоморфизмом группы G , то $\begin{bmatrix} a \end{bmatrix}_{\beta_{i}}^{b} = \begin{bmatrix} a \end{bmatrix}_{\beta_{i}}^{b}$. От этого, для каждого i, $1 \le i \le n$, имеем

Но тогда справедливость леммы 2 сразу следует из леммы 1.

2. Пусть дан Ω - квазимодуль G . Тогда множество

 $\mathbf{Z}(\mathbf{G}) = \frac{1}{df} \{ \mathbf{a} \mathbf{G} \mid \forall \mathbf{b} \mathbf{G} \quad \forall \alpha, \beta \in \Omega \mathbf{u} \{ \mathbf{1} \} = \left[\mathbf{a}^{\alpha}, \mathbf{b} \right]_{\beta} = \mathbf{e} \}$ мы будем называть <u>центром</u> Ω — квазимодуля \mathbf{G}

По определению видно, что \mathbf{z} (G) $\leq \mathbf{z}^{gr}$ (G) , где \mathbf{z}^{gr} (G) обозначает центр группы \mathbf{g} . Итак, каждый элемент из \mathbf{z} (G) перестановочен с любым элементом из \mathbf{g} ; в частности, элементы из \mathbf{z} (G) перестановочны между собой.

Теорема 1. Центр ${\bf Z}({\bf G})$ Ω — квазимодуля /унитарного/ является Ω — модулем /унитарным/ и является идеалом квазимо- дуля ${\bf G}$.

Доказательство. Из Определения центра видно, что если $\mathbf{aez}(\mathbf{G})$ то $\mathbf{a}^{\gamma}\mathbf{ez}(\mathbf{G})$ при любом $\gamma\mathbf{e}\Omega$.

Пусть a, ceZ(G) . Тогда при любых beG ; α , β e Ω u{1} мы имеем

$$((ac)^{\alpha}b)^{\beta} = (c^{\alpha}a^{\alpha}b)^{\beta} = (c^{\alpha}(a^{\alpha}b))^{\beta} = (a^{\alpha}b)^{\beta}c^{\alpha\beta} =$$

$$= b^{\beta}a^{\alpha\beta}c^{\alpha\beta} = b^{\beta}(c^{\alpha\beta}a^{\alpha\beta}) = b^{\beta}(ac)^{\alpha\beta},$$

т.е. $[(ac)^{\alpha}$, $b]_{\beta} = e$, значит aceZ(G) . Здесь и в дальнейшем мы условимся α . 1=1 . $\alpha=\alpha$ при всяком $\alpha e\Omega$

Затем, если aez(G) , то для любого $\alphae\Omega u\{1\}$, $(a^{-1})^{\alpha}a^{\alpha}=(aa^{-1})^{\alpha}=e^{\alpha}=e$, т.е. $(a^{-1})^{\alpha}=a^{-\alpha}$. Но тогда для любых beg, $\alphae\Omega$, $\betae\Omega u\{1\}$, $\left[(a^{-1})^{\alpha}, b\right]_{\beta}=\left[a^{-\alpha}, b\right]_{\beta}=e$. Потом, по определению центра, для любых beg, $\betae\Omega u\{1\}$ имеем

 $\begin{array}{l} e = \left[a, \ a^{-1}b \right]_{\beta} = a^{-\beta}(a^{-1}b)^{-\beta}b^{\beta}, \ \text{т.e.} \ b^{-\beta}(a^{-1}b)^{\beta} = a^{-\beta} \\ \\ \text{Но тогда} \ \left[a^{-1}, \ b \right]_{\beta} = (a^{-1})^{-\beta}b^{-\beta}(a^{-1}b)^{\beta} = a^{\beta}b^{-\beta}(a^{-1}b)^{\beta} = a^{\beta}a^{-\beta} = e \\ \\ \text{Итак мы доказали, что} \ \left[(a^{-1})^{\alpha}, b \right]_{\beta} = e \quad \text{при любых beg} \end{array},$

 $\alpha, \beta \in \Omega u\{1\}$, $\beta \in \Omega u\{1\}$, $\alpha^{-1} \in Z(G)$.

