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I . Introduction

In the past several years in terest and new results in the theory 

of deterministic scheduling have mounted at an increasing rate. This 

paper is an attempt to represent the current position of the field in 

terms of research into schedule length and mean flow time minimization 

problems. We describe theoretical results for sequencing problems 

arising mainly in computer and job-shop environments. However, the 

models are simple in structure and are consequently meaningful in a 

very large variety of applications.

Briefly, the general model studied assumes a set of tasks or jobs 

and a set of resources to be used in their  execution or servicing. In 

all cases the models are deterministic in the sense that the information 

describing tasks is assumed known in advance. This information includes 

task execution times, operational precedence constraints, deferral costs, 

and resource requirements. The sequencing problems examined include not 

only the minimization of schedule-lengths and mean time-in-system 

(weighted by deferral costs), but also a number of closely related 

problems such as scheduling to meet due-dates or deadlines. The results  

presented include eff icient optimal algorithms and mathematical descriptions 

of the complexity of sequencing problems.
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Computers a r ise  in the subject matter in a t  least  three ways. 

Firstly,  they represent an almost universal job-shop for our purposes.

The appearance of virtually all  of the problems we analyze can be ob

served or envisioned in the design or operation of general-purpose 

computer systems, although the prime importance of specific problems 

may exist in other applications. Secondly, computers must be considered 

in the implementation of the enumerative and i te ra t ive  approaches to 

sequencing problems. Finally, the field of Computer Science is  the 

origin of the complexity theory which we apply to problems of sequence.

We emphasize that our in te res t  is almost wholly mathematical, with 

very l i t t l e  recourse to discussions of pragmatics. The applicability 

(and, of course, inapplicability) of the results will be quite evident 

in virtually a l l  cases, owing primarily to the simplicity of the models. 

The reader is referred to [CMM] for insights into the general problems 

in practice and the many features of such problems that extend the models 

examined here but for which comparable results are not known (see also 

[Ba]).

This paper presents v ir tual ly  all the theoretical results in [Bal 

and [CMM] that concern our problems of deterministic scheduling theory. 

They form the background for the new results. Additional background 

material concerned with computer sequencing problemis can be found in a 

more recent tex t  [CD] on operating-systems theory. For recent survey 

papers dealing with many of the subjects of this paper, the reader is 

referred to [G3], [Cl], [Bl], and [BLR].

I I .  A General Model

The scheduling model, from which subsequent problems are drawn, is
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described by considering in sequence the resources, task systems, se

quencing constraints, and performance measures.

Resources. In the majority of the models studied, the resources consist 

simply of a set P= (P^, . . . ,Pm) of processors. Depending on the speci

f ic  problem, they are either identical,  identical in functional capability 

but different in speed, or different in both function and speed.

In the most general model there is  also a set of additional resource 

types R = (Rj, . . . »Rs>, some (possibly empty) subset of which is required 

during the entire execution of a task on some processor. The total 

amount of resource of type R. is given by the positive integer m..
J U

In the computer application, for example, such resources may represent 

primary or secondary storage, input/output devices, or subroutine l ib rar ies .  

Although i t  is possible to include the processors in i?, i t  is more 

convenient to t rea t  them separately because

1) they will constitute a resource type necessarily in common with all 

tasks (although two different tasks need not require the same processors), 

and

2) they are discretized with the restr iction that a task can execute on 

at most one processor at a time.

Task Systems. A general task system for a given set of resources can be 

defined as the system (г,-< , [t . .],{/?•},{w.}) as follows:* J J J

1. T = { T ^ , . . . , ^ }  is a set of tasks to be executed.

2. -< is an (irreflexive) partial order defined on T which specifies 

operational precedence constraints. That is ,  T--*1 signifies that T.. 

must be completed before T̂  can begin.

3. [t . . ]  is an mxn matrix of execution times, where т . - > 0 is the1 J 1 J
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time required to execute T., 1 í  j  s n ,  on processor P., I s i s m .  We
J

suppose that t . . = ~ signifies that T. cannot be executed on P.T U J 1

and that for each j  there exists  at  least one i such that t ..<°°.• J
When all processors are identical we let t . denote the executionJ
time of T. common to each processor.

4. R. = [R,(T.) , . . . ,R (T.)], 1 s j  í  n, specifies in the ith component,J • U ^ J
the amount of resource type required throughout the execution of

T.. We always assume R.(T.)sm. for all i and j .J * vl ■
5. The weights w^, 1 <i sn ,  are interpreted as deferral costs (or more 

exactly cost ra tes) ,  which in general may be arbitrary functions of 

schedule properties influencing . However, the ŵ  are taken as 

constants in the models we consider. Thus the "cost" of finishing T. 

a t  time t  is simply w^t.

This formulation contains far  more generality than we intend to 

embrace, but each problem studied can be represented as a special case 

of the model. One particular restriction worth noting is  the limitation 

on operational precedence. We cannot, for example, represent loops in 

computer programs modeled as task systems. Note that the partial order 

u. is conveniently represented as a directed, acyclic graph (or dag) 

with no (redundant) transitive arcs. Unless stated otherwise, we assume 

is given as a l i s t  of arcs in such a graph. In general, however, the 

way in which a partial order is  specified in a given problem may influence 

the complexity of i t s  solution. (We return to th is  point la ter .)

In Figure 1, an example system is shown, where the notation 

is  introduced for labeling vertices.  As one might expect, heavy use is 

made of graphical methods for defining task systems, rather than defining 

them as appropriate five-tuples.
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Task/execution time, identical processors 

Figure 1. A dag representation of (T,-<, (t^}). 

