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ON THE ESTIMATION OF A PARAMETER OF A
CONVOLUTION WITH AN APPLICATION TO QUEUEING THEORY

by Jacob Eshak Samaan

INTRODUCTION

Suppose that the observed random variable X is the sum of two independent random
variables Y and Z, where Y is uniformly distributed in the interval (0, 1) and Z is
exponentially distributed with unknown parameter . We consider here the problem of

estimating A from a sample XI’X2""’Xn'

Such a problem may arise, if we consider, for example, the single server queueing system

for which the arrival process is Poisson with unknown parameter A, while the service time is
uniformly distributed in the interval (0, 1). The customer which arrives when the server is

busy is rejected. Let us observe the departure times TysTyrenesT, of the served customers.
Let:

X0 =),

Xy Sy =% = 125me s 5 Hs

Then each X, is the sum of a service time and an interarrival time (or a part of
interarrival time which is again expounentially distributed), and our purpose is to estimate the

arrival rate N\ from the sample X1 ’Xz’ T c ,Xn.

Conditional sufficient statistic:

If we have n independent observations y,,»,,...,», from a population with density
function Pe(»), where © is an unknown parameter, then a necessary and sufficient condition
for a statistic 7(Y) = Tys--- ,yn), to be sufficient for © is that, the joint density
function:

Ln(Ya @) 2 Ln(yls e ,yn;(-)) — p@(}’l), se® spe(.yn)
is factorizable in the form:

(1) L,(Y;0) = gglT(Y)]. K(Y)

where the first factor may depend on © but depends on Y only through 7(Y), whereas the
second factor is independent of ©.

It may happen that the joint density function of the observations is factorizable only on a
subset of the whole sample space.
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This means that, sufficient statistics does not exist on the whole space, but there is a
sufficient statistic on a subset of the whol space, such sufficient statistic may be called

”conditional sufficient statistic” for ©.

Such situation occurs in the problem of estimating A.

Conditional sufficient statistic for A:

The density function of X is given by:

1—e M 0<x<1
h(x) =
(@ - D™ x>1.
Since any sample Xy5Xys oo sX, may contain observations which have values less

than one, so it is clear that the joint density function is, generally, not factorizable in the

whole sample space.

However in the subset X > 1, it is factorizable and has the form:

n
L= -1l ? 2 x,
1=1

This means that the statistic::
n
L= i=2; %

is a sufficient statistic for A on the subset Xi = 1.

Conditional likelihood estimator for A:

Suppose that we continue sampling until we get »n observations all of which have value
greater than one.

Let:
A = denotes the event that X,. =1 forall #=1,2,... mn.

Then

P(4) = [P(x> D]" = [ [ — DeMax]" = (%)e‘)‘"(e)‘ =1
1

Thus, the conditional likelihood function of the sample (X 19X550.0, X)) s
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Ln(X;}\IA)= W—=)\e e .

i.e. the conditional likelihood equation is:
n

n %4 _
X+n——i%x,.—0.

The solution of this equation is:

>x,—n

fEL ¢

which we refer to it as the conditional likelihood estimator for A.

If: A, = denotes the event that x,> 1, then:

PX, |A)=p{x;<x|x;> 1} =]—eg Ax-D

which shows that under the condition A;, the random variable (X; —1) has an exponential
distribution with parameter A. This means that under the condition A, the random variable:

n
W= 2 X,—n
i=1
has a gamma distribution with parameters (n,\). So

E(i)=nf1>\

A
and consequentely the estimator A is a biased estimator for A.
To correct this biasedness we can consider the estimator

n—1
n

‘.ZX'.—n

i=1

Now, let us have a sample of fixed size n, which contains observations greater than one
and others less than one, and we want to find an estimator for A which bases only on the
observations greater than one in this sample. Let X* denotes the observations greater than one,
and n* denotes the number of such observations in a general sample with fixed size n.