Так как элементы из $\mathbf{Z}(\mathbf{G})$ перестановочны между собой то для любых \mathbf{a} , $\mathbf{c} \in \mathbf{Z}(\mathbf{G})$, $\alpha \in \Omega$ имеем $(\mathbf{a}\mathbf{c})^{\alpha} = \mathbf{c}^{\alpha}\mathbf{a}^{\alpha} = \mathbf{a}^{\alpha}\mathbf{c}^{\alpha}$. Таким образом $\mathbf{Z}(\mathbf{G})$ является подквазимодулем квазимодуля \mathbf{G} и Ω - модулем. Конечно, если \mathbf{G} унитарен, то $\mathbf{Z}(\mathbf{G})$ также унитарен.

Наконец, так как для любых aez(G), beg, $βeΩu\{1\}$, имеем $\left[a,b\right]_{\beta}=e$, т.е. $b^{-\beta}(ab)^{\beta}=a^{\beta}ez(G)$ то z(G) является идеалом квазимодуля g . Теорема доказана.

Обобщая понятия центра квазимодуля мы приходим к понятию централизатора. Пусть даны два подквазимодуля ${\tt A}$, ${\tt B}$ ${\tt \Omega}$ - квазимодуля ${\tt G}$. Тогда

 $\mathbf{Z}_{\mathbf{A}}$ (B) = $_{\mathbf{df}}$ {aeA| \formuber \formu(1) = $[\mathbf{a}^{\alpha}, \mathbf{b}]_{\beta}$ = e} называется централизатором подквазимодуля в в подквазимодуле A .

Очевидно, что $Z_{A}(B) \leq Z_{A}^{gr}(B)$, где $Z_{A}^{gr}(B)$ есть централизатор подгруппы B в подгруппе A . Для рассматривания $Z_{A}(B)$ необходима следующая лемма .

 $\underline{\text{Лемма 3.}}$ Если Ω -квазимодуль G удовлетворяет условию

(1.) Аддитивная группа кольца Ω обладает системой Σ обозначающих, которая состоит из эндоморфизмов группы G .

то для любых aeg , $\alpha e\Omega$ имеем

$$(a^{-1})^{\alpha} = a^{-\alpha}$$

Доказательство. Пусть $\mathbf{a}\mathbf{c}\mathbf{G}$, $\alpha\mathbf{c}\Omega$. Ввиду условия (1), α должен представиться в виде $\alpha=\alpha_1+\alpha_2+\ldots+\alpha_n$ при $\alpha_{\mathbf{i}}\mathbf{c}$ $\frac{+}{\Sigma}$, \mathbf{i} = 1, 2,..., \mathbf{n} . Где $+\Sigma=\Sigma$, $-\Sigma=\{-\delta\,|\,\delta\mathbf{c}\Sigma\}$. Но тогда имеем

$$(a^{-1})^{\alpha} = (a^{-1})^{\alpha} 1^{+\alpha} 2^{+\dots + \alpha} n = (a^{-1})^{\alpha} 1 (a^{-1})^{\alpha} 2 \dots (a^{-1})^{\alpha} n =$$

$$= (a^{\alpha} 1)^{-1} (a^{\alpha} 2)^{-1} \dots (a^{\alpha} n)^{-1} = a^{-\alpha} 1 a^{-\alpha} 2 \dots a^{-\alpha} n =$$

$$= a^{-(\alpha} 1^{+\alpha} 2^{+\dots + \alpha} n) = a^{-\alpha}$$

что и требовалось доказать.

Теорема 2. Если Ω - квазимодуль G удовлетворяет (1), а A , B - два произвольных подквазимодуля квазимодуля G , то $Z_A(B)$ будет подквазимодулем квазимодуля G .

Доказательство. По определению видно, что из $aez_A(B)$ следует $a^\gamma ez_A(B)$ при любом $\gamma e\Omega$.

Пусть a, $ceZ_A(B)$, beB, $\gamma \in \Omega u\{1\}$. Ввиду (1) , $\gamma = \gamma_1 + \gamma_2 + \ldots + \gamma_n$, где $\gamma_i \in {}^{\pm} \Sigma u\{1\}$. Мы имеем $\begin{bmatrix} (ac)^{\gamma} \end{bmatrix}^b = b^{-1}(ac)^{\gamma}b =$

$$[(ac)^{\gamma}]^b = (ac)^{\gamma}$$
.

