
THE DETERMINATION OF DISPLACEMENT FIELD AND 

NORMAL STRESSES IN MULTILAYERED SPHERICAL BODIES  
 

Gönczi Dávid 

PhD student 

Institute of Applied Mechanics,University of Miskolc, Miskolc, Hungary 
 

 

Abstract: The main objective of this paper is the calculation of the 

thermomechanical stresses and displacements in layered spherical bodies subjected 

to thermal and mechanical loadings. It is assumed that the temperature field and the 

displacement field depend only on the radial coordinate. The exact solution of one 

layer is used to get the analytical solution for the whole layered body by fitting the 

displacement and stress values on the boundary surfaces. 

 

1. INTRODUCTION  
 

This paper investigates a thermoelastic problem of a hollow layered spherical 

body. The geometry of the investigated body can be seen in Fig. 1, where the inner 

radius of the sphere is R1, the outer radius is Rn+1 and n is the number of layers. The 

layers of the spherical structural component are assumed to be perfectly coupled 

and made of homogeneous, isotropic materials, furthermore a spherical coordinate 

system (rφϑ) is used.  

 
Figure 1. The three-dimensional sketch of the hollow layered sphere 

 

First kind thermal boundary conditions are prescribed on the inner and outer 

spherical surfaces. These temperature values are given, they are assumed to be 

constant, non-time- dependent and denoted by t1 and tn+1. It follows that the 

temperature field T(r) is the function of the radial coordinate. The uniformly 

distributed mechanical loading exerted on the inner boundary surface is denoted by 



f1=pi, while -fn+1=po is the pressure which acts on the outer curved boundary 

surface.  

It is assumed that the radial stresses, the heatflow and the temperature are all 

continuous functions of the radial coordinate. Our aim is to determine the 

displacement field and normal stresses within the spherical component. 
 

2. THE TEMPERATURE FIELD  

 

At first we deal with the determination of the temperature field T=T(r). Figure 2 

shows the cross section and the loadings of the i-th layer.  

 
Figure 2. The cross section of the i-th layer of the sphere 

 

We assume that the temperature field is a continuous function of the radial 

coordinate thus we have  
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where the temperature field of i-th spherical layer is denoted by Ti(r). We consider 

the case when the radial heatflow is constant, the temperatures of the inner and 

outer boundary surfaces are given:  
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where λi is the thermal conductivity. The surface temperature of the osculant layers 

are equal therefore we get the following equations [1]:    
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 3. SOLUTION OF THE STEADY-STATE THERMOELASTIC PROBLEM  

 

The radial and tangential normal strains (εr, εφ) and the stress-strain relations of a 

homogeneous spherical body can be presented as [2,3]: 
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where u=u(r) is the radial displacement field, ν is the Poisson ratio, E is the Young 

modulus, α is the coefficient of linear thermal expansion, σr(r) is the radial normal 

stress and σφ(r) is the tangential stress. 

Let the displacement field for the i-th layer of the multilayered body be defined 

as: 
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where Ui(r) has the following form [2,3]: 
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With the combination of Eqs. (5), (6), (8) and (9) the expression of the radial 

stress for the i-th layer can be calcualted as 
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and the tangential stress is 
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The following discretized values of the displacement field and radial stresses will 

be used for the equations of the i-th layer: 
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Using Eqs. (13), the unknown integration constants of Eqs. (8-12) can be 

calculated as 
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From Eqs. (14-16) and (8-11) the expressions of the radial normal stress and 

radial displacement for the i-th layer can be obtained: 
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where 

 

1 1 3 2 2 43 3

3 1 3 4 2 43 3

2 21 1
( ) , ( ) ,

1 2 1 1 2 1

2 21 1
( ) , ( ) ,

1 2 1 1 2 1

i i i i
i i i i i i

i i i i

i i i i
i i i i i i

i i i i

E E E E
K r k k K r k k

r r

E E E E
K r k k K r k k

r r

   

   

   
   

     
   

 (19) 

3 4 3 4
1 1 2 2 3 1 4 22 2 2 2

( ) , ( ) , ( ) , ( ) .i i i i
i i i i i i i i

k k k k
L r rk L r rk L r rk L r rk

r r r r
          (20) 

Within the i-th layer of the spherical body the following matrix equation can be 

derived: 
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By the whole multilayered spherical body the following notations and fitting 

conditions will be used for the discretized values: 
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furthermore f1 and fn+1 are given. For the whole geometry the next system of 

equations can be derived for the displacement values u as basic variables : 
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From Eqs. (24) and (25) the unknown displacement values (ui, i=1...n+1) can be 

calculated, and then, using Eq. (21) the radial normal stresses can be evaluated. 
 

4. NUMERICAL EXAMPLES 

 

We consider a three-layered spherical component. The first and third layers are 

made of a thermal insulation material, while the material of the second one is steel. 

For the numerical example the following data are used: 
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Figs. 3-7 indicate the results of this problem, solved with Maple 15, in three 

cases. 

 

Figure 3. The temperature field 

 



 

Figure 4. The radial displacement fields ur(r) 

 

 

Figure 5. The radial stresses σr 

 

In Figs. 4-6 the red solid lines are the results of the thermomechanical problem 

with t1=250ᴼC, pi=20MPa, the blue dashdot lines indicate the results for the case 

when there is only mechanical loading (pi=20MPa). The green dash lines illustrate 

the functions when there is only thermal loading (t1=250ᴼC, pi=0MPa)). 

Fig. 7 indicates the von Mises equivalent stress of the thermomechanical problem 

(red solid line) and the black solid line is the curve for the case when all three layers 

are made of steel (the material of the middle layer in the original problem). 
 

 



 

Figure 6. The tangential stresses of the three cases 

 

Figure 7. The equivalent stresses  

 

5. CONCLUSIONS 

 

The main objective of this paper was to present an analytical solution for the 

displacement field and the associated stresses in hollow layered spherical bodies 

subjected to mechanical and thermal loads. To solve this problem the Fourier’s law 

of heat conduction and the exact solution for one layer were used, then the 

analytical solutions are derived via fitting the values of the displacement and 

stresses on the boundary surfaces of the layers. The developed solution can be 

utilized as Benchmark solutions for numerical methods to verify the accuracy of the 

considered numerical methods. 
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