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1. Introdution

Author’s point of view on the problem of creating an proper model describing real-time
opertaing systems (0.S) has been presented in paper [1]. One can find there some characteris-
tic features of O.S. as well as a classification of scheduling algorithms used in the real-time
applications. The short overview of available theoretical results for some of these algorithms
has also been provided, while a more detailed survey can be found in [2].

Up to now priority scheduling algorithms based on the minicomputers. priority interrupt
feature are implemented in the vast majority of O.S. Because of the hard constraintson reponse
times imposed by real-time environment, a deep knowledge of their time characteristics is of
essential importance. thus a proper queuing model has to be developed.

It can be easily demonstrated, that simple priority disciplinces like head of the line or
preemptive resume disciplines, are not sufficient to obtain such a model. Under the head of the
line discipline high-priority jobs can not receive desired response times. On the othet hand,
mainly because of synchronization objectives and data integrity reasons, the use of strictily
preemptive priority disciplines is not possible. During the execution of almost every programme
there are some parts which should not be preempted, and which are therefore executed after
disabling the priority interrupt system.

So the execution of a programme can be treated as service given in phases of either
preemptive or nonreemptive type.
The existance of any given phase in the exacuted programme may also depend on data upon
which the current exacution is fulfilled.

Implementation of various queuing disciplines is connected with some overhead which should
be also included in the analysis. This overhead is usually caused by activities fulfilled in the
privileged mode and as such can not be interrupted by any demand no matter of what priority.

The study of models reflecting the above mentioned features was started in [3] and then
developed under more general assumptions in [4] and [5].
However all those investigations took place for the case when demands for programme’s
exacution belonged to a Poisson stream, thus open queuing systems had to be considered. This
assumption is not justified, as in the majority of real-time systems one has to deal with demand’s
sources of finite dimension.
Corresponding to this situation closed queuing systems are difficult to analyze especially for
the case of complex service disciplines, like multiphase priority service mentioned earlier.
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Operational parameters of those systems, like waiting times for various demands, are often
estimeted by the analysis of a corresponding system with either infinite-dimensional demand’s
sources (leading to an upper bound) or one dimensional demand’s sources (which gives an

lower bound).

The relative error caused by such an estimation in the first case has been investigated by Bazen
and Goldberg [6], and according to their results may achieve even several hundred percents.

On the other hand, it can be proved that in the case when one-dimensional estimation is used
the relative error may not exceed one hundred percent.

Besides, one dimensional sourced describe often the actual situation existing in technological
plants.

Queuing systems with one dimensional sources create also a proper model for multiprogramming
systems with a fixed number of nonhomogeneus jobs, having independent 1/0 facilities, as it was
pointed out in [7]. '

Such a systems have been investigated so far only in the case of simple priority algorithms and
for the processor sharing model. In this paper the analysis of a generalized priority discipline
corresponding to the real-time requirements is presented for th case of N independent one-
dimensional sources of demands.

2. Description of the considered model

We shall consider a single server queuing system with N one-dimensional sources gener-
ating demands ZyZgs s 22y respectively. The time spent in the source by the
demand z, is a stochastic variable having an exponential distribution with parameter A, .

The demand z, (called herafter k-type) will have priority over the demand

k

Z, iff k<UL

The service of demand z, is given in phases denoted P,: Any phase Fk' may be either of
preemptive type (if ie/, ) or of nonpreemptive type (if ieJ, ), where [, J, are proper
exclusive stes.

Everly phase has a given probability of it’s execution p;‘ and an arbitrary conditional probabi-
lity density function(pdf) of it’s execution time .sjk(x).

Further we shall use frequently the total pdf S;'c(x) given by

(21) S-Sl —n]4 CACIRN

where &(x) is the Dirac function.
The joint pdf of k-th programme execution S, (x) can be obtained basing on Sk'.
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If for every i+#j, S,'c and S,{ are statistically independent, then ™ )
@)= I 5.
le(fk vlk)
In other cases §k (s) must be derived according to the form of dependence between S,:
and S}Gije{l VI, }, i#)).
For the preemptive phase Ff

k ’
tion and the overhead connected with resuming the preempted execution to be of nonpreemp-

iel, we shall assume the overhead connected with preemp-

tive type and have the lenght given by arbitrary pdf’s Q,‘L(x) and R,’( (x) respectively.
We shall also assume that if during R, any demand of type 1, 1 < k will be generated, it
shall be regarded as next, independent preemption as presented in fig. 1.