Notation and properties:

1.
2 .

3.
4.

Acyclic.
No tran sitiv e  edges: (T^,T^) would be such an edge
V W w  are in it ia l  vertices; T8’T9’T10
For example, Ту is a successor of T, ’T2’T3’T4’T5 but an 1mmec,ia te  
successor of only Т.Д,-; is a pr^decessor^of3 ТЧДо.Тд but an 
immediate predecessor of onTy T7,TC

are terminal vertices.

7’ 8'
5. Levels: 8 9 

T1 T2
8
T3

7 7 3 5 6 
T4 T5 T6 T7 T8

6. C ritical paths: V T ,T and T ,T ,T 
5 8 2 4 7

10
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In the following we use a number of more or less conmon terms

concerning dags. In particular, a path of length к from T to T'

in a given graph G is a sequence of vertices (tasks) T.
’ l \

such that T=T. ,T '=T.  (к & 1 ) and (T. ,T. ) is an arc in G for
’ l 1k ’j  V l

all l < j < k - l .  Moreover, i f  such a path exists ,  T will be called a 

predecessor of T* and T' a successor of T. I f  k = 2 the terms 

immediate predecessor and immediate successor wi11 be used. Init ia l  

vertices are those with no predecessors, and terminal vertices are those 

with no successors. The graph forms a forest i f  either each vertex has 

a t  most one predecessor, or each vertex has at most one successor. If 

a forest has in the f i r s t  case exactly one vertex with no predecessors, 

or in the second case, exactly one vertex with no successors, i t  is also 

called a tree . In either case, the terms root and leaf have the usual 

meaning. The level of a vertex T is the sum of the execution times 

associated with the vertices in a path from T to a terminal vertex such 

that  this sum is maximal. Such a path is called a crit ical path i f  the 

vertex T is a t  the highest level in the graph.

Sequencing Constraints. By "constraint" we mean here a restriction of 

scheduling algorithms to specific (though broad) classes. Two main re

strictions are considered.

1. Nonpreemptive scheduling: with this restr ic t ion a task cannot be

interrupted once i t  has begun execution; that i s ,  i t  must be allowed to 

run to completion. In general, preemptive scheduling permits a task to 

be interrupted and removed from the processor under the assumption that 

i t  will eventually receive all  i t s  required execution time, and there is 

no loss of execution time due to preemptions ( i .e .,  preempted tasks resume 

execution from the point at which they were la s t  preempted).
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2. List scheduling [Gl ] : in this type of scheduling an ordered l i s t

of the tasks in т is  assumed or constructed beforehand. This l i s t  

is often called the priority l i s t . The sequence by which tasks are 

assigned to processors is then decided by a repeated scan of the l i s t .  

Specifically, when a processor becomes free for assignment, the l i s t  

is  scanned until the f i r s t  unexecuted task T is found which is ready 

to be executed; that i s ,  the task can be executed on the given processor, 

al l predecessors of T have been completed, and sufficient resources 

exist  to satisfy (T) for each l s i  s s .  This task is then assigned

to execute on the available processor. We assume the scan takes place 

instantaneously, and i f  more than one processor is ready for assignment 

a t  the same time, they are assigned available tasks in the order P-j 

before before P^, etc.

Before discussing performance measures, le t  us i l lu s t ra te  the means 

by which schedules are usually represented graphically, assuming s = 0.

We use the type of timing diagram i l lustrated in Fig. 2 for the task 

system shown in Fig. 1. In the obvious way the number of processors 

determines the number of horizontal lines which denote time axes. The 

hatching shown in the figure represents periods during which processors 

are idle. The symbols s^S )  and f  . (S) will denote, respectively, 

the s ta r t  and finishing times of T..
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For problems assuming additional resources, we will have occasion to 

draw timing diagrams only for s = l .  In this case the vertical axis 

denotes the amount of additional resource required, the number of vertical 

segments being bounded by the given number of processors. An example 

is given shortly (Fig. 4b).

The timing diagrams of Fig. 2 give an informal and intuitive notion 

of schedule. Somewhat more formally, a schedule can be defined as a 

suitable mapping that in general assigns a sequence of one or more dis

joint execution intervals in [0,°°) to each task such that

1. Exactly one processor is assigned to each interval.

2. The sum of the intervals is precisely the execution time of the task, 

taking into account, i f  necessary, different processing rates on different 

processors.

3. No two execution intervals of different tasks assigned to the same 

processor overlap.

4. Precedence and additional-resource usage constraints are observed.

5. There is  no interval in [0,max{f^>] during which no processor is 

assigned to some task (i .e . ,  a schedule is never allowed to have all 

processors id le  when uncompleted tasks exist) .

For nonpreemptive schedules there is exactly one execution interval 

for each task,  and for l i s t  schedules we further require that no processor 

can be idle i f  there is a task ready and able to execute on i t .  We do 

not attempt to further formalize the notion of schedules—a wholly mathe

matically definit ion is unnecessoiy and very elaborate for the general

model.
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t :  0 1 2 3 4 5 9

Figure 2. Example timing diagram for Fig. 1. Schedule with m=3.

Performance Measures. Two principal measures of schedule performance 

that we consider are the schedule-length or maximum finishing (or flow) 

time

u)(S) = maxif. (S)> (1 )
ls isn 1

and the mean weighted finishing (or flow) time

w(S)-  £  j ^ w . f . iS )  . (2)

The basic problems, therefore, are to find efficient algorithms for the 

minimization of these quantities over al l  schedules S, drawn perhaps 

from a specific class of schedules as defined earlier.

