
MTA Számítástechnikai és Automatizálási Kutató Intézete, Közlemények 18/1977.

SCHEDULING SPLITTABLE TASKS ON PARALLEL PROCESSORS
TO MINIMIZE SCHEDULE LENGTH

Jacek Bfazewicz, Wojciech Cellary, Jan Weglarz
Institute of Control Engineering, Technical University of Poznan,

Poznan, Poland

1. Introduction

In deterministic scheduling problems, knowledge of all task execution times, task arrival
times and the precedence relations among tasks is assumed. In practice, these assumptions are
rarellydirectly met; in particular it is usually not possible to know a priori the task execution
times; one would at best only have probability distributions for these times. But the analysis
of deterministic problems allows the system designer to determine how well the operational
scheduler does in comparison to an optimal one and to provide guigance in improving the
scheduler. Moreover, the execution time t . of task ' T. has at least two practical interpreta
tions [3]. Firstly, it may be the upper bound of the task execution time. Scheduling using
these values is equivalent to worst case analysis and is applicable to the ’’hard-real-time”
environment with strict deadlines to be observed. Secondly, ту may denote the expected
value of the execution time of task Tj considered as a random variable. In this paper the
problem of scheduling splittable tasks to minimize schedule lenght is considered. An algorithm
for finding the optimal schedule is presented for the case of dependent tasks and identical
processors. The idea of solving the proble, for heterogeneous processors is also given.

2. Basic assumptions

It will be assumed that the set of tasks T . , T 2 , . . . , T n , the set o f processors
P x , P2 , . . • , Pm , the structure of precedence relations among tasks, and task execution times
t(/, i = 1,2, . . . , m , j - 1,2,. . . . , n, where denotes the execution time of task 7̂
on processor P(, are given.

The structure of precedence relations among tasks is usually given in the form of a
precedence graph, where nodes correspond to tasks and arcs to precedence relations. A simple
example of a precedence graph is shown in Fig. 1.

- 1 4 0 -

W 2 T5 lT 5

Fig. 1. An example of a precedence graph

Following the most commonly used convection T. < 7 denotes the fact that task 7\
precedes task Tj i.e. task T. cannot begin processing until task T. is completed. If no
precedence relation among tasks exists, then the tasks are called independen t, otherwise they
are called d e p e n d e n t or preceden ce related.

The set of tasks is to be processed on m parallel processors i.e. every processor is capable
of processing every task. If the execution times of every individual task are equal one to an
other for all the processers, then the processors are called identical. Otherwise, i.e. when there
are differences among the processing speeds o f the processors, the processsors are called
heterogeneous.

A very important feature of a task is whether it may be preempted and then completed,
not necessarily on the same processor. Generally, the possibility of task preemption is profit
able for some measures for schedule evaluation. If preemption is allowed, it is usually assumed
that the processing o f the preempted task may resume where it left off without any extra
work or time being occasioned by the preemption. This is called a preempt-resume discipline
[5], In computer applications, this will not generally be the case, for preemptions may imply
the removal of tasks from core storage and subsequent reloading o f these tasks. Moreover, in
those cases when input/ output operations cannot be overlapped sufficiently, the time delays
introduced will be so high that consideration o f preemption can frequently be ruled out a
priori.

On the other hand examining the preempt-resume discipline is of great importance in
systems of parallel processors using a common operating store. Such systems have increasingly
many applications in the control of such processes as traffic, telephoneswit control organiza

- 141 -

tion [6, 12] in which several processors using a common data base computational proce
dures are being used. It is easy to verify that the possibility of preemption is profitable for
improving the schedule lenght.

3. Scheduling splittable tasks to minimize schedule lenght

In this Section scheduling splittable tasks to minimize schedule lenght will be detailed.

Scheduling such tasks has been considered in [9, 10, 11]. The algorithms presented in the
these papers concern homogeneous processors and relatively simple precedence relations among
tasks. The problem of scheduling independent tasks on processors that are consistently fast or
consistently slow for all the tasks was considered in [4, 8]. In the papers mentioned above,
non-enumerative algorithms were presented. However, the problem of scheduling dependent,
splittable tasks, in the general case, is known to be polynomial complete [4] and hence
unlikely to admint a non-enumerative. Thus, for this case, the direct use of scheduling strate
gies in an oparating system has rather restricted applications. Finding such strategies has,
however, practical significance for the following reasons. Firstly, one can use them to estimate
an operational scheduler. Secondly, the distance between an optimal solution and a suboptimal
one for a heuristic, non-enumerative approach, may be found. Thirdly, enumerative algorithms
may be used in computer centres taht perform large and complex numerical computations,
but not in a real-time environment.