% service lservice
Z1.14 of z1

execution.of o
k-th programme 4.{-1
/service of zK/ ¢

A

generation of l-type demand

Fig.1 Illustration of°the assumptions according the overhead
during the preemptive phases

i‘or the nonpreemptive phases Ii", ieJ, we shall assume, that if during the service of
the phase F;(i any demand of higher priority was generated, then after finishing [4;"' an
overhead with arbitrary pdf Q,’c(x) should take place. Only after that the service of higher

priority demands can be initiated.

This model will be investigated using methods similar to presented in [9] and all
concepts which will not be defined here precisely are used in the meaning of [9]. In this
paper the outline of the analisis and main results are given, while all additional detailes are
described in [2].

* Let flr) be any given pdf. We shall denote by f(s) the Laplace transform of f(r)

= [ e pnar.
0
and by f any sample from the distribution f(r).
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Our considerations will consist of three steps. First we shall discuss the busy period for
some basic schemes, where the server deals only with demands generated by a single source.
Afterwards the busy period for all types of demands will be investigated.

Finally we shall describe the full process consisting of a sequence of busy and idle periods
consecutively. We shall also investigate the waiting times for demands of various types.

3. Basic service schemes

Let us now discuss busy period parameters for four basic schemes of serving demands from
one source with parameter A which require service having a pdf S(x).

a.) A scheme with regeneration
We shall assume, that the server works in a following mode. At time ¢t = 0 a first service starts,
and goes on for some time Z. A part V of this service time is devoted to an “incorrect”
service in the sense, that after completion of the service, server has to be regenerated. This
regeneration takes some time y depending on V' in the way described be a conditional pdf
ny/V). Both the times Z and V are given by a joint pdf fz,,(Z,V). During the regenera-
tion a consecutive demand can be generated, which service can start only after completing of
the regeneration.
Let us denote by p, (x, t,Z, v Ydxd vdZ the pdf of the following event: at time ¢ service
is in progress with the elapsed service of the demand being equal to x,* x < x* < x + dx,
while the service will take time Z * including time ¥ * of “incorrect” service,
Z<Z2*<Z+dZ,v<v'< v+dv q, (myt v)dydv -the joint pdf of the following
events: At time ¢ regeneration of the server is in progress for a period equal to y * | and the
“Incorrect” part of the last fulfilled service took time V™, y < y*<y + dy,
V< V®¥<V+dV, m=0,]1 denotes the number of demands waiting for service during the
regeneratin.
p,, (1)- the pdf of the service starting at time ¢
Directly from this definitions yields

P t) = f p,,(x.t.Z. v)dxd vdZ
0

O3
O,

Operation of the considered system can be described by following partial differential equations:

(3.1) [— +-—]pm(x LZV) + p, (6 4Z,V)n(x) =

32 [+ 5 + 10 0N, Ant)) = N, 001D,

(3.3) [—+ —E;— + 7% 0IV) + Ng,, (0.,V) = 0,
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where
£, (x)

34 =

(3.4) n(x) T f fz(u)du
0

and

L) =T f,,xV)dV
U

n(x) is the conditional pdf of finisching the service if the elapsed service time is equal to x
Similarly

rolvy
1 - f r(u/V)du
0

3.5  2°0n = )

is the pdf of regeneration time completion after time y.
Equations (3.1) — (3.3) are to be solved with respect to boundary conditions:
36)  p,(OLZV) = f,,(ZV) 07 of' a (At Vm® IVidyav,
G0 q,004V) = o] p,, (Z,t,Z,V)dZ,
38  q,1,0LM =0,
and initial condition
(3.9) P, x,0,2,V) = 8(x)f,,(Z,V).

We shall also define the pdf of the length of busy period, which for this case can be found
as

3.10) b, (=] ({ a,, O, tV)i° GIV)dyaV.
0

Solving equations (3.1) — (3.3) one can obtain [2],

1
I-c@+HEe+N’

G111 p, () =a(s) =

xn
- | n(u) du .
(G.12) p,(xsZV)=e e‘! ca(s) - Sy (ZV),

;l-(s+ )
l=—c@)+ His+ N’

(3.12) b (D =a(s) - His+ N =
where

(3.13) H@E+MN= 07fz,,(s. V)r[(s + N/V1dV,
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(.14 2(s) = [ Ty (s V)5, VYAV
0

Let us now discuss the waiting time in such a service scheme. For calculating the waiting
time distribution in open service schemes the following reasoning is frequently used:
Due to the Poisson stream of demands, the probability of consecutive call’s generation is con-
stant and equal to Adt ( where A is the parameter of the input stream), so one can consider
with proper probabilities all possible situations occuring during the service, (eg. idle and busy
periods, etc.).

Using the same methods with closed queuing systems, one can obtain so called virtual
waiting time (of [8]) reflecting the period which would spend in the queue a fictitious demand

’

not influancing system’s operation, and having the proper priority.