At this point i t  is convenient to i l lu s t ra te  that preemptive, nonpre- 

emptive, and l i s t  scheduling disciplines can be distinct in terms of mini

mum schedule length and mean weighted flow time and that the "power" of 

these disciplines decreases in the order given. A graph of a task system, 

a minimum-length preemptive ( i . e . ,  unrestricted) schedule, a minimum- 

length nonpreemptive schedule, and a minimum-length l i s t  schedule appear in
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Fig. За, b, c, and d, respectively. (Verifying the optimality of the 

schedules is not d if f icu l t ) .  Note that for = 1 ( l s i s n )  the mean 

weighted flow-time performance is optimal in each case and concurs with 

the ordering in terms of minimum schedule lengths just given.

Even for -< empty, preemptive schedules can be shorter than non- 

preemptive schedules (e.g.,  consider m=2 and three unit length tasks). 

However, for nonpreemptive scheduling on identical processors, a minimum- 

length l i s t  schedule is a minimum-length nonpreemptive schedule when •< 

is empty. For mean weighted flow-time (non-negative weights) on identical 

processors, the optimal l i s t  schedule is an optimal preemptive schedule 

when -< is empty, thus removing any distinction between the disciplines 

in these circumstances.

A good many of the results ,  especially those related to problem 

complexity, can be readily extended to a number of other performance 

measures of in te re s t  in job-shop or computer sequencing. For example, 

suppose we have identical processors and we define (S) = f.. (S) - t . as 

the waiting time of 1\ in S. Then i t  is  easily seen that a schedule 

minimizing ш also minimizes the mean, weighted waiting time.

Now suppose the general model is extended to permit a positive 

number d^(l á i  s n )  called the due date to be given for each task T... 

The due date expresses the time a t  which i t  is desired to have a task 

finished. Then the lateness of T. in S is  defined as f^ (S )-d ^ ,  

and the tardiness is  defined as max{0,f^(S) - d^}. The maxima and 

weighted means of  lateness and tardiness are also interesting performance 

measures. As with waiting times, i t  is easily seen that sequences mini-
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8

(с)

( d )

Figure 3. Discipline hierarchy, (a) m=2 identical processors, s = 0, 
w.j = 1 (1 s i s n = 6). (b) Optimal preemptive schedule, ш= 8, ш=29/6.
(c) Optimal nonpreemptive schedule, o)=9, ш=30/б. (d) Optimal l i s t
schedule, ш= 11, ü>= 32/6.
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mizing mean weighted flow time also minimize mean weighted lateness; 

however, this is  not true for the mean weighted tardiness.

When we consider problems in which due dates must be respected 

( i . e . , f^(S) < d.., 1 < i < n), the due dates are also called deadlines.

One such problem to which we devote considerable attention assumes 

d̂  = d, I s i i n ,  -< is empty, s = 0, identical processors, and seeks to 

minimize the number of processors required to meet the common deadline 

d. This problem is referred to as the bin-packing problem. Interest

ingly, we find tha t  this problem is equivalent to the schedule-length 

minimization problem for identical processors, -< empty, t . = 1 ( I s i s n ) ,  

m^n, and s = 1. Figures 4a and b il lustrate this equivalence. Note 

that  i f  we remove the restr ic t ion m>n in the parameter l i s t ,  we have 

an equivalence to the problem of scheduling to meet a common deadline 

with the constraint of at most m tasks per processor and the objective 

of minimizing the number of processors. Although there was no need to 

introduce deadlines as another component in the general model, the aug

mented system with an arbitrary se t  {d̂ } is discussed briefly in the 

next section on single-machine results.

I I I .  Background in Single-Processor Results

In this section we cover classical results for the special case of 

one processor (m=l),  -< empty, and s = 0. For m=l the problem of 

minimizing maxif^  vanishes; hence we are concerned only with the other 

measures mentioned in the previous section. The important results are 

summarized in the following theorems.
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13 16

T= ^T1 ,Т2’Т3’Т4’Т5’Т6* 
T7’T8’V

{ т . } = {13,15,9 ,6 ,6 ,8 ,6 ,3 ,2}  

-< = ф, s = О

(Ь)

= 18 resource or bin capacity

{т!}: т\ = 1, 1 5 i sO 

■< = ф, s = 1, ш̂ = 18, шг9

R(Т : 13,15,9,6,6,8,6,3,2 
1 1 2 3 4 5 6 7 8 9

Figure 4. An equivalence of two sequencing problems, (a) Schedu
ling {T^,.. .,Tg} to meet deadline d = 18 on minimum number (4)
of processors, (b) Scheduling unit-length tasks with single-re
source requirements to minimize schedule length.
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Theorem 1 [Sm] The mean weighted flow time, lateness, and waiting time 

are minimized by sequencing the tasks in an order of nondecreasing ratio

V V

Now suppose our system includes a set of due dates for the tasks,  

and our problem is  to optimize performance with respect to the lateness 

and tardiness measures. We have the following result .

Theorem 2 [Ja2] The maximum lateness and maximum tardiness are minimized 

by sequencing the tasks in an order of nondecreasing due dates. .

Finally, for  the due-date problem, le t  us define the slack time of 

T. at time t  in a schedule as d̂  - t.. - t .  The result  of sequencing 

by the in tu i t ive ly  appealing rule of nondecreasing slack time is  given 

by the following somewhat unexpected result .

Theorem 3 [CMM] Sequencing in an order of nondecreasing slack time 

maximizes the minimum lateness and minimum tardiness.