Пусть теперь α , $\beta \in \Omega u\{1\}$, $\beta = \beta_1 + \beta_2 + \dots + \beta_n$ при $\beta_i \in {}^{\pm} \Sigma u\{1\}$ Из только что доказанного и леммы 2 следует

Пусть $\mathrm{aeZ}_{\mathbf{A}}(\mathtt{B})$, beв . Прежде всего при $\mathrm{\alphae\Omega}$, $\mathrm{se\Omega u}\{1\}$ имеем по лемме 3

$$[(a^{-1})^{\alpha}, b]_{\beta} = [a^{-\alpha}, b]_{\beta} = e$$
.

Затем, если $\beta \in \Omega$, $\beta = \beta_1 + \beta_2 + \ldots + \beta_n$, при $\beta_i \in \pm \Sigma$, то, по лемме 2, имеем

$$\begin{bmatrix} a^{-1} \end{bmatrix}_{\beta}^{b} = \begin{bmatrix} a^{-\beta} \end{bmatrix}_{\beta}^{\beta' 1 + \beta} 2^{+ \dots + \beta} n \qquad \begin{bmatrix} a^{-\beta} 2 \end{bmatrix}_{\beta}^{\beta' 2 + \beta} 3^{+ \dots + \beta} n \qquad \begin{bmatrix} a^{-\beta} n \end{bmatrix}_{\beta}^{\beta' n} = \begin{bmatrix} a^{-1} \end{bmatrix}_{\beta}^{b} = \begin{bmatrix} a^{-\beta} 1 \end{bmatrix}_{\beta}^{b} = \begin{bmatrix} a^$$

$$= a^{-\beta_1} a^{-\beta_2} \dots a^{-\beta_n} = a^{-(\beta_1 + \beta_2 + \dots + \beta_n)} = a^{-\beta}$$

т.е. $[a^{-1}, b]_{\beta} = e$. Наконец, видно, что $[a^{-1}, b] = ab^{-1}a^{-1}b = e$. Итак, мы доказали, что $[(a^{-1})^{\alpha}, b]_{\beta} = e$ при любых beB ; α , $\beta \in \Omega u\{1\}$. Но это значит $a^{-1}ez_{A}(B)$.

Таким образом $Z_{A}(B)$ является подквазимодулем квазимо- дуля G . Теорема доказана.

Отношение между $\mathbf{Z}_{\mathbf{A}}(\mathbf{B})$ и $\mathbf{Z}_{\mathbf{A}}^{\mathtt{gr}}(\mathbf{B})$ устанавливается следующей теоремой.

$$\forall a \in G \ (a \in Z_A(B) \leftrightarrow \forall \alpha \in \Sigma u\{1\} = a^{\alpha} \in Z_A^{gr}(B))$$

Доказательство. Видно, что если $\mathbf{a} \in \mathbf{Z}_{\mathbf{A}}(B)$, то $\forall \alpha \in \Sigma \mathbf{u} \{1\}$: $\mathbf{a}^{\alpha} \in \mathbf{Z}_{\mathbf{A}}^{\mathbf{gr}}(B)$. Обратно, пусть имеет место последнее . Тогда, ввиду (1) , легко видеть, что $\forall \alpha \in \Omega \mathbf{u} \{1\} = \mathbf{a}^{\alpha} \in \mathbf{Z}_{\mathbf{A}}^{\mathbf{gr}}(B)$, отсюда, в частности, имеем $\mathbf{a}^{\alpha} = \mathbf{a}^{\alpha} = \mathbf{z}^{\alpha} = \mathbf{z$

$$\begin{bmatrix} a^{\alpha} \end{bmatrix}_{\beta}^{b} = \begin{bmatrix} a^{\alpha\beta} \end{bmatrix}_{\beta}^{b'} \begin{bmatrix} a^{\beta} 2^{+} & \cdots + \beta n \\ a^{\alpha\beta} 2 \end{bmatrix}_{\beta}^{b'} \begin{bmatrix} a^{\alpha\beta} 2 \end{bmatrix}_{\beta}^{b'}$$

Итак мы доказали, что $\left[a^{\alpha},b\right]_{\beta}=e$ при любых beB, $\alpha,\beta\in\Omega$ u {1}. Но это значит $aez_{\lambda}(B)$. Теорема доказана.