The real waiting time is different from the virtual waiting time, because in the case of

one-dimensional sources there is no possibility of generation of the demand z, if that demand

k
is either in the queue or is being served.

In this paper we shall consider the real waiting time (called shortly waiting time”’)
exelusively.

Let us notice, that in the service scheme with regeneration the demand starting every busy
period is served without waiting, while consecutive service can start only after some waiting
time. The mean number of services given during one busy- period is equal to

o - |
t) = 0) =——
(3.15) éfp,,,() p,, (0) 70

and the mean number of services preluded by waiting in queue is equal to

ek L H)
HO) HN

The queuing phenomenon is caused in this scheme only by existance of the regeneration.
We shall calculate the waiting-time distribution, assuming that the conditional pdf r(y/V) is
of a specific form, namely

(3.16)  rIV) = r*@IN1 — Y(N] + 8OHUWV),

where ( ‘v) is some given function. This assumption will be discussed later. The stochastic
variable V¥ has a pdf

() = sz,,(Z.V)dZ = Iz » 0.1

thus if regeneration takes place, than it’s length has an unconditional pdf given by (3.17).

GA7 @) = [ rr o) - f,(nav.
0
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The waiting time can be in this case determined as the result of substraction of two
stochastic variables, describing the lenght of the regeneration and the generation process re-
spectively, under the condition that a demand will be generated during the regeneration. So_the
pdf of waiting time is equal to

Fe@ - 1
A—© 1 —r O

(3.18)  w 1(©®) =2

where [ — r—o()\)] is the probability of demand’s generation during the regeneration of a
non-zero lenght.
As functions of the shape (3.18) will be often used in further considerations, we shall intro-
duce C

) 2(©) — ¢(A I

F (p0) = )\_‘ﬂ(__L__SB_L_) e

A A—© 1 =9

describing the pdf of waiting time caused by some process having the pdf () if fhe demands
are generated according to the negative exponential distribution with parameter \.
So

@l (@) = E(F°,0).

Finally the total pdf of waiting time in the service scheme with regeneration is given by (3.19)

1 —_ﬁ()\)
- H®) roe -r°mn | !
® () = : A - T e
' H(\) H(\)
(3.19) =V oy — 7% -
POV r N o Tai e

wfl=H ;
(= HM - A eyt = 7o

=11 =HMN)] - Er° 0)+ HN) - 1.

b.) A scheme with initial process and regeneration
In this scheme at ¢t = 0 an initial period having a pdf $2(x) starts. If during the £ no
demand is generated the busy period is supposed to complete (a short busy period). On the
~other hand if during £ the demand is generated, then after completing the initial period

it’s service starts, (a long busy period).
As, similarly to the case a.) the service includes some “incorrect”’part and causes perhaps a
necessity of regeneration, the process may continue as in the previous scheme.

The busy period distribution bfn’(t) can be found using the results from previous

scheme,

A =e M- QO+ (1 —e ). Q» +b, O,
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and after transformation
(320) B,%(s) = QAs + N | [As) — A + N - b, (9).
Similarly one can obtain p:: (#) (being the analogon of P, (1)), observing, that
32) pE=QA—e *) -0 - p, D,
which after transformation and utilizing (3.11) yields

ﬁ(s) - ﬁ(s + A) -S—l(s) — Emn (s)
l—c@)+Hs+n . 1—2C)

(3.22) P2 =

H(s + )\) and ¢(s) used in (3.22) are given by (4.13) and (4.14).

The mean number of services given during a busy period can be found utilizing px (1),
as being equal to

1—?70\)_

(3.23) ({pf;(z)=5,,,“(0)= =

In the considered scheme every service is preluded by waiting in queue, however queuing
before the first service has a different lenght than the consecutive ones. Speaking more pre-
cisely, [l — ?2()\)] services (that means the first one if there is any service at all) come after
the waiting time determined by the initial period, thus having the pdf equal to P;\(SZ,G)).
All remaining services can be fulfilled after waiting time identical as in scheme a.), having
the pdf equal to F, (ry ©).

The pdf of total waiting time can be for this scheme experessed by (3. )
L= HOIL = 8] | 5,9 g) =

= oM\ - [1-an)] *
H) H)

=HM) - F(Q0) + [l —HN) - EF ©, ).

(324 @O = 1—:_QN F,(2,0) +

Let us notice, that schemes a.) and b.) discussed here are a generalization of simple
schemes given in [1],
Results presented there can be obtained from formulas obtained above, by following
subtitutions:

=1 or £, (ZV)=£(2D) - 8.
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c¢.) A scheme with set-up time and regeneration.