Then n* is a random variable with binomial distribution:

n
k

k n—-k

Pn*=k)= ( ) p*q , where

P= ]:(ex_l)e_xxdx=$l\(l—e_)\), q= l_p
1
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Thus, we may introduce the estimator

*
el =l g il 0

n*
2 ¥ gt
I
as an estimator for A, which depands only on the observations X i'* in the sample. Since
plop—-D<x}=1-e? x>0

Then, we have:

X k-1
p{Y*<x|n*=k}=I)\—Z——O\) e"‘ydy,

VAT
where
0 A
Y*= ZXi*—n*
i=1
i.e.
ply*<x,n*=k} _ f AL ag,
pin*=k| n -

Thus, the joint density function of Y* and n* is given by:

f =AM i () P Fowk L, x>0,

Since

Pln*>0}=1-¢"
then:

E{X*|n*> 0} =\,

So, A* may be called conditionally unbiased estimator for A.

Direct estimator for A :

Assume that we have a general sample of size »n, which contains observations greater than
one and others less than one. Then:
n
2 X, -

i=

=
i
2| —

is an unbiased estimator of %
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Thus, we may introduce the statistic:

iy

2

as an estimator for A, and call it a direct estimator. A disadvantage of this estimator is that,
there is a positive probability that it have negative values.

Let n denotes the number of times we get negative estimator for A out from one hundred
samples with size n. The following tables show the values of n corresponding to different
values of A for: n= 1000, n= 100.

X n A n
100 9 25 7
70 7 ' 20 5
50 2 15 2
30 - 10 -
15 - 5 -
n= 1000 n= 100
Table 1. Table 2.

All the estimators i, A* and A are consistent estimators for \. But because of the
difficulties in calculating the variances of A* and N\ we can not compare their variances.

But to see the advantages and disadvantages of using estimates based on conditional

sufficient statistics, we consider ,\l and é as estimators for % and compare their variances.
A A

Since:

plXr—D<x)=1-eM, x>0,
then we have:

E(Al)= E(x*-1)=E(x;—1)|4)= %’
A

And

1

1 1
Var ()= — Var (X*) = —,
x B ! n\?

A Ty il el o 1
Var(:_; —;Var(X‘.)— n()‘2 + 12).
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Thus from the point of view of minimum variance estimators, we see that the estimators

which based on conditional sufficient statistics are better than the direct estimator for %

But, on the other hand, in order to continue the observations upto obtaining » values all of
which greater or equal one, we need to have a random number v, of observations. The
random variable » ~ has the so—called negative binomial distribution given by:

N-1
[ ] T s if N=>n
N—-n
| P
J =
if N<n
Thus
E(Vn)= —%, P= %(l —e_)\),

which is more greater than n for the large values of A.

To avoid the needness of such a large number of observations in such cases, we introduce
the statistic

N T
g el o (R 1],
A B+ 1 =l

which depends on the observations X contained in a sample of fixed size n, as an estimator

for —)1-\ and compare the variances of —l and—l.

A A*

For ~ we have:

DTS 1 EF 1 TR
=%kj;k—]h(2)pkq"‘k
Noting that:
_ M (1"'3)"+1 1 1 —gntt
p n+1 (n+ l)p
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Then:

s
Also:

E(%z)=;1;k=2n(; l?%-_l :) pFg-*
Thus:

var (1) = BL) - E’(—‘,)
A* A

l+g+...+ l+g+...+ 4"
=._l_(l_ q q)( q q

A2 n+l n+l

).

Now, for the variance of —l*, to be less than that of the statistic :] we must have:
A

1 (1_l+l+

+q n l Rz
1+ g+...+40)<—(1+5
(n+ A2 n+ 1 € R il
ie.
l+g+ ...+ 2
@ -l dygggs <14 15
Since:

1_1+q+...+q" n
n+1 n+1°

Then (2) will be true if:

n 2 _qn+l )\2
3) ( ooy il = <1+ 3.