Так как $\mathbf{z}(\mathbf{G}) = \mathbf{z}_{\mathbf{G}}(\mathbf{G})$, из теоремы 3 следует

<u>Следствие 1.</u> Если Ω - квазимодуль G удовлетворяет (1), то

 $\forall a \in G \ (a \in Z(G) \leftrightarrow \forall \alpha \in \Sigma u \{1\} : a^{\alpha} \in Z^{gr}(G))$.

Как увидим в дальнейшем, вообще $Z_A(B) \neq Z_A^{gr}(B)$, даже в том случае, когда G удовлетворяет (1) . Следующее следствие дает одно достаточное уловие для $Z_A(B) = Z_A^{gr}(B)$.

<u>Следствие 2</u>. Если Ω - квазимодуль **G** удовлетворяет (1) и

(2) $\forall a,b \in G \forall \alpha \in \Omega = b^{-1}a^{\alpha}b = (b^{-1}a b)^{\alpha}$,

то для любых подквазимодулей A, B имеем $Z_A(B) = Z_A^{gr}(B)$. В частности, мы всегда имеем $Z(G) = Z_A^{gr}(G)$.

Доказательство. Достаточно показать, что $\mathbf{Z}_{A}^{gr}(\mathbf{B}) \leq \mathbf{Z}_{A}(\mathbf{B})$. Пусть $\mathbf{aez}_{A}^{gr}(\mathbf{B})$. Тогда для любого \mathbf{be}

b ab - a .

Отсюда, ввиду (2) , для любого $\alpha \in \Omega \ u\{1\}$ $b^{-1} \ a^{\alpha} \ b = (b^{-1} \ a \ b)^{\alpha} = a^{\alpha}$,

значит $\mathbf{a}^{\alpha} \in \mathbf{Z}_{\mathbf{A}}^{\mathtt{gr}}(\mathbf{B})$, и следовательно, ввиду теоремы 3, $\mathbf{a} \in \mathbf{Z}_{\mathbf{A}}(\mathbf{B})$, что и требовалось доказать.

3. Пусть A, B — два подквазимодуля Ω — квазимодуля G . Тогда $N_{A}(B) = \inf_{df} \{aeA \mid \forall beB \ \forall \alpha e \Omega u \{\frac{+}{2}1\} \ \forall \beta e \Omega u \{1\} : [b] \frac{a}{\beta}^{\alpha} eB \}$

называется <u>нормализатором</u> подквазимодуля B в подквазимодуле A . В частности, $N_{G}(B)$ называется нормализатором подквазимодуля B и обозначается N(B) .

Очевидно, что $N_{\rm A}(B) \leq N_{\rm A}^{\rm gr}(B)$, где $N_{\rm A}^{\rm gr}(B)$ – нормализатор подгруппы B в подготовке A .

Теорема 4. Если Ω - квазимодуль G удовлетворяет (1); A, B - два произвольных подквазимодуля, то $N_{A}(B)$ будет подквазимодулем квазимодуля G .

Доказательство. Прежде всего видно, что если $aen_A(B)$, то $a^\gamma en_A(B)$ при любом γen .

Затем, ввиду леммы 3, если $a \in N_A(B)$, то для любых beв, $\alpha \in \Omega u\{\frac{1}{2}\}$, $\beta \in \Omega u\{1\}$ имеем

$$[b]_{\beta}^{(a^{-1})^{\alpha}} = [b]_{\beta}^{a^{-\alpha}} \in B$$
,

значит $a^{-1} \in N_A(B)$.

Пусть теперь a, cen $_{A}$ (B) . Тогда при любом beB , если γ e Σ u {1} , то

$$[b]^{(ac)^{\gamma}} = (ac)^{-\gamma}b(ac)^{\gamma} = c^{-\gamma}a^{-\gamma}ba^{\gamma}c^{\gamma} = [[b]^{a^{\gamma}}]^{c^{\gamma}} \in B$$
;

а если $\gamma \in -\sum u \{-1\}$, то

$$[b]^{(ac)^{\gamma}} = (ac)^{-\gamma}b(ac)^{\gamma} = a^{-\gamma}c^{-\gamma}bc^{\gamma}a^{\gamma} = [[b]^{c^{\gamma}}]^{a^{\gamma}}eB$$
.