In this scheme we shall assume, that first service in each busy period must be preceded
by a set-up time having the pdf $2(y) begining after the generation of the demand starting
that busy period.

Every service can cause the regeneration, exatcly as it was in the previous schames.

Q2,1
m

period, and the begining of a consecutive service are to derived from equations (3.25) and
(3.26),

It can easily proved that b,‘:'l and p (describing for that scheme the lenght of busy

3.260) B, (5) = A) = Xs) + b ®

32D P, ") = A - p, ().

where ﬁm (s) and Bm (s) are given by (3.11) and (3.12).

The mean number of services given during a single busy period is equal to ._—l)\— :
H(XN)
In this scheme the first service in every busy period is preluded by a waiting time equal to £2,
while all consective services are given after waiting time having the pdf equal to IT;‘(ro,(-)).
Of course ¥ is given as previously by (3.17).

Thus, the total pdf of waiting time can be calculated from (3.27) .

L HQN)
_w,l I _ H\) o - . -
(327 w, (©= — - O T KOO =HN - Q@) + [ -H) -
H(l) HO\)

d.) A scheme with initial period, set—up time and regeneration

In this scheme at ¢t = O the initial period having a pdf $(y) starts and if during this
period a demand is generated, the set-up time with pdf Q(x) begins after completion of the
initial period, and then the service takes place (a long busy period). If during the initial period
no demand is generated, busy period will be finished (a short busy period). Service paremeters
similar to the pervious ones can be obtained easily also for this scheme: '

(3.28) b2 = e M + (1 — e QU *b (1) + D),
(3.29)  p2R(H=(1—e M) - Q) * p, (1) * QL),

where b () and p, (1) are given by (3.12) and (3.11).

After transformation we obtain (utilizing (3.22)

(330) 5,2 %(s) = Us + N) + [SAs) — As + N)] « b, (s) - ),

(70 @
IA(r 0)
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and

As) — As + N)
1—C(s)+ H(s+ N\

(331)  p2(s)=KQ(s) -

The mean number of services given during a single busy period is equal to

& n,Vt=@}\_)’
o Tu = Ty

including [1 — 5_2()\)] services preluded by the waiting time with pdf equal to AO) - 1-7)\(9,(-))

[1 - HW][1 — Q)]

e services preluded by waiting time with pdf equal to

and
AV, ®). The justification is for this case identical as in the earlier schemes. Finally, the pdf
of total waiting time is given by (3.32)

(3.32) WY@ = HO\) - UO) - F(2,0) + [1 -HN)] - E(°, 0)

In furter considerations we shall utilize the results obtained for the basic service schemes in the ana-
lysis of our priority system. It will be therefore necessary to specify the obtained formulas for
a given type of demands, which will be denoted by an additional subscript.

For example b'f,’ ;5 Wwill denote the busy period in the scheme b.) after substituting
7\3,S3,c3,H. Of course for calculating H, and (8 from formulas (3.1 ) and (3.1 ) one
has to determine previously the functions fz v 3 (Z,V) and ry /V).

4. The joint busy period end server’s utilization factor

After presenting the results describing basic service schemes we shall return to the model
introduced in section 2.

We shall define completion time c;c of the phase P; as time period between the begin-

ning of execution of Fki until the servoce station becoms ready to start service of the same
type demand’s next phase. Quite similarly can be defined the completion time of the full de-
mand ¢, .

As it is well known in the priority queues theory, introducing of the completion time makes
it possible to regard the existance of higher priority demands.
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We shall assume, for the time being, the full knowledge of pdfs for c"( , el V),
K= 12 ...;N
The detailed analysis of c;( will be given later in this section. For simplification of further
analysis we shall assume, that the service of demand z, consists of a finite number of
phases, equal to k., and that the last phase is of nonpreemptive type,” ) i.e. ky € Jp.

Let 7, denote the joint busy period for demands z - Zg g can start in two

10295 ¢ -
possible ways:

— either because of the generation of z,, which service starts immidiately, being
however influanced by the higher priority demands. All the preemptive phases FK’ s
i € [, may bepreemptived, while the nonpreemtive phases Ff,6 i € JK may be
followed by the service of higher priority demands. Thus, if the last phase in the
service of z, is nonpreemptive, the demand z, can be generated once more
during the service of higher-priority demands following this phase.

— or because of the generation of any one of demands ZysZ9s 02 Zg _y starting
the busy period v, _, , which in turn creates initial period for the process
described above.

According to these remarques Y can be derived through an application of the basic
schemes a.) and b.) in which the completion times of all but last one of the demand’s Zg
service phases form jointly the “correct’” part of the service, while tha last, nonpreemptive

k y g : :
phases F"( K s considered as the “incorrect’’ service V.