Thus for any value of n, we can say that the variance of —l* is less than the variance of :1

if’:
1% & 12 =5
S ET ML =N 1.

This is true for the large values of A (nearly A= 11).

This fact may be shown also as follows:
For the large values of A we have

—.l. _‘ka_l-
—)\(l e ) X"
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Thus (3) may be written in the form:

n
n+1

1 A2
F(1+ 19> GE201 - (1 - 31y,

This relation is also true if:

1 A2
X(l + 1—2)> 1

i.e. for large values of A\ (nearly A> 11).
This means that for such large values of \ and for any »n, we have:

4) var(£) < var ).
N, )

In fact, the condition (A> 11) deduced above is more than needed, because for some
smaller values of A, we can determine a value of » such that (4) is true.

For values A > 4 we can carry out the approximation.
1 . 1
p= X(l - Ny X

The error caused by using this approximation is equal to %e‘x which is less than 0.005

for A=4, and decreases when A increases.

Thus for any given A> 4, the value of n is determined from (3) after substituting

1 ;
p=x and g=1— %, i.e. from the relation

n_\2 Jgpaion o A2
& rPri-0-eyegi* 35
For A= 4, the maximum value of n satisfying (5)is n= 5, and for A= 7 we have
n=11.

Also for N\ = 10, relation (5) gives n = 28, while (5) is true for any n when A> 11.

From the preceeding discussion, it is clear that the estimators which have smaller variances
need a greater number of observations than the number needed for the other estimators with
larger variances. Thus the costs of the observations must be taken into consideration when we
compare the estimators. This leads us to consider the sum of the costs of the observations
needed for each estimator and its variance, as an objective function and compare these
objective functions. So the objective functions corresponding to the estimators —,{, i’ -;\1:
are:
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2 1 cn 1
= E+Var7—_+v =),
f, = cE, Y= ar()\)

7'1 =cn+ Var(_%),

f;=cn+ Var (% )i

where ¢ is the cost of each observation.
Now the values of »n for which:

©  f,<7,

will be determined.

It is to be observed that comparing the functions j—’n and fn* is exactly the same as
comparing the variances of the estimators —, —
A

So it is required to determine the values of n which satisfies the relation:

£pﬂ+ ﬁ <cn+ %(7\—12+ 11—2)
ie.
n* < l—iLqE .
This relation has meaning only when:
p> 12qc.
Acknowledgement

I would like to thank my supervisor Dr. J. Tomko for suggesting the problem and the
help he has given by way of many discussions.



o 1 =
Osszefoglalé

Egy konvolucié paraméterének becslésérdl és annak alkalmazisa
a sorban-illasi problémék koérében

Jacob Eshak Samman

A konvoluci6 paraméterének becslését az ugynevezett “feltételes elegendd statisztika”
felhasznélasaval végezziik. Az érkezési paraméter becslését egy veszteséges sorban-lldsi rendszer-
ben a feltételes elegends statisztikara alapozzuk, amelyet itt bemutatunk és 6sszehasonlitunk a
direkt becslésekkel.

Pe s3swwMe

OuneHka napaMeTpa KOHBOJOLHH, H
NIPpHUMEeHEeHHe ero B peuleHHH MNIpoblieMnl ouepeney

Hlaco6 Euxax llamaaH

U1 OlleHKM napaMeTpa KOHBOJIOLMM NPUMEHSeTCs Tak HasuBaeMas
"ycnoBHO mocTaTouHas CTATHCTHKA". OLeHKa napaMeTpPOB MpPHOHTHSA
NIpoOBEeNeTCsA B OIOHOW CHCTEeMe OOGCHYXHBAHHA C IIOTEPAMH HAa OCHOBE
YCJIOBHO OOCTATOYHOM CTAaTHCTHKH, KOTOpOe IIOKAa3HBaeTCS U CcpaB-

HHBaeTCA IOPYT'HMH HeIllOCpeldCTBEHHEIMH MEeTOIaMH OILEeHKH,
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