Single machine results for problems involving due-dates and the 

tardiness performance measure have received considerable attention. See 

[Lai], [HK], and [RLL] (which contains a recent survey) for results  

related to e f f ic ie n t  iterative and enumerative approaches. In a la te r  

section we discuss the complexity of these problems.

A well-known related result  in [Mo] concerns the problem of finding 

a sequence tha t  minimizes the number of late tasks. An optimal algorithm 

can be described as follows. F irs t ,  the tasks are sequenced in the order 

of Theorem 2. The algorithm then finds the f i r s t  late task T in this  

sequence and eliminates that task T* in the in i t ia l  subsequence termin

ated by T, which has the largest execution time. The process is  then
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iterated on the resulting sequence (with V removed) until a sequence 

is obtained with no late tasks. Any sequence beginning with the in i t i a l  

subsequence determined by the above process minimizes the number of late 

tasks. Extensions have been examined in [ Si2].

Another oroblem using as a performance measure the maximum of the 

weighted finishing times has been studied in [La2]. A simple algorithm 

is produced for -< arbitrary which minimizes maxiw^f^} on one pro

cessor.

I t  is clearly interesting to assess the importance of sequencing 

algorithms by comparing their performance with that achieved under a 

random selection procedure. Moreover, i t  is also of considerable in terest  

to analyze an algorithm that is optimal under the assumptions of known 

execution times, under weaker conditions in which only partial informa

tion (specifically, a probability distribution) is available. Examination 

of the d if f icu lt ies  presented by such an analysis of the models in sub

sequent sections reveals the general in trac tabi l i ty  of this approach in 

virtually all cases of interest, however, [CMM] present results for 

single-processor problems which i l lu s t ra te  the value of probability models.

IV. Results in Schedule-Length and Mean Flow-Time Minimization

We begin with some remarks on measures of complexity. These comments 

are rather brief,  but should be sufficient to permit appreciation of the 

results described in this  section. A careful presentation of these notions 

appears [U].

In general, the "complexity" of an algorithm solving a given problem 

refers only to i t s  execution time, expressed as a function of the input-
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length; i . e . ,  the number of bits needed to describe an instance of the 

problem. For our purposes we will usually specify complexity as a 

function of basic problem parameters, primarily the number n of tasks.

In some cases, th is  is a considerable simplification, but not an inap

propriate one for our purposes.

The detailed specification of the functions representing complexity

depend on the de ta i ls  of algorithm and data structure design in which we

take no special in terest .  Thus we use the order-of-magnitude notation

0( . ) ,  which concentrates on the terms of a function that dominate i t s
о

behavior. Thus i f  we say that an algorithm has complexity 0(n ), we
2simply mean that there exists a constant c such that the function cn 

bounds the execution time as a function of n. As a specific example, 

i f  a sequencing rule depends essentially on the ordering of an arbitrary 

permutation of n execution times, we know that algorithms exis t ,  using 

binary comparison operations only, whose complexity is 0(nlog2 n). But 

the specific functions of execution time, for different algorithms, 

usually consist also of terms 0(n), 0(log2 n), or 0(1) and may differ  

in the coefficient of the n log2 n term.

Any sequencing algorithm whose complexity is bounded by a polyno

mial in n is called a polynomial-time algorithm or an algorithm that 

runs in polynomial time. The corresponding problem is said to have a 

polynomial-time solution (algorithm). Henceforth we consider an algorithm 

to be eff icient i f  i t  runs in polynomial time. The practical motivations 

of this terminology are strong, especially for large n. In this respect 

we should note that  the sequencing problems we consider are or can be re

duced to f in i te  problems, in the sense that the solution space is f in i te .
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Thus our notion of eff icient algorithm can be associated with nonenumera- 

tive algorithms; "inefficient" algorithms are those which effectively 

require a search (enumeration) of the solution space and have a complexity 

that is at  least some exponential in n.

There exists a set of problems, each of which is called NP-complete 

(sometimes called polynomial complete, or simply complete), which in

cludes many classical ,  hard problems, Such problems include the traveling 

salesman problem, finding the chromatic number of a graph, and the 

knapsack problem, ju s t  to mention a few. I t  is known that in terms of 

complexity, all the NP-complete problems are equivalent in the following 

intuitive sense. I f  one can find a polynomial-time algorithm to solve 

one of these problems, one can find a polynomial-time algorithm for 

every other problem in the class, according to a procedure that normally 

varies from one problem to another. Thus either there exist polynomial- 

time algorithms for al l the NP-complete problems, or none of them has a 

polynomial-time algorithm; we do not know which of these two assertions 

is  the correct one. However, despite the lack of an answer to this 

"ultimate" question, there is strong evidence to suggest that all NP- 

complete problems are inherently intractable. As we shall see, almost 

al l sequencing problems stated in complete generality are NP-complete.

The above intuitive discussion of course is very informal. More 

formally, one must proceed by defining a common mathematical basis for 

representing algorithms and instances of problems, defining problem com

plexity in terms of the model, and defining the transformation (or re- 

ducibility) of one problem to another. With such a formalism one can 

address for specific problems such questions as deciding their  complexity



- 26 -

in terms of desirable problem parameters, the tradeoff between storage 

and execution-time complexity, the essential aspect of a problem that 

contributes to i t s  complexity, and so on. Later we shall i l lu s t ra te  

the techniques for taking a new combinatorial problem and showing that 

i t  admits of a polynomial-time solution only i f  some known NP-complete 

problem has such a solution.

Schedule-Length Minimization Problems. Table 1 summarizes the majority 

of results presently known for these problems. To help interpret the 

table, the following remarks are in order.