Затем, если $\alpha = \alpha_1 + \alpha_2 + \ldots + \alpha_n$, $\alpha_i \in \frac{+}{n} \sum u \{\frac{+}{n}\}$, то, ввиду только что сказанного, имеем при любом beв

$$\begin{bmatrix} \mathbf{b} \end{bmatrix}^{(\mathbf{ac})^{\alpha}} = (\mathbf{ac})^{-(\alpha_1 + \alpha_2 + \dots + \alpha_n)} \mathbf{b}(\mathbf{ac})^{\alpha_1 + \alpha_2 + \dots + \alpha_n}$$

$$= (\mathbf{ac})^{-\alpha_1} (\mathbf{ac})^{-\alpha_2} \dots (\mathbf{ac})^{-\alpha_n} \mathbf{b}(\mathbf{ac})^{\alpha_1} (\mathbf{ac})^{\alpha_2} \dots (\mathbf{ac})^{\alpha_n}$$

$$= [\dots] \begin{bmatrix} \mathbf{b} \end{bmatrix}^{(\mathbf{ac})^{\alpha_1}} \begin{bmatrix} (\mathbf{ac})^{\alpha_2} \dots \end{bmatrix}^{(\mathbf{ac})^{\alpha_n}} \mathbf{eB} .$$

Наконец, если $\beta = \beta_1 + \beta_2 + \ldots + \beta_n$, $\beta_i \in \frac{+}{n} \sum u\{1\}$, то, из леммы 2 и только что доказанного следует, что при любых beB, $\alpha \in \Omega u\{\frac{+}{n}\}$

$$[b]_{\beta}^{(ac)^{\alpha}} = [b^{1}]^{(ac)^{\alpha(\beta_{1}^{\prime}+\beta_{2}+\ldots+\beta_{n})}} \cdot [b^{2}]^{(ac)^{\alpha(\beta_{2}^{\prime}+\beta_{3}+\ldots+\beta_{n})}} \cdot [b^{\beta_{n}}]^{(ac)^{\alpha\beta_{n}^{\prime}}} e_{B} .$$

Но это значит $\$ ac $\in \$ N $_{\mathtt{A}}(\mathtt{B})$. Теорема доказана.

Теорема 5. Если Ω - квазимодуль G удовлетворяет (1), B - произвольный подквазимодуль, то N(B) будет наибольшим подквазимодулем квазимодуля G , принимающим B в качестве идеала.

Доказательство. По теореме 4, N(B) является подквазимодулем квазимодуля G . Затем, при любых $b \in B$, $a \in N(B)$, $\beta \in \Omega u\{1\}$ имеем

$$a^{-\beta} (ba)^{\beta} = [b]^{a}_{\beta} \in B$$
.

Но это значит, что B является идеалом N(B) .

Пусть теперь A — произвольный подквазимодуль квазимодуля G , принимающий B в качестве идеала. Тогда, если aeA , то, при любых beB , α e Ω u{ $^{\pm}$ 1} , β e Ω u{1}, имеем

$$[b]_{\beta}^{a^{\alpha}} = (a^{\alpha})^{-\beta} (ba^{\alpha})^{\beta} \in B$$
,

значит $a \in N(B)$. Итак $A \leq N(B)$. Теорема доказана.

Иемма 4. Пусть Ω — квазимодуль G удовлетворяет (1), и A — произвольный подквазимодуль G. Тогда A будет идеалом квазимодуля G тогда и только тогда, когда он является нормальным делителем группы G.

Доказательство. Необходимость следует из определения идеала. Докажем достатосность. Пусть A — нормальный делитель группы. Тогда, при любых aeA , beG имеем [a] b eA . Затем, если $\beta = \beta_1 + \beta_2 + \ldots + \beta_n$, $\beta_i e^{\frac{1}{2}} \sum u\{1\}$, то, из леммы 2 и только что сказанного следует, что для любых aeA , beG

$$[a]_{\beta}^{b} = [a^{\beta 1}]^{b^{\beta'1+\beta}2^{+\cdots+\beta}n} [a^{\beta 2}]^{b^{\beta'2+\beta}3^{+\cdots+\beta}n} \dots [a^{\beta n}]^{b^{\alpha'n}} eA ,$$

Значит A является идеалом квазимодуля G , что и требовалось доказать.