This incorrect service may couse the necessity of regeneration, i.e. the necessity of serving
some hihger priority demands generated during F”: k . where according to the earlier introdu-
ced denotation, k. is the number of the last, nonpremptive phase. Following this reasoning

we can formulate:

Ny Mot o
(4.1) 7K(s)=7\—i-bm',((s)+ "AK‘ b, K1),

K
where AK = ,-21' )‘1.

For obtaing b:f £ it is necessary to determine f,, x and 7x/V) which in this case

are of the folowing form:

42 1,y g @V) = CLD 82~ V) - SEWD),

* Let us notice that if the last phase would not be of nonpreemptive type then we can always add one artifical phase with
r’l{ and s K(x) =§(x), { being the number of the additional phase. .
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—A 174 [ —AK—-IV
(4.3) 7K(s/V) =e K-1" .50+ g = e’V .
L= s

*

i [72__1(3) i i:l“(s + AK—I)]’

where

(4.4) Fk o
G @= 1l

o B
45 Q2 @=e* Q. .

We can observe that r, pe (s/V) is of the form suggested in (3.16) where

=K 1%

¢K(V) k- K=

and

— 1 RPN, —
(4.6) G/V) = — VIR () -Q@E+ A )
rK SV) l——Q*(AK_l) (7K_1S (s K—l)]

We shall now consider completion times for phases of both types a.) completion time for

preemptive phases

During the service time S’K of the phase F ,'( there can occure n preemptive with

probability =,

- n
___(AK—l y) —AK_ly
n n! v

We shall assume that every preemption lasts for time x, with pdf equal tp I‘K _1®)
Therefore

X oo - A n*
@n  deg= § S St D]

T2 oG = 9= 5 by,

where n* denotes n time convolution.

After trinsformation

(48) Tl =Skls+ Ag_, * ET{_))N,

We shall now derive I'y _,(s) basing on assumptions acording the overhaed time.

From Fig 1 one see that Iy, | can be divided into two parts:
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— the first one, denotd by g’K from generation of the demand, until the overhead
R begins for the first time, and

— the second one, denoted by o’K from the instant when R begins for the first
time, until it is finished succesfully (that mean without any demand of higher
priority being generated during R).

As the two parts are independent, we can present FK _1(8) in the following way
(4.9) N OEF O RO}

The first factor is equal to a following sum

(4.10) g ksl =
g(;)'—_ ]‘?{ K"‘:y—l <l>[(_l(s)
where
2 =7
= L (s)
bt -1 (s)
l(s) =1 dla j<I<k-|
g=: _Qk
(s) s dla 1=
| Om A l() a i
193

—a - M-
(4.11)  %,°() = bm 1 (s)

Formula (4.10) reflects the order of service, in the case when Flz was interrupted by the

demand Zj which occures with probability J
N
K = 1
In that case the overhead @ takes place, during which some demands of priority higher than
j can be generated, and only after completing @ the service of demands can start in the
sequence determined by their priorities.
On the other hand o—K (s) can be derived from equation (4.12)

»

==} —
7[(_](3)— Q(S"' AK—I)
I~ (A . )

(4.12) TL() = Ri(s+ Ay _ )+ [1 = RY(Ap _ )] - 0 (5)

K

where

() = Ri(s) - QL9

Formula (4.12) describes the two possible situations:

either no demand of higher priority than K is generated during R; (this case is given by
the first component) or at least one of them is generated, starting a quite complicated process.
According to the assumptions about the overhead, R; is in this case followed by Q; "

and both these times of overhead create the initial period for the busy period v, ,,

which is a ”long’ one.
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After completing '7;{1—1 (which can be derived from the iterative formula (4.11)) the over-
head R; starts again, begining ones more the whole process.

b.) completion time for nonpreemptive phase
For obtaining the completion time c} , i € J, we can use the same reasoning as in the case of
o’K , thus obtaining

'7?_1(3)_ S_IZ(S'*‘ AK—l)
- QWA _))

(3.13) TL@=8LG+ e )+ [ —SENg_;]
ieJ ¢

Now we are in the position to derive f, v.K (Z,V) and re (y/V) according to formulas

(4.2) and (4.3), because all ,c;( for ie€ (IK VJK), K= 1,2,... N ‘an be calculated from
either (4.8) or (4.13).

We can also obtain EK (s) directly from (3.14) as well as 7y, from (4.1).

So far we have considered the busy periods, exclusively. Th general service process consists
of a sequence of busy periods and idle periods and the busy periods starting instant can be
treated as regeneration points of a renewal process.

