A NOTE ON TRIANGULARIZATION OF SECOND-ORDER AUTONOMOUS DIFFERENTIAL EQUATIONS

GABOR TOTH

Mathematical Institute of the Hungarian Academy of Sciences

The purpose of this paper is to announce necessary and sufficient conditions for the triangularizability of the second-order equation

$$(*)$$
 $x + k(x,x) = 0.$

The equation (*) is said to be triangularizable if it can be transformed into triangular form

$$x_1 = f_1(x_1)$$
, $x_2 = f_2(x_1, x_2)$.

All the results presented here are proved in [1]. In what follows we shall suppose that equation (*) has nondegenerous critical points, i.e. $k \in C^3(\mathbb{R}^2)$ and

(1) For every critical point c of (*) the eigenvalues λ_1,λ_2 of the Jacobian

$$\begin{bmatrix} 0 & 1 \\ -\partial_1 k & -\partial_2 k \end{bmatrix}$$

at c are different reals and $\lambda_1 \lambda_2 = \partial_1 k(c) \neq 0$. The equation (*) is said to be nondegenerous if its critical

points are nondegenerous and the induced dynamical system (\mathbb{R}^2, φ) satisfies the following conditions:

- $(A_{_{\mathcal{O}}})$ (\mathbb{R}^2, Φ) is not a global knot point,
- (A_1) The critical point set $c^{\varphi} \subset \mathbb{R}^2$ is discrete,
- (A₂) If $q \in \mathcal{F}_{\varphi}^{n}(p)$ (= n -prolongational limit set of

 $\{p\}$ at the direction $\eta \in \{-, +\}$) is valid for $p,q \in \mathbb{R}^2$ - \mathbb{C}^{ϕ} then the set of trajectories

$$\{\varphi(r; R) | q \in \mathcal{F}_{\varphi}^{\eta}(r), r \in \mathcal{F}_{\varphi}^{\eta}(p)\}$$

is finite and for every noncritical point $p \in \mathbb{R}^2$

$$\varphi(p; \mathbb{R}) \cap \Sigma^{\varphi} - \varphi(p; \mathbb{R}) = \emptyset$$

holds (Σ^{ϕ} = underlying set of Markus-separatrices). Still, a nondegenerous equation (*) may have a complicated behaviour outside the strips $\mathbb{R} \times [-n,n]$ parallel to the first axis and so we need some restrictions on these domains as follows:

(P1) For every finite interval $I \subset \mathbb{R}$ the set

$$Zero(k) \cap I \times \mathbb{R} \subset \mathbb{R}^2$$

is bounded,

 (P_2) For every finite interval $I \subset \mathbb{R}$ there exists a function

$$M_I : \mathbb{R} - (-L, L) \rightarrow \mathbb{R}_+$$

with some sufficiency large number $\ \mathit{L}$, for which

$$\int_{L}^{\infty} \frac{1}{M_{I}} = \int_{-\infty}^{-L} \frac{1}{M_{I}} = \infty$$

and

$$\sup_{s,t\in I} |k(t,x_2)-k(s,x_2)| \leq M_I(x_2)|x_2|, |x_2| \geq L,$$

hold. Either (P_1) or (P_2) ensure that the induced dynamical system is parallelizable outside a sufficeintly wide strip $\mathbb{R} \times [-n,n]$.

<u>Theorem 1.</u> Let the nondegenerous equation (*) be triangularizable and denote (\mathbb{R}^2 , φ) its induced dynamical system. Then $(\Delta_{\mathcal{I}})|L^\eta_\varphi(p)|\leq 1$ for every $p\in\mathbb{R}^2$ and

$$\eta \in \{-,+\}$$
, where $L_{\sigma}^{\eta}(p) = \eta$ -limit set of $\{p\}$,

 (Δ_2) (\mathbb{R}^2, Φ) has no saddle with multiplicity > 2.

 (Δ_3) (\mathbb{R}^2,φ) has no invariant simple closed Jordan curve

 γ on which the parametrization of trajectories give rise to an orientation of $\gamma \,.$

(Δ_4) There are no points $p,q\in\mathbb{R}^2$ - C^{ϕ} for which

$$p \in \mathcal{J}_{0}^{+}(q)$$
 and $q \in \mathcal{J}_{0}(p)$ hold.

For the low critical point case the converse of the statement above is also valid, namely:

Theorem 2. Assume that the nondegenerous equation (*) with $|\mathcal{C}^{\phi}| \leq 2$ fulfils one of the conditions (P_1) or (P_2) . Then (*) is triangularizable iff (Δ_i) , i=1,2,3, hold.

As applications of the results above, by (Δ_3) , the van der Pol equation

$$x + \mu(x^2 - 1)x + x = 0, \quad \mu > 0,$$

is nontriangularizable and by an analysis of the asymptotic behaviour of the trajectories, the Emden-Fowler equation

$$x + (2\mu - 1)x + \mu(\mu - 1) (x - sgn x \cdot |x|^n) = 0$$

is triangularizable, provided that $\sigma+n+1<0$, $n\geq 3$, $n\geq N$, where $\mu=-\frac{\sigma+2}{n-1}$

REFERENCES

G. Tóth, Triangularization methods in the transformation theory of planar dynamical systems
Period. Math. Hungar. Vol. 11(3),(1980), pp. 197-211,
II. ibid. Vol. 11(4),(1980), pp. 298-308, III.ibid.
(to appear)