Теорема б. Если Ω — квазимодуль G удовлетворяет (1), а A, B — два произвольных подквазимодуля квазимодуля G, то $Z_A(B)$ будет идеалом Ω — квазимодуля $N_A(B)$.

Доказательство. По теоремам 2 и 4, $\mathbf{Z}_{\mathbf{A}}(\mathbf{B})$ и $\mathbf{N}_{\mathbf{A}}(\mathbf{B})$ являются под-квазимодулями квазимодуля G. Пусть $\mathbf{aeZ}_{\mathbf{A}}(\mathbf{B})$. Тогда, при любых \mathbf{beB} , $\mathbf{ae\Omega}\mathbf{u}\{\frac{1}{2}\}$, $\mathbf{be\Omega}\mathbf{u}\{1\}$ имеем

$$b^{-\beta} \begin{bmatrix} b \end{bmatrix}_{\beta}^{a^{\alpha}} = b^{-\beta} a^{-\alpha\beta} (ba^{\alpha})^{\beta} = a^{-\alpha\beta} b^{-\beta} (a^{\alpha}b)^{\beta} = \begin{bmatrix} a^{\alpha}, b \end{bmatrix}_{\beta} = e ,$$

т.е. $[b]_{\beta}^{a}{}^{\alpha}eB$. Но это значит $aen_A(B)$, и следовательно $z_A(B)$ является подквазимодулем квазимодуля $N_A(B)$.

Так как свойства (1) наследственно, то $N_A(B)$ также удовлетворяет (1). Но тогда для показания того, что $\mathbf{Z}_A(B)$ является идеалом $N_A(B)$, ввиду леммы 4, только надо показать, что $\mathbf{Z}_A(B)$ является нормальным делителем группы $N_A(B)$, т.е. показать, что для любых $\mathbf{a} \in \mathbf{Z}_A(B)$, $\mathbf{c} \in \mathbf{N}_A(B)$ имеет место $\mathbf{c}^{-1}\mathbf{a} \mathbf{c} \in \mathbf{Z}_A(B)$. Для этого, по теореме 3, достаточно показать, что

$$\forall \alpha \in \Sigma u \{1\} : (c^{-1}ac)^{\alpha} \in Z_A^{gr}(B)$$
.

Но последний факт верен потому, что при любом beв имеем

$$b^{-1}(c^{-1}ac)^{\alpha}b = b^{-1}c^{-\alpha}a^{\alpha}c^{\alpha}b = (c^{\alpha}b)^{-1} a^{\alpha}(c^{\alpha}b) =$$

$$= (b_{1}c^{\alpha})^{-1} a^{\alpha}(b_{1}c^{\alpha}) = c^{-\alpha}b_{1}^{-1} a^{\alpha}b_{1}c^{\alpha} =$$

$$= c^{-\alpha}a^{\alpha}c^{\alpha} = (c^{-1}ac)^{\alpha},$$

где b_1 - надлежащий элемент из В . Теорема доказана.

4. Пусть **G** произвольный Ω - квазимодуль и **A** , **B** - два его подквазимодуля. По определению взаимным коммутантом подква-

зимодулей A и B , обозначаемым [A,B] , мы будем называть идеал подквазимодуля (A,B) , порожденный множеством всех элементов вида $[a,b]_{\alpha}$, где aeA , beB, $\alphae\Omega u\{1\}$. Здесь и в дальнейшем квазимодуль, порожденный множеством M обозначаем через (M) .

Теорема 7. Если Ω - квазимодуль G удовлетворяет (1) и (2); а A, B - два произвольных идеала G , то

$$H = ([a, b]_{\alpha} \mid aeA, beB, \alphae\Omegau\{1\})$$

будет идеалом квазимодулей G.

Доказательство. Прежде всего при любых a, b, ceG; α e Ω u{1} имеем

$$c^{-1}[a, b]_{\alpha}c = [c^{-1}ac, c^{-1}bc]_{\alpha}$$
.