1. The columns correspond to the possible parameters of an algorithm 

that solves a problem defined by the assumptions given in a row of the 

table. Those entr ies  in which a value is specified eliminate a "free" 

parameter. For example, in problem (row) 2 we find that m is not a 

parameter but is  fixed at m=2. Similarly, {t..} is not a parameter,

for the specif ic common value of the does not influence the algorithm. 

The partial order is a free parameter, but no preemptions are allowed 

and there is no additional resource requirement that can be specified.

Here and in the sequel, n is  always a free parameter.

2. The entries in the column on complexity given as "open" simply mean 

that the question of the complexity of the corresponding problem has not 

been resolved.

3. For each of the nonpreempti ve problems for which polynomial-time 

optimal algorithms are known, there in fact exists an optimal l i s t 

scheduling algorithm.

4. An important point concerning the NP-complete problems indicated in 

Table 1 is tha t  they represent the simplest cases for which NP-complete- 

ness is known. Thus the reader can and should make appropriate inferences



- - 2 7 -

regarding more general problems. Generalizing any one of the parameter 

restrictions in a given problem (e.g.,  assuming as appropriate, non

identical processors, nonempty partial orders, additional resources, e tc .)  

obviously produces a problem at least as hard as the original one.

One important observation in this respect concerns a comparison of 

rows such as 6 and 4. Since problem 6 is NP-complete, i t  is easy to see 

that so also is the problem for m a free parameter. However, the con

verse is not necessarily true. Problem 4 is NP-complete, but i t  is not 

known whether for any fixed ms:3 the corresponding problem (problem 3) 

is  NP-complete (and in fact a considerable effort  has been invested in 

resolving this problem for m=3).

5. Regarding polynomial-time algorithms, we do not in al l cases claim 

that the complexity shown is minimal. As an analysis of the sequencing 

problems indicates, however, there is virtually conclusive evidence to

this fact in a number of cases. For example, algorithms necessarily de

pending on an ordering of execution times must surely be of at least 

0(nlog2n) complexity, assuming an unordered l i s t  to begin with. Al

gorithms depending on precedence constraint structure must surely have a 

complexity at least 0(n ), since there are 0(n ) edges in a general 

precedence graph (see problem 2, e .g .) .  However, complexity must also 

depend on data structures. For example, i f  a graph is specified by an 

edge l i s t  containing redundant transi tive edges, the complexity may well 

increase. Problem 2 is a relevant example, for the complexity shown de

pends on the absence of transitive edges; the problem of removing such 

edges from a dag edge l i s t  has 0(n ) complexity according to the best

algorithm currently known [AGU]. Thus without the assumption of the ab

sence of transitive edges, problem 2 would have a complexity dominated by 

this la t te r  algorithm.



Table 1. Results for Minimizing o)=max{f..}

Resources

Problem ★
complexi ty m -< Rulet s (m.} References

1. 0(n) - Equal Forest Nonpr 0 [H]

2. 0(n2) 2 Equal - Nonpr 0 [CG]

3. Open Fixed 
m > 3 Equal - Nonpr 0

4. NP-complete - Equal - Nonpr 0 [U]

5. NP-complete Fixed 
m à 2

T =1 or 2 
f i r  al l  i - Nonpr 0 [U]

6. NP-complete Fixed 
m £ 2 - Ф Nonpr 0

7. 0(n log2 n) - - Forest Pr 0 [MC]

8. 0(n2) 2 - - Pr 0 [MC]

9. Open Fixed
m 2: 3 - - Pr 0

10. NP-complete - - - Pr 0 [U]

11. 0 ( n3 ) 2 Equal Ф Nonpr - [GJ1]

12. NP-complete Fixed 
m ä 2 Equal Forest Nonpr 1 [GJ1]

13. NP-complete Fixed
m  ̂ 2 Equal - Nonpr 1 m-|=l [U]

14. NP-complete Fixed 
m à 3 Equal Ф Nonpr 1 [GJ1]

15. 0(n log2 n) 2 Flow shop Nonpr 0 [Jo]

16. NP-complete Fixed 
m £ 3 Flow shop Nonpr 0 [GJS]

17. NP-complete Fi xed
m > 2 Job shop Nonpr 0 [GJS]

18. NP-complete Fixed 
m г 2 - Ф £f.j is 

minimum 0 [CS]

★
Identical processors assumed throughout, except for problems 15-17.

^Nonpr and pr are abbreviations for nonpreemptive and preemptive, respectively.
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The optimization algorithms for problems 1, 2, 7, and 8 are essen

t ia l ly  cr i t ica l  path algorithms (also called level-by-level algorithms), 

since the scheduling priority at any point is given sequentially to the 

remaining tasks at the highest level. (Actually, in problem 2 this 

criterion must be augmented by another property of tasks which, in the 

sense of the precedence graph, is locally computable.) Clearly, the 

complexity of these algorithms is dominated by the complexity of the 

graph operations needed to find cr i t ica l  paths. Note that  "first-order" 

generalizations of these problems are NP-complete as shown in problems 

4, 5 and 10. For special cases applicable to the case of two non-identi

cal processors, see [В2].

Problem 15 is solved essentially by an appropriate ordering of the 

tasks; hence the complexity is determined by the complexity of sorting. 

This is the ear l ies t  result  (1954) in schedule-length minimization. Apart 

from problem 1 (1961) and special cases of problem 16, the remaining 

results date from 1968.

