OPTIMIZATION OF PARAMETERS IN LINEAR SYSTEMS OF
 CERTAIN TYPE

ILONA BAN

Computer and Automation Institute Hungarian Academy of Sciences

INTRODUCTION

One of the classical problems in the examination of stabil systems characterisable with linear differential equation is to find the solution with the maximal degree of stability of the differential equation where the parameters K_{1}, \ldots, K_{n} (on which the coefficients depend) are chosen from a given domain.

II, FORMULATION OF THE PROBLEM

```
Consider the linear differential equation
```

$$
\begin{equation*}
x^{(n)}+g_{1}\left(K_{1}, \ldots, K_{n}\right) x^{(n-1)}+\ldots+g_{n}\left(K_{1}, \ldots, K_{n}\right) x=0 \tag{1}
\end{equation*}
$$

of which the characteristic equation is

$$
\begin{equation*}
\lambda^{n}+g_{1}\left(K_{1}, \ldots, K_{n}\right) \lambda^{n-1}+\ldots+g_{n}\left(K_{1}, \ldots, K_{n}\right)=0 \tag{2}
\end{equation*}
$$

Obviously $g_{i} \quad i=1, \ldots, n$ are positive in the domain of stability, since this is a necessary condition for the stability.

We suppose that there is a one-to-one correspondence between $g_{i} \quad i=1, \ldots, n$ and $k_{i} \quad i=1, \ldots, n$. We solve then the problem

$$
\min \quad \max \quad \operatorname{Re} \lambda_{i}
$$

$$
\left(g_{1}, \ldots, g_{n}\right) \in \Phi \quad i=1, \ldots n
$$

where $\lambda_{i}=u_{i}+i v_{i}, \quad i=1, \ldots, n$. are the roots of the characteristic equation, a u_{i} are the real, and v_{i} the imaginary parts, $\Phi=\Gamma \cap U$ where U is the domain of stability, and Γ is the map of the domain Ω into the domain of coefficients, where we look for the solution, and $\Omega \subset R^{n}$ is the given domain in the space of parameters. We suppose that $\Gamma=\Gamma_{1} \times \ldots \times \Gamma_{n}$ and $\Gamma_{i}=\left[\Gamma_{i}, \bar{\Gamma}_{i}\right], \underline{\Gamma}_{i} \leq \bar{\Gamma}_{i}$. Consider a sequence of polinomials of increasing degree where each polinomial contains the roots of the previous one. Let K_{i}^{j} be the i-th coefficient of the polinomial of degree j. ($i=1, \ldots, j$). Using the relations between the coefficeints and the roots we get that the coefficients of the polinomials of the sequence can be expressed in terms of the coefficeints of the previous polinomials and the new root in the following way:

$$
\begin{aligned}
& K_{1}^{1}=-\lambda_{1} \\
& K_{1}^{2}=K_{1}^{1}-\lambda_{2} \\
& K_{2}^{2}=-K_{1}^{1} \lambda_{2} \\
& \vdots \\
& K_{1}^{j}=K_{1}^{j-1}-\lambda_{j} \\
& K_{2}^{j}=K_{2}^{j-1}-K_{1}^{j-1} \lambda_{j}
\end{aligned}
$$

$$
\begin{aligned}
& \vdots \\
& K_{i}^{j}=K_{i}^{j-1}-K_{i-1}^{j-1}, \lambda_{j} \\
& \vdots \\
& K_{j}^{j}=-K_{j-1}^{-1} \lambda_{j}
\end{aligned}
$$

Lemma 1.

In the stability domain the coefficients K_{i}^{i} of a polinomial with real coefficients of deqree j are polinomials with positive real coefficients of $v_{k}, k=1, \ldots, n$. (the coefficients are functions of $u_{k}, k=1, \ldots, n$ of course) Proof: We use mathematical induction with respect to the number of roots. For $j=1,2$ the statement is trivial. Let us suppose that lemma 1 is proved for $j=n-1$ i.e.

$$
\begin{equation*}
K_{i}^{n-1}=f_{i}^{n-1}+p_{i}^{n-1}\left(v_{k}^{2}\right) \quad k=1, \ldots, n \tag{4}
\end{equation*}
$$

where f_{i}^{n-1} does not depend on v_{k} and $p_{i}^{n-1}\left(v_{k}^{2}\right)$ is always positive.