В самом деле, используя (2) получаем

$$c^{-1}[a, b]_{\alpha}c = c^{-1}a^{-\alpha}b^{-\alpha}(ab)^{\alpha}c = c^{-1}a^{-\alpha}c \ c^{-1}b^{-\alpha}c \ c^{-1}(ab)^{\alpha}c =$$

$$= (c^{-1}ac)^{-\alpha} \ (c^{-1}bc)^{-\alpha} \ (c^{-1}abc)^{\alpha} =$$

$$= (c^{-1}ac)^{-\alpha} \ (c^{-1}bc)^{-\alpha} \ (c^{-1}ac \ c^{-1}bc)^{\alpha} = [c^{-1}ac,c^{-1}bc]_{\alpha}$$

$$c^{-1}h_{1}^{-1}c = (c^{-1}h_{1}c)^{-1} \in H ;$$

$$c^{-1}h_{1}h_{2}c = (c^{-1}h_{1}c)(c^{-1}h_{2}c) \in H ;$$

$$c^{-1}h_{1}^{\alpha}c = (c^{-1}h_{1}c)^{\alpha} \in H$$

где α - любой элемент из Ω . Итак мы доказали, что для любых heн, ceg, c⁻¹hceн . Но это значит, по лемме 4, что н должен быть идеалом квазимодуля G , что и требовалось доказать.

Следствие 3. Если Ω - квазимодуль G удовлетворяет (1) и (2) , a A, B - два произвольных идеала квазимодуля G , то

$$[A, B] = ([a, b]_{\alpha} \mid aeA, beB, \alphae\Omegau\{1\})$$
.

В частности, когда A = B = G , мы имеем $[G, G] = ([a, b]_{\alpha} \mid a, b \in G; \alpha \in \Omega u\{1\}) .$

Замечание. Для унитарных ${f z}$ - квазимодулей, понятия подквазимодулея и идеала квазимодуля соответственно сводятся к понятиям подгруппы и нормального делителя группы; понятия центра, централизатора, нормализатора, взаимного коммутанта - к одноименным понятиям в теории групп; а условия (1) и (2) выполнены автоматически. Таким образом, применяя выше сформулированные утверждения к с лучаю унитарных Z - квазимодулей, мы получаем известные факты в теории групп. Например, для теоремы 1 имеем: центр любой группы G будет абелевой группой и будет нормальным делителем группы G ; Для теоремы 5 имеем : нормализатор произвольной подгруппы В группы С будет наибольшей подгруппой группы С, принимающей В в качестве нормального делителя; или для теоремы 6 имеем : если А , В - две произвольные подгруппы группы G, то централизатор подгруппы В в подгруппе А будет нормальным делителем нормализатора подгупв в подгруппе А

5. В утверждениях, сформулированных в этой заметке мы часто наложили на квазимодулях ограничения (1) и (2). Как мы уже отметили выше, унитарные Z — квазимодули обладают свойствами (1) и (2). Этими свойствами, очевидно, обладают и модули. В следующем примере покажем, что существуют квазимодули, обладающие свойствами (1) и (2), но не являющиеся ни унитарными Z — квазимодулями, ни модулями. Затем, так как свойства (1) и (2) определяются тождествами, то они инвариантны относительно операций взятия подквазимодулей, взятия гомоморфных образов и взятия декартова произведения. Это показывает, что класс квазимодулей со свойствами (1) и (2) довольно

широк, и следовательно, утверждения, сформулированные здесь достаточно сильны.

Пример 1. Рассмотрим мультипликативную группу G всех невырожденных матриц второго порядка с рациональными элементами. Если a — такая матрица, то ее определитель будет отличным от нуля рациональным числом и поэтому может быть написан в виде $\frac{\lambda}{t} \, 2^{n(a)}$, где числа λ , t нечетны, а число n(a) целое. Из того, что определить произведения матриц равен произведению определителей, вытекает, что

$$n(ab) = n(a) + n(b)$$

для любых $a, b \in G$.

Определяем отображение $\alpha = G \rightarrow G$ следующим образом

$$a^{\alpha} = df \begin{pmatrix} 1 & n(a) \\ 0 & 1 \end{pmatrix}$$
.

Равенства

$$(ab)^{\alpha} = \begin{pmatrix} 1 & n(ab) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n(a)+n(b) \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & n(a) \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & n(b) \\ 0 & 1 \end{pmatrix} = a^{\alpha} b^{\beta}$$

показывает, что α будет эндоморфизмом группы G .