Assuming that at ¢ = O a busy period starts, the transform of renewal density function

EK (s) can be calculated as
AK 7[&’ (s)

s+ Agll = 73]

(4.14)  hy(s) =

Let e, (#) be the probability of system being idle at time ¢ of the general process, with
respect to demands Zy5Zgs 52y
Using the renewal argument it is easy to obtain

(4.15)  B.(5) = l ,

s % Agll = Tp )

Let us notice that [1 — QK(I)] determines the ulilization factor of the server.
For t - = the stationary state probability of the server being idle is

A 1

@160 & = TF A EaD

Basing on (4.16) one can easily find the fraction of server’s time spend on dealing with demands
zp (K=12,...,N), that means needed for serving this demand and for the overhead
connected with it’s preemption and resuming of the service,

This factor is equal to 'e\K g ?K and is influanced by all the demand’s parameters and also
by the service discipline.
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5. Waiting time distributions

The discussion of waiting time distribution will be presented for the stationary state, and
propen formulas will be obtained by a detailed analysis of service processes occuring the busy
period.

For estimating W{"¥)(r) the pdf of waiting time of the demand z, in a system ser-
ving demands z,,z,,...,z,,...z,, we shall first investigate the number of services ng
given to demand z, during a single busy period 1, .

We shall also consider waiting times preluding respective services. n{™’ will be derived using

an iterative formula

A
(5.1) ng‘) = ,j\_l . n;ck ~ 8y MkN:
k

Ko==1.2; .on ok
where M, denotes the number of demands z, served during a busy period Yx» and can

be found equation (5.2)

A A
k — k-1 =%
6D =M=k F 0 TP O,

after a reasoning similar to those which justified (4.1).

Using N — K times (5.1) we obtain

A XA
(N) = K (k) > L L
(5.3) n'y Ay ng’ + L NMLNK

Both in (5.1) and (5.3) NI% denotes a mean number of demands Zp served during the
completion time ¢, , and has to be calculated with respect to the multiphase structure of
demand’s z, service.

Thus

54 Lo ~ 2 o« NE/
i VE e vy L .

where Nﬁ"‘ denotes a mean number of demands z, served during the completion time
i

-

Let us notice, that generation of demand z, is possible only\if that demand is neither ser-

ved nor waiting in the queue.
Thus the generation of K type demand during ‘72 can happen in the instant when

— the service of phase F,' is in progress

overhead @/ or R’ isin progress
L L p

the busy period v, , isin progress

the completion time of an type | demand (/= K+ 1, K+ 2,...L—1)
is in progress
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Denoting by m,f ¢

the number of services given to demands z, generated in the first three
of obove listed situations leads to the following formula describing

L-1
Ll syl L,i 1
5.5  Ngl=mpt + 2 ompl Ny

We shall now given the formulas for calculating mk-

x  seperately for preemptive and non-
preemptive phases, providing them only with short comments, while the full eduction is given
in [2].

a.) preemptive phases

For F/, jeL, we obtain

: X "
i) == v, (NP O+ Ay Pt (O +
L

’IQL ) Vll, Ay 4 = —ql
tA_y AL (@) + TW_){“ ~ Ry (Mg _1)1P 4y £ (0)
(5.6) ol ety
+ Ry (Ag _ )~ RIA, _; = NPT (0) +
s _nlll
F BRI 3~ Xy p @D )
where
L B j j
2= o bl 5 (-
A_m Ag 1 et Ol
g
b, ©) for i<I< k-1
®/(s) =

Zm',.(s) * Y- O for 1 =i

) = ‘7K 1) — Qs+ Apg_y)

for Q°(s) = I_Q’L(S) © Q1)
(11—
RIGs+ Ag_))

Y -
Qll(s) = = 00 2 e Rk Ye_1()
Ri(Ag ) — R;,(AL 1 TN

QM) = RL(AL_ — N +9)
RL (AL 1 = X&)
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The right side of (5.6) consitss of six components liked in two groups. In the first group
there are considered the cases when z, is generated during

— the service of l"l/

— the busy period caused by generation of the demands 2,125, .- - 52p

— the overhead Ql{ caused by the generation of demands zg,,, 24y, ..., 2, _ )

or during the service of any demand having the priority higher than A which could

be generated during Q{.

The second group contains the possibilities of z, generation during following processes,
connected with tha part ai of preemption (cf section 4), namely the possibilities that:

— during Ri at least one demand of priority higher than K is generated, causing
the overhead @/ and a proper busy period

— during R’L no demand of priority higher than K, and at least one demand of
priority between K and L is generated.

— during RfL no demand of priority different than K is generated.

For evaluating the number of services given to Zy in any of this situations the basic
schemes from section 3 where used. In fact, for the first situation the basic scheme c.) is a
proper one for the last situation we have to utilize the scheme d.), while all other can be
described applying the basic scheme b.) with due substitutions.