Below, such scheduling strategies will be presented, which yield some particular advanta
ges [1].

Let us assume, that the processors are identical. Thus, task Г, is characterized by
execution time t . , j = 1,2, . . . , n. The precedence relations among tasks are given in a
form of an activity network (i.e. an acyclic, directed graph with only one origin and only one
terminal node) in which arcs correspond to tasks and nodes to events. The precedence graph
from Fig. 1. is presented in Fig. 2. in this form.

Fig. 2. The set o f tasks from Fig. 1. in the form of an activity network

- 1 4 2 -

Let the number o f nodes of the network be equal to r + 1. It is assumed that events
are numbered so that event / is not later than event /, when / < /'. The set of all tasks which
can be processed between the occurrence o f event к and к + 1 will be called the main set
and denoted by S k , к = 1,2, . . . , r. The number of elements of set Sk will be denoted
by \Sk \.

Now, let us number from 1 to N the feasible sets, i. e. those subsets of all main sets,
in which the number o f elements is not greated than m.

Let Q. denote the set of all numbers o f the feasible sets in which task Tj may be
processed and x . the duration of set Thus the linear programming problem is obtained

[1]:
Minimze

N
У = 2 X.1=1 1

Subject to

(1) 2 x . = T j = 1,2, . . . , n
UQ. >

or in matrix notation

(Г) A * = J L
where A is the matrix o f coefficients:

1 if ieQ.

0 otherwise

Obviously, the columns o f matrix A correspond to the feasible sets. The number of variables
in the above problem for m processors is given by the formula:

)

where nk is the number of elements o f the main set Sk ;

n ’k is the number o f elements of the main set Sk, which composed at least one set
S j , S 2, . . . , S j , where 1 = к — 1.

It is assumed in the above formula, that = 0 for n < i.

It is clear that the number of variables increases rapidly when the number of tasks and proc
essors increases. For example for 5 processors and not very complicated networks containing

3 . 4to task the number o f variables is equal to 50, 30 tasks — 2T0 , 60 tasks — 3T0 ,
100 tasks 2 • 105 . If we want to use one o f the simplex methods directly for solving the

- 143 -

last problem, 10 cells of memory will be needed because of the necessity of memorizing
the matrix A.

As follows from the above, the direct use of simplex methods has a very restriced appli
cation. ,

Bellow, an approach which allows for the great reduction of storage requirements will be
shown [1]. On the other hand, in the revised simplex method [7] the elements of the matrix
of coefficients (i.e. matrix A) are not changed during complication. This allows for the
generation of single columns o f this matrix (or in the other words of feasible subsets of the
main set Sk , к = 1,2, . . . , r) in every simplex iteration. Thus, at every moment only one
main set and one of its feasible subsets has to be memorized. The use o f revised simplex
method is also more efficient [7], because in the described problems the number of variables
is more than three times greater than the number of constraints.

Now the concept of the generation of feasible subsets will be presented. The number of
processors — m , and the n e tw o r k s truc ture vec to r are read as input data. The network structure
vector contains the consecutive tasks as the ordered pairs of the nodes. Using the above data,
consecutive main sets are generated. First, the tasks which were members of the main sets g e
nerated earlier (we will call them old tasks) are added to the main set currently being gene
rated, and then the tasks which composed only this set (we will call them new tasks) are
added. Using this information, all feasible and different subsets of all main sets are created. In
Fig. 3, the block diagram of the generation of the main set Sk is shown, and in Fig. 4,
the block diagram of the generation of the feasible and different subsets of the main set S k

is shown, and in Fig. 4., the block diagram of the generation of the feasible and different
subsets of the main set S k is shown. The point in which the generated subset is used in a
simplex iteration is denoted by the block ’’revised simplex procedure”.

- 144 -

Fig. 3. Block diagram of generation of main set

- 145 -

Fig. 4. Block diagram of generation of subsets of main set

- 146 -

Of courge, if the network, node ordering is not given, the obtained schedule is in general
a suboptimal one. The optimal schedule may be obtained by choosing the best one from among
optimal solutions for all possible orders.