The flow-shop problem referred to in problems 15 and 16 is defined

as follows. Each task system consists of a set of n/m chains of length

m, usually called jobs in the l i te ra tu re ,  with the res tr ic t ion  that the

ith task in a chain must be executed on processor P.. (n is a multiple

of m). In terms of [t . . ]  in our original model, columns km+i,■ J
к = 0,1........n/m-1, correspond .to tasks that  must execute on P.., so that

Tj km+i = °° for 8,11 The Tkm+i * i = 1»2,. . . ,m, will correspond to

the sequence of tasks in job k.

Problem 17 concerns the complexity of the simple job-shop problem, 

described as follows. As in the flow-shop problem -< is  a set of chains, 

each of arbitrary length, called jobs. (In the general job-shop problem
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there is no constraint on -<.) Each job J.. can be characterized by a 

sequence of pairs ( a ^ . P ^ ) ,  where a^. is the execution time of the 

j th  task of J. and P . . is the processor on which i t  must execute.I I J
The general problem is NP-complete for all m^2. (Later in this section 

we illustrate  a technique that can be used for th is  result .)  However, 

there is an interesting special case, which we now describe, that admits 

of a polynomial-time solution for m=2 [Jal].

Each job J.. i s  characterized simply by a single operation on each 

machine ( i . e . ,  each J. is a two-task chain): each J. ei ther executesI *
a task f i r s t  on then on or i t  executes a task f i r s t  on P2 then

on P.|. Let (x^,y^) be the execution times for the tasks of J... Con

struct  two ordered sets and C2 such that a l l  whose f i r s t  

task executes on P̂  (respectively P )̂ are elements of (respectively 

CL,) and such tha t  i f  (x^,y^) and (х^.,у^) are both in C-j, then 

min(x.,y.) <min(x.,y.)  implies that J. precedes J .  in the ordering.* ' J J • J
(This is the rule used in problem 15.) Order C2 in the same way. 

According to th is  ordering, assign tasks on P-j f i r s t  from then C2, 

observing precedence constraints. Similarly, assign tasks on P2 f i r s t  

from C2 then . Note that x̂  or y  ̂ can be zero, in which 

case we effectively account for jobs having only a single task for 

one machine or the other.

The basic in trac tab i l i ty  of problems in which there are additional 

resources is made clear in problems 12 to 14. Problem 11, not discussed 

subsequently, can be viewed as an application of the maximum matching
о

[E] problem. One may construct in less than 0(n ) time an undirected
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graph G such that ( , Tj) е G i f  and only i f  1\ and T\ are com

patible: that i s ,  ) + R^(Tj)  ̂ , for all k; hence T. and Tj

can execute in parallel .  A maximum matching of G provides a shortest- 

length schedule and can be found in 0(n ) time.

Problem 7 with < = ф has a well-known 0(n) algorithm [Me], which 

we reconsider la ter .

We conclude th is  subsection with a brief description of recent

results bearing on deadline problems relevant to the problems we have

been discussing. Consider the problem of scheduling equal-execution-time

tasks on two identical processors when there is an arbitrary partial

order and each task has an individual deadline to meet. I f  the partial

order is given in transi tively closed form, i t  is known [GJ2] how to

determine in time 0(n ) whether a valid schedule exists which meets all

the deadlines, and i f  so, generate one. If  i t  is desired to know whether

a valid schedule exists that violates a t  most к deadlines, where к is
k+2fixed, this can be done in time 0(n ). However, the problem of the

existence of a valid schedule that violates at most к deadlines, к 

variable, is NP-complete, even for only one processor.

Mean Flow-Time Results. We now present recent results generalizing those 

in the previous section for single-machine systems. Additional resources 

are not included because corresponding results do not ex is t .  Discipline 

constraints are also not considered, since nonpreemptive scheduling is  

assumed throughout for the same reason. (Recall, however, that a pre

emptive capability does not accomplish anything more in the case of 

identical processors, non-negative weights, and an empty partial order.) 

Comments 1, 2, 4, and 5 describing Table 1 also apply to Table 2 in which 

we summarize most of the results.
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Table 2. Results for Minimizing E.w.f.3 i l l

Parameters : n and

Problem
complexity -< {w.} ' V m References

1. 0(n3) Ф Equal - - [BCS2,Ho2]

2. NP-compl ete Set of 
chains Equal Identi cal 

processors - [BSe]

3. 0(n2) Forest - Identical
processors 1 [Hoi](See 

also [Ga,Si1])
л Open Identical 1processors

5. NP-complete Ф - Identical
processors

Fixed 
m à 2 [BCS1]

6. NP-compl ete Flow shop Fixed 
m £ 2 [GJS]

For problem 1 of Table 2 the existence of a polynomial-time algorithm 

is indicated fo r  the most general case of independent tasks and equal 

deferral costs. Special cases of this result have been known for some 

time, in par t icu lar  the result  for SPT sequencing introduced ea r l ie r .

The result of problem 1 is based on a formulation that identifies i t  as a 

special case of the general transportation problem.

The solution of problem 3 results  from a general formulation that 

proceeds by identifying a locally computable cost function (sequencing 

criterion) to be associated with each vertex (subtree) of the forest.

This function is  in fact a generalization of the function т^/ŵ  intro

duced in Theorem 1. Using an ordering obtained from these computed 

costs, the optimal sequence is achieved by recursively identifying the 

subtrees of the forest that are to be executed next.
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Problem 6 of Table 2 concerns a flow-shop problem that has received 

considerable attention. This NP-complete problem forms the basis of an 

i l lus tra t ion  in [KS] of enumerative and approximate techniques applied 

to sequencing problems.