Let us first suppose that n is odd. In that case λ_{n} is real, as K_{i}^{n} are real. We have $u_{n}<0$, since we are in the domain of stability as we supposed it. In this case our statement trivially follows from the statement for $n-1$, as

$$
K_{i}^{n}=K_{i}^{n-1}-K_{i-1}^{n-1} \lambda_{n}
$$

and so

$$
\begin{aligned}
& K_{i}^{n}=f_{i}^{n-1}+p_{i}^{n-1}\left(v_{k}^{2}\right)-\left(f_{i-1}^{n-1}+p_{i-1}^{n-1}\left(v_{k}^{2}\right)\right) u_{n}=f_{i}^{n}-f_{i-1}^{n-1} u_{n}+p_{i}^{n-1}\left(i_{k}^{2}\right)+u_{n} p_{i-1}^{n-1}\left(v_{k}^{2}\right)= \\
&=f_{i}^{n}+p_{i}^{n}
\end{aligned}
$$

If n is even, then we rewrite the equality (4) so, that we use the coefficients with upper index $n-2$. As

$$
\begin{aligned}
& K_{i}^{n-1}=K_{i}^{n-2}-K_{i-1}^{n-2} \lambda_{n-1} \\
& K_{i-1}^{n-1}=K_{i-1}^{n-2}-K_{i-2}^{n-2} \lambda_{n-1}
\end{aligned}
$$

so we have

$$
\begin{aligned}
K_{i}^{n}=-K_{i-1}^{n-2} \lambda_{n-1}+K_{i}^{n-2}- & \left(K_{i-1}^{n-2}-K_{i-2}^{n-2} \lambda_{n-1}\right) \lambda_{n}=K_{i}^{n-2}-K_{i-1}^{n-2} \lambda_{n}-K_{i-1}^{n-2} \lambda_{n-1}+ \\
& +K_{i-1}^{n-2} \lambda_{n-1} \lambda_{i}
\end{aligned}
$$

As n is even, and the polinomial has real coefficients, it follows that

$$
\lambda_{n-1}=u_{n-1}+i v_{n-1}, \quad \lambda_{n}=u_{n}+i v_{n}
$$

and

$$
u_{n}=u_{n-1}, \quad v_{n}=-v_{n-1}
$$

In this way

$$
K_{i}^{n}=K_{i}^{n-2}-K_{i-1}^{n-2} 2 u_{n}+K_{i-1}^{n-2}\left(u_{n}^{2}+v_{n}^{2}\right)
$$

from which our statement follows, as $u_{n}<0$.

Lemma 2.
The domain of stability is not bounded in the space of coefficients.
Proof: Let us define $g_{i}=(-1)^{j} \sum_{i_{S} \mathrm{CN}}^{\sum_{\ell} \in I_{s}}{ }^{\Pi}{ }^{\lambda_{\ell}} \quad j=1, \ldots, n$ and I_{s} runs through the subsets with j elements of $N=\{1, \ldots, n\}$, Let us suppose that $g=\left\{g_{1}, \ldots, g_{n}\right\}$ is in the domain
of stability, that is $\operatorname{Re} \lambda_{i}<0 \quad i=1, \ldots, n$. Then for $c>0$ we have $\operatorname{Re} \subset \lambda_{i}<0$. So the corresponding point in the space of coefficients

$$
g^{*}=\left(g_{1}^{*}, \ldots, g_{n}^{*}\right) \quad \text { where } \quad g_{j}^{*}=c^{j} g_{j} \quad j=1, \ldots, n
$$

is in the domain of stability too, so it is unbounded. Definition: The upper boundary of the n dimensional rectangle Γ is the set

$$
\left\{x \mid x \in \Gamma, \exists i \quad x_{i}=\bar{\Gamma}_{i}\right\}
$$

The lower boundary is defined in an analogous way.

Lemma 3.

The optimum is on the common part of the upper boundary of Γ and the domain of stability.
Proof: As the domain of stability is open, the optimum, if it exists, is in the interior of this domain. Let us suppose, that the optimum is not on the upper boundary of Γ. It is obvious from the relations between the coefficients and the roots that in the expression $g_{i}=f_{i}+p_{i}\left(v_{k}^{2}\right)$

$$
f_{i}=(-1)^{i} \sum_{i_{s} \subset N i_{\ell} \in I_{s}}^{\Pi} u_{i_{\ell}} \quad i=1, \ldots, n
$$

are positive too. It follows that when increasing u_{i} the upper boundary may be reached. As the coefficients are continuous monotonically increasinq functions of $u_{i} i=1, \ldots, n$ if we increase that u_{i} which is according to its module, the least we can reach the upper boundary, which contradicts to the hypothesis.

```
    If \(\Gamma_{i}=0 \quad i=1, \ldots, n\) then in the optimal case \(v_{i}=0\),
\(i=1, \ldots, n\).
```

Proof: Suppose that in the optimal point $v_{i} \neq 0$. Then the coefficients, correspondinq to the roots $u_{i}, \quad v_{i}=0$ ăre in the interiour of the domain Φ. As the real parts did not change, these new roots are optimal too, which contradicts lemma 3.

Remark: In the case $\Gamma_{i} \neq 0$ the point $v_{i}=0$ may fall in the exterior of the domain.

Lemma 5

In the case $\Gamma_{i}=0, \quad i=1, \ldots, n$ there exists a global optimum. In this case the real parts are equal. Proof: Let us suppose that they are not equal. Let u_{1} be the qreatest and u_{2} the least with respect to their module of real parts. As
$K_{j}=(-1)^{j} \sum u_{i} \ldots u_{i}=u_{1}(-1)^{j} \sum u_{i_{1}} \ldots u_{i_{j-1}}+$
$+u_{2}(-1)^{j} \quad \Sigma \quad u_{i_{1}} \ldots u_{i_{j-1}}+u_{1} u_{2}(-1)^{j} \sum \quad u_{i}, \ldots, u_{i_{j-2}}=$ $i_{\ell} \neq 1,2$
$=-\left(u_{1}+u_{2}\right)(-1)^{j-1} \sum u_{i_{1}} \ldots u_{i_{j-1}}+u_{1} u_{2}(-1)^{j-2} \sum u_{i_{1}} \ldots u_{i_{j-2}}$
it is obvious that $u_{1}^{*}=u_{2}^{*}=-\sqrt{u_{1} u_{2}}$ gives a value g which is better, then the hypothetically "optimal" one. We have proved the following:

Theorem

Let us consider a control system, described by differential equation with real coefficients

$$
x^{(n)}+g_{1} x^{(n-1)}+\ldots+g_{n} x=0
$$

Then the solution of the equation with the greatest degree of stability accoraing to the conditions $g_{i}<\Gamma_{i}$ is the following

$$
x(t)=\left(c_{1}+c_{2} t+\ldots+c_{n} t^{n-1}\right) e^{u t}
$$

where u is the least real root of which the corresponding coefficients are in Γ and c_{i} are constants, depending on the boundary conditions.

Algorithm

As in the case of optimal solution for some value

$$
g_{i}=(-1)^{i}\binom{n}{i} u^{i}
$$

the algorithm is working in the following way: for each j we determine

$$
u_{j}=\sqrt[j]{\frac{g_{j}}{\binom{n}{j}(-1)^{j}}}
$$

Then we determine the quantities g_{j} using the relations between the roots and the coefficients, and we look whether these values are in Φ. If not, then we reject them. If yes then we take this solution in the set of the possible solutions. If we have already examined it for $i=1, \ldots, n$ the quantities g_{j}, then then we choose the best from possible solutions (max.n)

Example:

Let us consider the control system,

The characteristic equation of this system is

$$
x^{3}+K_{1} x^{2}+\left(1+K_{2}\right) x+K_{3}=0
$$

In some cases the following table shows the solution:

$\bar{\Gamma}_{1}$	$\bar{\Gamma}_{2}$	$\bar{\Gamma}_{3}$	root	opt.	coefficients		
3	3	1	-1	1	3	3	1
6	11	6	-1.8571	1	5.4514	9.9058	6
3	6	3	-1	1	3	3	1

REFERENCES

1. Morris Marden: The geometry of zeros of a polinonial in a complex variable 1949.
2. Zajac E.E.: Bounds of the Decay rate of damped linear systems "Quart.of Appl. Math." 1963. v. 20 No.4.
3. Jindrich Spal: Algebraic Approach of the Root-Loci Method Kybernetika Cislo 5. Roと̌nik 6/1970