Discussing the basic schemes we have pointed out, the way of obtaining mean number
of services given in every scheme, as well as possible waiting time distributions.
Using the derived in section 3 formulas with substitutions adapting them to all listed above
situations we can observe, that the waiting time can have one of the seven possible density
functions, given in (5.7).
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§ utd @)= 7,?’;,(@)
ULde) = Fy_( ,@3)
Uilye) = Fx K ('71? S
Uiie =F, 9
(5:7) A

Ugl@© =F, &'

Q/ -
L. s T ’ - Qlll
UL1y®) =¥ 1©) - F, @)

Uil©) = F, ¢°9)

1

Let us notice that !, Q' and Q"' where defined in (5.6) while O was given ba (3.17)
and (4.6).

Functions U,%j{: , jel, , ie[l1,2,...,6] describe the waiting times connected with the first
service in everyone of the six considered situations, and Ullf :’7 gives the waiting time preluding the
services caused by regeneration

Let us denote the number of services preluded with v iiting time having the equal to U/

by [m,’é 2 ];-

Introducing adequate substitutions to the formulas given in section 3 it is easy to show, that



=1 P

v,
L, = =k

( tmg”’ 1y = Tz Ag
J

(mk ), =:,,L Ag (1 =4
L

J
(mbly= 22 A, — A1 - 7%
my']= L1 x Y 21 Ag))

Ay itk s =
Ity =L 1= R (gl - 810
’jL'RL(AL—l)
() =——AL~"—{——:[E',,<AK Dl = R (A 11 = @10y
5 ’iﬁi(/\l D - LK -1 K)
(5.8) ¢
(k| Ayt R (A A =2
my =i o [ -
K 6 'jLR{,(AL—l) LYK -1 K K
v 1—H,(\,) —
[mL./] =L ___K"K° (2, +A L1 =AQ)]) +
K 17 ’/L [lK()\K) {5/ 4 K -1 K
Q)
ALy A =T O+
A, -V 1 —Hp(N\y) s g
ot B X R AN - B +

Mo R ) Hy (\g)
+IR (A )= RL(A, = NN = QT+

+ RL(Ag _, — A1 = 21O
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Obviously
7
L. — , :
mg! = 21' (), jel,

b.) nonpremptive phases

The reasoning for the case of nonpreemptive phases F KI , jeJ, is quite similar to that applied

to the previous case,in the part concermng resuming the preempted service, i. e. the part o‘
of the preemption. Thus introducing S . instead of R’ in the last three situations inves-
tigated during creation of (5.6) we obtam

(5.9 mbd =11 = Py DB, O+ 15, A _) =T (A — 2P O+

” 17
+ 5 (Mg .y =N Py g (0.

where

=87 =
= - (s+ A ) - 5
Q1Y) = KT K12 for ©7°(9) = 7/ - @)
- sls+ A, )—5IGs+ A, _, —17) L
V() = L= "K-1 _;, L-1 K 71(6{’_,1(”

Sp A ) =S/ =)
?ZVI():S_II(AL—l”)‘K"Ls)

L’(AL 17 %) )

In the similar way we can list also the pdf describing all possible waiting times, U‘L(J ;, and
mean numbers of services preluded by the waiting time with respective

pdf — (mb), ie{1,2,34), jeJ,, K=12,...,N.

f
-Lr = T V
Ug©) = F_(@'Ye)

>

ULi(®) =F _(«'.0)
(5.100§ o ol
U@ = E _(QV'0) - 7L, (©)

Ug @) = E @ ©)
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-
(med )y =1 =57 « (A M1 — @Y
(e !y = 15, (A ) = 5,/ (A = AN = 2V ()
B:11) 1 . _ =
(g 71y = 57 (Mg = M = QY]
| — H.(\)
K\OK -
g 1y = ) (tmg 1)y + (mET1y + (mEd), + (mEd )y )
Surely enough
4
mg! = ,Z; (mg 1, Jel,
After obtaining formulas 5.6. and 5.9 we are in position to calculate n’,‘(’ — the mean

number of demands Zy served during a busy period Ty -

We have also discussed the waiting times preluding services of demand z, given during
L L=K+ 1, K+ 2,...,N — 1. For obtaining the to-
tal pdf of waiting time we have to investigate additionally waiting times preluding the service

the completion time of demand z

of z, during the busy period v, , that means preluding the nk’“ services during in (5.2).

One can observe that the considered process can be described either by the basic scheme a.)