The problem of minimizing mean tardiness (see previous section) is 

also relevant to Table 2, with due dates also a parameter. I t  has 

been shown that the minimum mean weighted tardiness problem is NP- 

complete for all m> 1 [BLR]. An interesting open problem is the com

plexity of the minimum mean tardiness problem (equal weights) when m=l .

Further Remarks on the Complexity of Sequencing Problems. In [U] a 

formal approach to the definition of problem complexity is introduced 

and used in demonstrations of the NP-completeness of a large variety of 

sequencing problems, either explicitly or implicitly. Such an approach 

begins with the description of a computer model by which algorithms for 

combinatorial problems can be commonly posed, in a manner that simplifies 

the ir  analysis and comparison with respect to their complexity. The 

notion of polynomial-time nondeterministic algorithms is  defined, a 

notion which identifies with problems admitting of an enumerative solution 

describable by a polynomial-depth search tree. As a matter of definit ion, 

the existence of such an algorithm is necessary for the NP-completeness 

of a sequencing problem. Finally, the concept of polynomial reducibility 

among combinatorial problems is defined, a definition used in deciding 

that a problem has a polynomial-time solution i f  and only i f  some NP- 

complete problem has such a solution.

In connection with Table 1, comment 4 is worth repeating at this 

point. Namely, the reader will be able to infer the NP-completeness of
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new problems from similar results shown for other problems. For example, 

the NP-complete problem 6 of Table 1 is known to have a polynomial-time 

solution i f  and only i f  a similar solution exists for the classical 

deadline problem [U]; that is ,  given a deadline d common to all (inde

pendent) tasks, is  there a schedule on m identical processors such 

tha t  all tasks f in ish  no later than d? The consequent NP-completeness 

of this problem in effect  accounts in a straightforward manner for the 

NP-completeness of the general additional-resource ( s > l )  and bin-packing 

problems [G3].

We can i l l u s t r a t e  informally but effectively the process of reducing 

one combinatorial problem to another by the following examples. Consider 

as a basis the simple version of the knapsack problem, stated as follows. 

Given as parameters a set X = {a-j, . . .  ,an> of n positive integers and 

an additional integer b, is there a subset of X whose elements sum 

exactly to b? That is ,  does the equation X!i=ic i ai = h have a 0-1 

solution in the c^ 's?  This problem is well known to be NP-complete 

[Ka]. We now make use of this problem in assessing the complexity of 

the following sequencing problems.

lc Consider problem 7 of Table 1 with Ч = ф, for which i t  is readily 

verified that in general there can be 0(n!) solutions. Suppose we add 

in the "Discipline" column that the number of preemptions must be mini

mized. Call this  the PM(m) problem for m processors.

An example of the case for m=2 and тах{т^> < Xi=iTi/^ shown 

in Fig. 5a. Note tha t  any sequence of tasks can be used in carrying out 

the assignment; one simply must inse r t  a preemption when necessary for 

the last task scheduled on P-j ( f i r s t  task scheduled on P2). Thus at
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most one preemption is necessary, and i t s  necessity depends on finding a 

subset of {x..} that adds up to exactly £ ^ 1 - / 2  . Therefore, we 

can reduce a knapsack problem to a PM(2) problem as follows. Let b and 

{a^J^i be an instance of the knapsack problem. Consider the instance
n+i

of the PM(2) problem given by {x^}"^ where x.. =a.., 1 5 i  í  n, and 

xn+i = 12b - Х^-чЭ. \. I t  is easy to see that this PM(2) problem has a 

solution with no preemptions i f  and only i f  the original knapsack problem 

has a solution. Figure 5b provides examples. Clearly, because of the 

simplicity of the reduction (calculating |2b- | ), we expect the

PM(2) problem to be at least as hard as the knapsack problem. We make 

the same statement for the general case m̂  3, since we can add m-2 

tasks of length £ i  = l Ti ^  to reduce the PM(2) problem to the PM(m) 

problem.

2. Consider problem 16 of Table 1, and le t  the jobs ( i . e . ,  three-task 

chains) be specified by the tr iples (x^.y^.z^), 1 s i s n ,  where x̂  

(respectively, y  ̂ and z^) is  the time required for the f i r s t  (respec

tively,  second and third) task to execute on P̂  (respectively, P̂  and 

P^). We can provide as follows the basic observation in a proof of NP- 

completeness.

From an instance b, (a -} of the knapsack problem, le t  the execu

tion times in an instance of problem 16 for m=3 be given by 

(0,a-| , 0 ) , . . .  ,(0,an ,0), (b , l ,  J^.-ja.. - b). Figure 6 gives an example 

schedule. Note that a minimal-length schedule is at  leas t  + 1

long. But as i l lu s tra ted ,  we can know whether we have a minimal-length 

schedule only i f  we can answer the question: is there a subset of the

a_j's which sum exactly to b? Thus by a simple algorithm we can trans

form an instance of the knapsack problem to an instance of the (m=3)
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7 15  17

-< = ф, m = 2,  

т . :  7 , 8 , 1 0 , 4 , 2 , 3

J 2b - I  a. |—

(b)

Figure 5. Preemptive scheduling

Figure 6. A flow-shop schedule, m=3
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flow-shop problem such that an algorithm for the flow-shop problem finds 

a minimal solution i f  and only i f  the original knapsack problem has a 

solution. As before, i t  is not d if f icu lt  to render a general case for  

m>3 identical to a problem for m=3.  I t  follows that  we can expect 

the problem to be at least  as hard as the knapsack problem.

