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The aim of this paver is to consider the stability of
periodic solutions of ordinary differential equations with
random parameters under stochastic perfurbations of their
coefficients. Generalizing some results of H. Bunke [2] and
applying a theorem of A. Strauss and J.A. Yorke [5] we shall
show that if the coefficients of a random system converge to
the periodic stochastic nrocesses as ¢t + «, then all its
solutions also converge to a determined periodic solution of
the limit system.

The concepts and results used in this paper can be found
in [1J - C£5]. The details of the proofs of the theorems
formulated here can be seen in [6] and [T73.

1. One has proved (L2], Theorem 3:13, p. 51) under some
conditions that any solution of the perturbed system

y = CA(t) + C(£)y + By (1.0
where t € Rz, y € Rn, A(t) and C(C(t) are deterministic
n xn =-matrices and 2, is an n—dimensional stochastic process,
converces a.e. toa determined periodic solution mz ‘of the

periodic unperturbed system

aE:A(t)x + z (152

t

as t > ® if the perturbation C(C(t) converges exponentially

to zero as Ceie Sy
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solution xi of (1.2) wunder action of a general nonlinear

stochastic perturbation. The equivalent problem is to consider

we have investigated thestability of -the periodic

the asymptotic behaviour of solutions of system

.Z./ = A(t)y + z, * f(t,y,w), (1.3)

where f: B % g Bh (RAL,P) 1is a probability space.

In order to ensure the existence and uniqueness of solutions
of (1.3) we assume that f(t,y,w) is 9L - measurable for
all (Z5y) e RJ x R and R-continuous on RJ X Rn, and there
exists an R-continuous stochastic function L (¢,w) for which
| FCtsy sw)=F(t,ygswdll < L(t,0) |l y; - y,ll  holds a.e. for

yi n
% e By yz,yg € e

Using Lyapunov'’s theorem on the reducibility of linear
periodic systems ([3], o. 188) and a theorem of A. Strauss
and J.A. Yorke (CL531, Theorem 3.2), in [6]1 we have proved the

following

Theorem 1. Assume that conditions 1,3 of Theorem 3.13 in [2]

and following conditions are satisfied:

(i) Given any ¢ > 0, there exist random variables
o = o(e,w) >0 and S = S(e,w) >0 such that

Hﬂt:yz:w) _f(t:yg.’w)Hie ||y1-y2]| (a:é6:)
provided t > S and Hyz - y2H < .
t+1 &
(1i) Lim [ || f(s,xs,w)ll de = 0 (a.e.).

12

t>oo
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Then there exist random variables 6 = S(w) > 0 and

= T(w) > 0 such that, for every to 2 T and yo(w) with

Hyo (w) - xi (w)|] < 6 (a.e.), any solution
0

by = y(t,w; to,yo(w)) of (1.3) converges a.e. to xz as tow

Applying Theorem 1 to linear system

y = CA(t) + C,y * %5 * By s, (1.4)

where Ct is an R-continuous stochastic n X n = matrix

and Ct is an R-continuous n-dimensional stochastic ®process,
in [6]1 we get.

Corollary. Suppose that conditions 1,3 of Theorem 3.13
in [2] and following conditions are satisfied:

1) Lim I|Ct|| =0 (a.e.).

t >0

(ii) There exist a number t > 0 and a random variable

h = h(w) such that Tor # 2 % Iz, 1l <% (a.e.) holds.

t+1
(iii) am I e i de =0 00
tro ¢ =

i

Then any solution of (1.4) converges a.e. to xi as t » o,
Some sufficient conditions for the convergence in mean of

solutions 'of (1:3) and (1.4) *o xz are also given in [6].
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2. Generalizing a theorem of A. Ja. Dorogovcev, H. Bunke
has shown (r23, Theorem 5.15, o. 120) that under some
determined conditions a system of weakly nonlinear mperiodic

random differential equations

&= fl#,6,8,) + gx,t,8,) (2515

has a strictly periodic solution xz and any solution x, of

(2.1) converges exponentially a.e. to xz.

Using generalized Gronwall’s lemma ([2]) and an inequali-
ty of A. Strauss and J.A. Yorke ([5], Lemma 3.5) we have
proved in (7] the following

Theorem 2. Suppose that conditions 1,2,3 and 4 of

Theorem 5.15 in (23] and following condition are satisfied:

h € ctR" x Rl < B+ pg and there is a function
7 . 7 t+1
V. RE X R *.R such that J W(s,zs)ds is R-continuous,
77

| Azt 2,0l < ¥(t,2,)  (a.e.) for all (z,t)er” x B! and

) 5t t+1
lim e I ¥ts,z Yda = 0 (a.e.) (2.2)
) ¢ o

with some ¢ > 0 hold. Then any solution T, of

:;,' = f(x,t,zt) + g(x,t,zt) - h(x,t,zt) (2.3)

converges exponentially a.e. to the solution x: o = (2:1)
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If instead of (2.2) we only suppose that

t+1
lim [ W(s,ss)ds = 0.+ (aye3)s then: any solution z, of
t>o ¢

(2.3) converges a.e. to x? but in general not exponentially.

t,
The results of this paper were applied to the vibration

equation with random parameters ([81]).

The author wishes to express his thanks to Prof. Dr.
M. Farkas and Dr. Zs. Lipcsey for reading the manuscriot and

tor giving valuable comments.
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