Видно, что

$$z^{gr}(G) = \left\{ \begin{pmatrix} r & 0 \\ 0 & r \end{pmatrix} \mid \begin{array}{c} r - \text{ отличное от нуля} \\ \text{рациональное число} \end{array} \right\}$$

Теперь, если на множестве

$$\Omega = \{(\alpha, n) \mid n$$
 целое $\}$

определяем операции сложения и умножения следующим образом :

$$(\alpha, n) + (\alpha, m) = (\alpha, n+m)$$
;
 $(\alpha, n) \cdot (\alpha, m) = (\alpha, 0)$,

то легко проверить, что Ω будет коммутативным кольцом, аддитивная группа которого порождается элементом (α , 1) .

Затем, для любых $a \in G$, $(\alpha, n) \in \Omega$ положим

$$a^{(\alpha, n)} = (a^{\alpha})^n$$

и заметим, что $a^{\alpha^2}=e$, где e - единичная матрица, то лег-ко видеть, что G будет Ω - квазимодулем.

Так как

$$a^{(\alpha, 1)} = a^{\alpha},$$

то Ω - квазимодуль G удовлетворяет (1) при $\Sigma = \{(\alpha, 1)\}.$

По следствию l, aez(G) тогда и только тогда, когда $aez^{gr}(G)$ и $a^{(\alpha,1)}ez^{gr}(G)$, т.е. тогда и только тогда, когда $aez^{gr}(G)$ и n(a)=0 . Таким образом имеем

$$Z(G) = \left\{ \begin{pmatrix} \frac{\lambda}{t} & O \\ O & \frac{\lambda}{t} \end{pmatrix} \mid \lambda, t - \text{Hечетные числа} \right\}$$
,

значит $Z(G) \neq Z^{gr}(G)$, и следовательно, по следствию 2 , Ω — квазимодуль G не удовлетворяет (2) .

Одним словом, построенный нами Ω - квазимодуль G удовлетворяет (1), не удовлетворяет (2), не является ни унитарным Z - квазимодулем, ни модулем.

<u>Пример 2.</u> Пусть A, B – две произвольные некоммутативные груп-

$$G = A \times B$$
.

Затем, на множестве

определяем операции сложения и умножения следующим образом:

$$(p,g) + (r, \lambda) = (p + r, g + \lambda)$$
,
 $(p,g) \cdot (r, \lambda) = (pr, gr + p \lambda + g \lambda)$.

Легко проверить, что Ω будет кольцом с единицей (1, 0), а его аддитивная группа имеет систему образующих $\Sigma = \{(1,0),(0,1)\}$

Если для любых (a,b)еG, (p,g)е Ω положим

$$(a,b)^{(p,g)} = (a^{p+g}, b^p),$$

то, прямой проверкой, легко видеть, что будет унитарным Ω - квазимодулем.

M3 $(a, b)^{(1,0)} = (a, b)$ $(a, b)^{(0,1)} = (a, e)$

следует, что Ω - квазимодуль G удовлетворяет (1).

Затем имеем

$$(c,d)^{-1}(a,b)^{(p,q)}(c,d) = (c^{-1}a^{p+q}c, d^{-1}b^{p}d) = ((c^{-1}ac^{p+q}, d^{-1}bd)^{p}) =$$

$$= (c^{-1}ac, d^{-1}bd)^{(p,q)} = ((c,d)^{-1}(a,b)(c,d)^{(p,q)},$$

значит Ω - квазимодуль **G** также удовлетворяет (2) .

Одним словом, Ω - квазимодуль G удовлетворяет (1), (2) , не является ни унитарным Z - квазимодулем, ни модулем.

Цитированная литература

|1| До Лонг Ван, Нгуен Куок Тоан. Квазимодули 1.

Összefoglaló

Kvázimodulok II.

Do Long Van - Nguen Kuok Toan

A szerző az előző cikkében definiált kvázimodulok tulajdonságait vizsgálja. Bevezeti a rész kvázi modulok speciális osztályait, és megmutatja, hogy a kvázimodulok elméletében azok ugyanazt a szerepet töltik be, mint a csoportelméletben a megfelelő részcsoportosztályok.

Summary

Quasimodules II.

Do Long Van - Nguen Kuok Toan

The author deals with properties of quasimodules defined in a previous paper. He introduces special classes of subquasimodules and demonstrates their roles in the theory of quasimodules being the same as those of the corresponding subgroups in group theory.