Now let us consider the case of heterogeneous processors [2 |. We introduce the following
additional denotations:

- K j, j = 1,2, . . . , rt. the set of indices of these main sets in which task T. may be
processed;

- < 0 ,1 > , i — 1,2, . . . , m ; k e K . , a part of task T processed on processor
Л in sk ;

- y k , к = 1,2 , , r , the shedule lenght in Sk ;

Г
■^7

- y = у . , the schedule lenght.
* = 1 *

Using the above denotations, the following linear programming (L P) problem may be formu
lated:

Minimize у

Subject to

(2) у
kek .

m

* - 1 / = 1,2, . . . , n.

(3) у к - Д V , i > ° /= 1.2, ni

к = 1,2, . . . , r

(4) у к -

m
2 x ... т.. > 0 ,Ti ч к ч / = 1,2, . . ■ , n ,

keK.

Equation (2) guarantees that every task will be processed; inequality (3) defines y k s

as the schedule lenght; inequality (4) assures that it will be possible to obtain a feasible schedule,
i.e. one such that no task is processed simulatneously on more than one processor. As the
result of solving the described L P probelm, the optimal values y * x * k , i - 1,2, . . . , nr,

j = 1,2, . . . , n; k e K . , are obtained. The starting points of parts of tasks x*,. are then
found (2(.

- 147-

R e f e r e n c e s

[1] J. Blazewicz, Cellary, W. J. Weglarz, JScheduling preemptable tasks on hetegrogeneous
processors (submitted for publication).

[2] J. Blazewicz, W. Cellary, J. Weglarz, Some computational problems of scheduling
dependent and preemptable tasks to minimize schedule lenght, Foundations of Control
Engineering 1, 2(1975).

[3] Jr. E. G. Coffman, P. J. Denning, Operating Systems Theory, Prentice Hall, Englewood
Cliffs, N. J. (1973)

[4] Jr. E. G. (ed j Coffman} Computer and job (shop scheduling theory, Wiley-Interscience
(1976)

[5] R.W. Conway, W.L. Maxwell, L.W. Miller, Theory of Scheduling. Addison-Wesley,
Reading, Mass. (1967)

[6] A. A. Covo, Analysis of multiprocessor control organizations with partial program
memory replication, IEEE Trans. Computers C-23, 2 (1974), 113-120.

[7] S. J. Gass, Linear programming , McGraw-Hill, N.Y., (1969)

[8] E. C. Horváth, R. Sethi, Preemptive schedules for independent tasks, Technical
Report No 162, Computer Science Dep., Pennsylvania State Univ. (1975).

[9] Me Naoghton , R., Scheduling with deadlines and loss functions, Management Sei. 6,1
(1959), 1-12.

[10] R.R. Muntz, Coffman E.G., Jr., Optimal preemtive scheduling on two-processor systems,
IEEE Trans. Computers C-l8, 11 (1969), 1014-1020.

[11] R.R. Muntz, Jr. E.G. Coffman, Preemtive scheduling of real-time tasks on multiproce

ssor systems, J. Assoc. Comput. Mach. 17,2 (1970), 324-338.

[12] J. Torres, Test and evaluation of computer traffic control system, vol. 9 of Diamond
Interchange Traffic Control, Pb-224160, (1973)

- 148 -

ö s s z e f o g l a l ó
Jacek Bfazewicz, Wojciech Cellary, Jan Weglarz

Felbontható taskok optimális ütemezése párhuzamos processzorokon

A dolgozat n megszakítható task m processzoron való determinisztikus ütemezésével foglal
kozik. A minimális terminálási idő meghatározását lineáris programozási feladatra vezeti vissza.
Foglalkozik nem azonos teljesítményű processzorok esetével is.

Р Е З Ю М Е

ПРОБЛЕМА РАСПИСАНИЯ РАЗЛАГАЕМЫХ ПРОГРАММ НА

ПАРАЛЛЕЛЬНЫХ ПРОЦЕССОРАХ

Блазениц - Келлари - В ел гл а р з

В р а б о т е р а с с м а т р и в а е т с я д ет ер м и н и ч еск а я проблема п и т

п р о ц ессо р о в . З а д а ч а п р ео б р а зо в а н и я в п р обл ем у линейного програм

мирования.

	Jacek Blazewicz, Wojciech Cellary, Jan Weglarz: Felbontható taskok optimális ütemezése párhuzamos processzorokon���
	Oldalszámok������������������
	139����������
	140����������
	141����������
	142����������
	143����������
	144����������
	145����������
	146����������
	147����������
	148����������

