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A NOTE ON TRIANGULARIZATION OF SECOND-ORDER AUTONOMOUS
DIFFERENTIAL EQUATIONS
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The purpose of this paper is to announce necessary and
sufficient conditions for the triangularizability of the

second-order equation
(%) x + k(x,x) = 0.

The equation (*) is said to be triangularizable if it can

be transformed into triangular form
By & fyBe) 4 By S EpRg20

All the results presented here are proved in [1]. In what

follows we shall suppose that equation (*) has nondegener-

ous critical points, i.e. ® 8 03( Hg) and

(1) For every critical point ¢ of (*) the eigenvalues

Av,x2 of the Jacobian
0 1 ;
-azk -32k
o -
at ¢ are different reals and AZXZ = 81 k(e) # O. The

equation (¥*) 1is said to be nondegenerous if its critical
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points are nondegenerous and the induced dynamical system

(R%, 0)

4,)

(4,)

satisfies the following conditions:

( Eg,w) is not a global knot point,

The critical point set et e Eg is discrete,

n
If q € Ek(p) (= n -prolongational limit set of
0]

{p} at the direction ne{-,+}) is valid for

p,q € BT = p¥ then the set of trajectories

n n
{9 (r; R)lqe'} (r), re}‘(p)}
9 )

is finite and for every noncritical point p € R

o(ps R) n % - o(p; R) = ¢

holds (z? = underlying set of Markus-separatrices).
Still, a nondegenerous equation (¥) may have a
complicated behaviour outside the strips

R x [-n,n] parallel to the first axis and so we

need some restrictions on these domains as follows:
For every finite interval I ¢ R the set

Zero(k)N I x R C R%

is bounded,
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(PQ) For every finite interval I€ R there

exists a function

My BB, BN B

with some sufficiency large number L, for
which

i B

and

sup |k(t,x2)-k(s,x2)|
g,tel

i~

Moz le,l, |z, 2 L,

hold. Either (P]) or G}) ensure that the induced
dynamical system is parallelizable ocutside a
sufficeintly wide strip ReXx. E=nignd:

Theorem 1. Let the nondegenerous equation (¥) be trian-

gularizable and denote ( mz,w) its induced dynamical

system. Then (A1)1L3(p)| <1 for every p € r?  and

ne {-,+}, where Lg(p) = n =limit set of {p},

(A2) ( Eg,@) has no saddle with multiplicity > 2.
(Ag) ( R2,¢) has no invariant simple closed Jordan curve

Y on which the parametrization of trajectories give rise
to an orientation of .

(A,) There are no points p,q € BZ - c9 for which

4

p e}; (q) and g ek(p) hold.

“ile
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For the lcw critical point case the converse of the

statement above is also valid, namely:

Theorem 2. Assume that the nondegenerous equation (%)

with |[¢?| < 2 fulfils one of the conditions (F,) or
(PZ)' Then (*) is triangularizable iff <Ai)’ =1, 8.8,

hold.

As applications of the results above,.by (A.), the
van der Pol equation

or

x+u(;x?¢—])x+x:0,

is nontriangularizable and by an analysis of the asymptotic
behaviour of the trajectories, the Emden-Fowler eguation

z + (Zu-1)x + u(u-1) (x-sgnze+| x ]n) =0

is triangularizable, provided that o+n+1<0, n > &, N,
- L OtE

where o= —
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