A similar type of argument can be easily constructed for the resu l t  

of problem 17, taking advantage of the absence of the "processor ordering" 

implicit in the flow-shop problem. I t  is important to note that the 

knapsack problem can be solved in time polynomial in the desired sum b 

(this does not contradict the NP-completeness of the knapsack problem 

since b can be expressed using log^b bits ) .  Therefore, if  the com

plexity parameter of interest is the sum of task execution times we can 

not infer from the above arguments that these problems are intractable.

For example, Problem 6 in Table 1 can be solved in polynomial time for 

fixed m^ 2 for this  less stringent input measure. However, Problems 

16 and 17 remain NP-complete even for the la t te r  measure [GJS].

Clearly, we have only shown these problems to be a t  least as hard 

as NP-complete problems; we have not verified that they are no harder.

At this point i t  is best to leave full proofs of NP-completeness to those 

familiar with [U]. We might note here, however, that  the problem of 

showing reducibility has no generally applicable structure (thus the open 

problems of Tables 1 and 2), and solutions to these problems can be quite 

involved.

We conclude this discussion of complexity with the warning that 

having a specific problem in hand, one should be fully aware of any 

special features or constraints that might exist. For in this case the
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NP-completeness of the general problem to which i t  corresponds should 

not immediately cause us to abandon hope for an eff icient optimal a l

gorithm. Specific limitations on the problem may enable us to design 

an algorithm whose execution time is  bounded by a polynomial in the 

basic characteristics of the problem.

V. Concluding Remarks

We have limited our discussion to efficient optimization algorithms 

and to problem complexity. The results  on complexity demonstrate rather 

clearly that much of the progress in the theory of scheduling is very 

likely to resu l t  from the study of fast heuristics (approximate algorithms) 

and effective enumerative procedures. In [G2] and [G3] performance 

bounds are presented and derived fo r  a variety of sequencing and allo- 

cation heuristics whose complexity is at most 0(n ). We refer to [KS], 

[CMM] and [Ba] fo r  extensive treatments of enumerative techniques in

cluding dynamic programming and local neighborhood search.

One performance measure of broad interest that we have neglected, 

and for which resu l t s  have been obtained very recently, is the mean 

number of tasks,  N(S), in the system calculated over the interval 

[0,to(S)]. In general, such a measure is useful in expressing expected 

inventory or storage requirements for  tasks in the job shop or computer.

We can write

0
N(t)dt

where N(t) is  the number of uncompleted tasks in the system at time t .  

Clearly N(t ) takes the form of a decreasing staircase function with
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changes in value occurring at task completion times (subsets of which 

may, of course, be coincident). Assuming unit weights in (2), one may 

show rather easily

S<s >

which is obtained independently of scheduling disciplines, number of pro

cessors, or any property other than finishing times. From this expression 

we note immediately that  for m=l processors N(S) is minimized when 

ш(S) is minimized, since u>(S) is in fact not a function of S for 

m=l .  For the case m>2 i t  is known [CL] that the problem of finding 

a sequence minimizing N is NP-complete.

A recent generalization of our general model for which an eff ic ient  

optimal algorithm has been found is described as follows. With respect 

to problem 3 of Table 2 we once again assume a forest and a single pro

cessor, but each tree (called a job) in the forest is now regarded as a 

decision tree in the following sense. There is an arbitrary (discrete) 

probability distribution associated with each vertex governing the de

cision as to which task (vertex) is to be executed next in the job. Thus 

the eventual execution of a job consists of a sequence or chain of tasks 

beginning with the root and ending at a descendant vertex, and the chain 

can be interrupted only at task termination times. These sequences and 

their  total execution times are random variables, hence the problem 

becomes one of minimizing the expected value of the mean weighted flow 

time. A sequencing criterion for deciding sequentially which job is next 

to have a task executed has been developed along the lines of problem 3. 

The complexity question is studied, with the result  that an 0(n ) a l 

gorithm is produced [BCJ].
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ö s s z e f o g l a l ó

Determinisztikus ütemezés: ’’komplexitás” és optimális algoritmusok

Coffman E. G.

A dolgozat korlátokat ad a hatékonyságra különféle ütemezések esetén, ha a ’’komplexitás” 
legfeljebb 0(n2). Optimális ütemezési algoritmusokat ad preemptiv és nempreemptiv esetekben a 
részben rendezett ’’task”- rendszerek számára. Részletesen elemzi a ’’polinomálisan teljes” 
feladatok esetét.

Р Е З Ю М Е

ДЕТЕРМИНИЧЕСКОЕ РАСПИСАНИЕ: "СЛОЖНОСТЬ" И 
ОПТИМАЛЬНЫЕ АЛГОРИТМЫ

Коффман Э.Г.

В работе даны ограничения для эффективности, в случае р аз
ных расписаний, если сложность имеет порядок 0 ( п 2 ) .  Даются 
оптимальные алгоритмы расписания в "преэмптивном" и непреэмтив- 
ном" случаях для упорядоченных систем тасков.

Подробно изучается случай полиномиально полной задачи.


	E.G. Coffman: Determinisztikus ütemezés "komplexitás” és optimális algoritmusok��������������������������������������������������������������������������������������
	Oldalszámok������������������
	9��������
	10���������
	11���������
	12���������
	13���������
	14���������
	15���������
	16���������
	17���������
	18���������
	19���������
	20���������
	21���������
	22���������
	23���������
	24���������
	25���������
	26���������
	27���������
	28���������
	29���������
	30���������
	31���������
	32���������
	33���������
	34���������
	35���������
	36���������
	37���������
	38���������
	39���������
	40���������
	41���������
	42���������
	43���������
	44���������
	45���������


