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We shall investigate the asymptotic behaviour of
solutions of differential equations in Banach spaces,
comparing the norm of solutions with the power functions ta
(0 real) as t-»«. All the operators, appearing in these
equations are everywhere definded and bounded.

1. Consider in a Banach space B the linear differential

equation

(1) x =& = a(e)x, (x€8 )
where the operator A(t):® - B is linear for all t€[0,») and A
is a locally Bochner integrable function of t on [0,«). It is
known (see [1]) that the solution x(t) of the equation (1)
and the initial condition x(0) = xoeib can be obtained by the B
formula x(t) = U(t) X where U(t):B -8B is the Cauchy operator
of (1),

Let x(t) = U(t) X (xo # 0) be a non-trivial solution of
(1). The first characteristic number of x(t) characterizes the
exponential behaviour of Il x(t)Il, as t-+=, wich was introduce

by A.M. Lyapunov:

t >4
We shall denote by B e K[x], where x(t) is a nontrivial
x#0

solution of (1). The following relations are valid for the
first characteristic numbers ([1]):
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2., for all equations (1) is valid, that L Tim ﬁﬂl%iﬂijll;

t >

3., if the operator A is not depending on t, that is

A(t) = A_.= const., then U(t) = A% 2nig
At At
(2) k. = 1lim ££iL%——ﬂ = inf ££lLf——iL = max Re o(A),
5 toew £>0

where g(A) is the spectrum of the operator'a.

2. We can find some equations for which it is not
sufficient to know the exponential behaviour of Il x(t)Il as
t-+<, however we have to compare Il x(t)Il with other functions
of t as t»+«~, for example the power functions tB (B real).
The second characteristic number A[x] of x(t) characterizes

this growth property of 1l x(t)!l by the following way

Ln( 11 x(t)lle_K [X]t)
£nt 2

Ax]s = 1inm

1t >

where «k[x] # + = is the first characteristic number of x(t).

- K t
Let be the A = sup A[x] and p = lim £n(NU(E)1l e s ')
s x#0 £n &

We can derive the following relations between the numbers

n »
KS and p

Lemma 1. i) bo< A
ii) If A(t) = A = const, then u>0 and if the equality
(2 Vip MIsmANoL
h~0+ .

is valid, then u=0,.

Proof. i) If we assume that hs<u, then we can choose a p such
that A[x]ihs<p<u. By the definition of A[x] there exist No . >0

such that &
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Thus the operator family {U(t)e t t€[1,~)} is bounded

for all x € B and from the Banach-Steinhaus theorem we obtain,

that
K ¢
I U(L) 1 <N e B,

It contradicts the definition of p and inequality p<u.

ii) From the equality (2) we obtain

(A-K I)t
- £nll e ts | Way He O(A_KSI) =0,
t>0
. ' - (A-K TI)t
where I is the identity operator on B. Thus |l e s I >1

= %

At s
and from this follows that p = 1im dml il e s ) >0

71 a6

We remark that the limit in the left hand side of the equation

(3) exists for all operator A([2]). Consider the derivative of

IIeAtll with respect to t

atn P Cpatthdy gogfy g A renay i &2y
A e = 1lim h = 1lim N
h-0+ h-0+

LS
Integrating this from 0 to t we obtain, that Ii eAtllge "

and thus u<0. From this follows with u>0, that u=0.
1f 8=% is a Hilbert space, then
lim Il TFhAN =1 supRe W(A), where W(A) = {(Ax,x): Il xIll =1}
h-0+ !
is the numerical range of A. Thus from the statement ii) of

lemma 1. we obtain, that if the operator A is convexoid in
H, then u=0. (A is convexoid if the relation Conv o(A)=W(A)
is valid, conv D denotes the convex hull of D, and D the
closure of D). For example the normal operators, Toeplitz

operators are convexoid (see [3]).



="k

3. When B=R" the n dimensional Euclidian space, then pu,
As A x] are always non-negative integers. In infinite dimen-
sional spaces these are not true in general, these are
illustrated by the following:?

Examples
1. If we consider in the Hilbert space 2?

(4) X = A%, (xel?)

where A is a unilateral weighted shift in‘£2 with positive o
weigths and a =0 (n+=), then for the equation (4)
)\S=u=+eo‘
2. If the operator A in (4) is the unilateral shift S
in £2, then there exists a subset H of £2, which is dense

2
in £ and if x _€H, then A[x]=-1/4, where x(t)=eStxo

Proof.

1. It is well known [3], that the operator A is quasy-

nilpotent i.e. o(A) = {0}. Thus we obtain from (2), that Kk =0.
Let Gy (1,0,0,...) and we obtain
tn ® 2 t2k 1/2
a]anoan -n_!s ( E: (aloo.ak) (k!)Z) =
k=1
= nete < nettu,
thus
x[el] ¥ A, = E e,
n
2. If we denote e, = £05 500510, ), then
n 2
&t 2 4 t
e e - (0,...0,],TT, ST vt )

thus we obtain
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5 = JO L2dx ). © (nsl o253 )
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where Jo(x) is the zero order Bessel function (i=V=T1). From

the asymptotic behaviour of Jo {2%%) (14])

2t
e

Vol

Jo (2 it) ~K (t>+=, K>0)

follows that
A[en] = -1/4 En=l, 2hemi)s

It is evident that the subset H = {xEEZ:x=(x],...xn,O,...)}

is dense in Kz(n = 1,2,...). We know, that «k[x]=1 for every
x(t)=e%tx (xoezz) ([5]) and from inequality
n n
I x(t) =IleStx <8 Ix.IHeSte.II=( 2 Ix. 1 )d. (2it5)
o =.-7 J Lo j o
J=] J=1
follows
Ax] = =-1/4 if i (xl,xz,,..,xn,0,0,...)EH.

We can derive easily from this the following

"Lemma 2. The zero solution of the equation

(8% & = l8-Tix (xet?)

is asymptotically stable, but not exponentially.
Remark. This case in R" can not be occur.
" Proof. The stability of zero solution (5) we can derive from

inequality

(S—I)tx
(o]

I x(£)1 =11 e ot B M =

1<
When xOEH, then «k[x]=0 and A[x]==V4, thus Il x(t)ll =0, in the

same way as t_l/a, when t-e, If x€£2, then there exists an

39
tx H= I x Il {x ezz):
(o] (o] (o]
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xoed such that le—on <e/2 and

e(S_I)txH ille(s-l)txoll+lle

(S—I)t(

[ X'XO)"£€/2+€/2=Ea

if t is sufficiently large.

Consider the following non-linear equation in £2
(6) x=(S-I)x + F(t,x) (F(t,0)=0).
Theorem. |f F(t,x) satisfies the conditiong

It Bt x) R <E(€) 1N x1
and [ f(s)ds < K < =, then the solution x=0 of (6) is
Q
asymptotically stable.
" Proof. We obtain the solution x(t) of (6) for which x(0)=xO
by the integral equation

-
=e(S-I)txo+Ie(S—I)t

(e}

x(t) Plx x(T a7,

It follows from lemma 2., that

t
(e 8 Le® & JEO2) It 2z )0l Az
0
valid if t is sufficiently large. Applying the Bellman lemma

([1]) we can derive
T
f#{z )dz
x{t)l <e*e © fete €ea
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