A A,
with probability ./.\5 or by the basic scheme b.) with probability J/‘\_.,.‘ "

K K
Using formulas derived for those basic scheme it is easy to find that the waiting times may

have following pdfs:

E/;(Kl)(e) = 1 — if the demand z, started the busy period 7y,

K

==(X") — p 3 T
UK,2(®) = FAK(‘YK _19) — if 4, has been started by the demand of priority

higher than K, and demand z, is generated dur-
ing the so initiated 7y,

D&K; ©) = ?;\K (rO,G) — in the case of second and further generations of
demand zg during the busy period 7 (regenerati-

ons)

Denoting by [n;(’()], the number of services preluded by waiting time with pdf equal to
U%) we obtain
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)‘K
(1 =2,

A
(rK], = ’,‘\k (1= 7g_ ()]

1 — H.(\p) ANe Ay .
[n(K)]3=___:_.K_K_. A—ll((.’.._ll\f;_l[l_.yx_l()\x)]

Obviously
(K) - %’ [n(K)]I

Finally we can derive the full formula for waiting time distribution considering with respective
probabilities all discussed so for possible waiting time distributions.
Thus the pdf of waiting time W;(N )(7) has a Laplace transform equal to

NoA
(N N - S K) K s .
(5.13)  wM(e) oy /2[1# I~ OF 4 %, M, wk
N
E & gl
“k ie(lLZV'JL) L 7k
L M. iR TH
‘-—- »
wg't = vl + ,._gﬂ 0~ Yx
7
u,L("=i_Zl[mf("1,- el dla el
3 41 L ’ L 3
V;'(" =2 (mg", - UK"'j dla ieJ,
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6. Final remaremarks

In this paper the analysis of a complex priority queuing system with one dimensional
sources of demands has been presented. Using the reported results it is possible to investigate
a wide range of priority algorithms as the considered model includes as special cases not only
such simple disciplines as preepmtive resume and head of the line discipline (with or without
overhead).

Basing on this model one can also determine easily theservice parameters of the discretio-
nary priority discipline, as well as investigate priority systems where service is given in quanta
os a predetermined value. Such priority systems with time slicing (and properly chosen quanta
for every priority level) make it often possible to quarantee desired response times for demands
of various types with overhead smaller than obtained in the case of other disciplines.

The special cases of the considered model can be obtained by proper defining of

A

L 8k, I, and I, dor K'm 12,00 0N

K’

The comparison of various scheduling disciplines for the case of one dimensional sources,
basing on the considered model will be presented in a seperate paper, as will as the losses of

computer’s throughput due to overhead.

Finally let us notice that the analisy was done under quite general assupmtions, allowing
arbitrary distributions of service times, and overhead. The results were obtained in the form
of Laplace transforms of probability distributions and not only in terms of mean values.
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Osszefoglald
”Real time” prioritdsos rendszerek vizsgdlata

Adam Wolisz

A dolgozat a prioritdsos rendszer valosziniiség elméleti vizsgalataval foglalkozik.

b
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PE3I0OME

[IPO6GHBEIA aHAJIU3 MPUOPUTETHHIX AJIFOPHTMOB IUCIIEeTYEePU3alluU
3amay npd paboTe B peaJIbHOM MacuTabe BPEMEeHH.

Bonnum A.

B CTaTbe-npennaraeTCH HEKOTOopas OIHOKaHaJIbHasd CHCTEeMa [DH-—
OPUTETHOr'O OOCJIYXKHBAHHUA C IMOCTOAHHBIMH NPHOPUTETaMHU KaK MoIellb
ONEepaloOHHOH CHCTEMBl BHUUCJIMTEJbHOW MauUHH .

B sTol monmend ob6ciyxuBaHue JoO6OH 3aABKH MDOUCXONHUT B (da-—
3aX, KOTOpEE MOI'YT MOOBEPraThCA IUCLUIIJIMHE C abCOJIOTHBM HIIH
OTHOCHTEJIbHBIM NMPHOPUTETOM.

[lpennaraercsa, 4YTO 3aABKH Ha OGCIYyKHBaHHE I'€HEPHDOBaHHbE
ONHOMEDPHEIMH HCTOYHHKaMH 3adBOK .

Hcenenyerca BpeMa NOTpayeHHOE Ha MNpephBaHHe TeKyumed npor-
pPaMMBl,a TaKXe Ha BO3BpAT B NPEPBAHHYI NMPOrpamMMmy .

[lpuHumasn, 4To Jobyw dasy onuchHBaeT BEPOATHOCTH €€ BHIOJIHe-
HUA H J1000€ PacIOJIOXEeHHWEe BDPEMEHH BHINOJIHEHHEsA, I[OJIyyaeM napameT-
DEl ouepened B ciyyae NMyacCOHOBCKHX IMOTOKOB 3afABOK.
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