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ON THE LOCAL LIMIT THEOREM FOR GENERAL LATTICE
DISTRIBUTION

V. O. PETEN’KO

Abstract. The scheme of series of lattice casual vectors analogical to the
probable is considered in the paper. A local limit theorem have been received,

and the indicated directions of its use in differential methods theory of math-

ematical physics problems solving were received.

A local limit theorem for lattice distributions, and their quasiprobable analogues
are successfully used in the approximate solution of some kinds of mathematical
physics problems [1-3].

Quasiprobable distribution on the plain (according to Y. P. Studnyev [4]) on the
whole is the complex number set {p(k, l)}, for which∑

k,l

p(k, l) = 1;
∑
k,l

|p(k, l)| < +∞.

Let {(ξnn, ηnn)} be sequence of a mutually independent series of probable vec-
tors (first index - series number, the second is changed from 1 to n), which are
equally distributed on {kh1, lh2} lattice, and let {p (n, k, l)} be a quasiprobable
vector distribution in series frames in the meaning of correspondence p (n, k, l) =
P {(ξnj , ηnj) = (kh1, lh2)}, where k, l ∈ Z;h1, h2 > 0; j = 1, n. Then

w(t, s) =
∑
k,l

ei(tkh1+slh2)p(n, k, l)

is a Fourier-Stieltjes distribution transformation {p(n, k, l)}.
As in the theory of probabilities, the formula of reverse is being proved:

p(n, k, l) =
h1h2

4π2

∫∫
D

e−i(tkh1+slh2)w(t, s) dt ds,

where D rectangle is in the form of
[
− π

h1
, π

h1
,− π

h2
, π

h2

]
.

If {pn (k, l)} is

(
n∑

j=1

ξnj ,
n∑

j=1

ηnj

)
sum vector distribution, then the reverse for-

mula is in

(1) Pn(n, k, l) =
h1h2

4π2

∫∫
D

e−i(tkh1+slh2)w(t, s) dt ds,
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where {Pn (k, l)} distribution is n−divisible fold of the set {pn (k, l)} with itself.
Let, further

αr,q =
∑
k,l

(kh1)r(lh2)qp(n, k, l)

be an initial moment with (r, q) order of {p (n, k, l)} distribution.
Let us consider two auxiliary lemmas.

Lemma 1. Let for the casual vector with distribution conditions exist :
1) α1,0 = α0,1 = α3,0 = α2,1 = α1,2 + α0,3 = α3,1 = α2,2 = α1,3 = 0;
2) α2,0 = − 2a√

n
, α1,1 = − 2b√

n
, α0,2 = − 2c√

n
, at2+bts+cs2 is a positively determined

square form;
3) α4,0 = α0,4 = 4!A,A > 0;
4) ar,q exist, when r = q = 5.
Then

(2)
∣∣∣∣wn

(
t

4
√

n
,

s
4
√

n

)
− eat2+bts+cs2−A(t4+s4)dtds

∣∣∣∣ = O

(
|t|5 + |s|5

4
√

n

)
, n →∞

correlation comes true.

Proof. We should note, that the role of moments in apportion is the same, as for
characteristic functions in the analogical situation. That is why

w (t, s) = 1 +
1√
n

(
at2 + bts + cs2

)
−A

(
t4 + s4

)
+ O

(
|t|5 + |s|5

)
, t, s → 0.

But then

w

(
t

4
√

n
,

s
4
√

n

)
= 1 +

at2 + bts + cs2

n
−

A
(
t4 + s4

)
n

+ O

(
|t|5 + |s|5

n4
√

n

)
, n →∞;

or

w

(
t

4
√

n
,

s
4
√

n

)
= e

1
n (at2+bts+cs2)−

A(t4+s4)
n + O

(
|t|5 + |s|5

4
√

n

)
, n →∞

for any fix couple (t, s) ∈ R2. Hence, it follows, after the n−th power production
of both parts of the last equality we receive (2). Then Lemma 1 is proved.

Let’s presentw (t, s) into

w (t, s) = w0 (t, s) +
1√
n

(
at2 + bts + cs2

)
form. �

Lemma 2. Let in {ξnn, ηnn} series sequence, which are mutually independent and
equally distributed within the limits of lattice casual vector series for every vector in
series Lemma 1 conditions and condition : |w0 (t, s)| < 1, when (t, s) ∈ D\ {0, 0},
are executed. Then A0 > 0 exists that in 4

√
nD =

[
−

4√nπ
h1

,
4√nπ

h1
,−

4√nπ
h2

,
4√nπ

h2

]
rectangle execute

(3)
∣∣∣∣wn

(
t

4
√

n
,

s
4
√

n

)∣∣∣∣ ≤ eat2+bts+cs2−A0(t4+s4).

Proof. In the work [3] it has been shown that by Lemma 2 conditions A0 > 0 would
exist that |w0 (t, s)| ≤ e−A0(t4+s4), (t, s) ∈ D.

Then in D executes

|w (t, s)| ≤ |w0 (t, s)|+ at2 + bts + cs2

√
n

≤ e
at2+bts+cs2√

n
−A0(t4+s4),
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whence directly (3) comes out. �

These lemmas permit to prove such a theorem.
Theorem. Let in {(ξnn, ηnn)} series sequences, which are mutually independent
and equally distributed within the limits of lattice casual vector series for every
vector in series conditions :

1) α1,0 = α0,1 = α3,0 = α2,1 = α1,2 = α0,3 = α3,1 = α2,2 = α1,3 = 0;
2) α2,0 = − 2a√

n
, α1,1 = − 2b√

n
, at2 + bts + cs2 is a positively determined square

form;
3) α4,0 = α0,4 = 4!A,A > 0 ;
4) αr,q exist, when r + q = 5 ;
5) |w0 (t, s)| < 1, when (t, s) ∈ D\ {0, 0} .
Then evenly on k ∈ Z by n →∞ :

(4)
√

n

(
pn (k, l)
h1h2

− 1
4π2

∫∫
e
−i(tkh1+slh2)+n

(
at2+bts+cs2√

n
−A(t4+s4)

)
dtds

)
→ 0.

Proof. Use the reverse formula (1) and in integrals of the left part of (4) correlation
defined through Rn, execute the substitute: t → t

4
√

n
, s → s

4
√

n
.

We receive

4π2Rn =
∫ ∫
4
√

nD

e
−i

(
lkh1
4√n

+
slh2
4√n

)
wn

(
t

4
√

n
,

s
4
√

n

)
dt ds−

−
∫∫

e
−i

(
lkh1
4√n

+
slh2
4√n

)
+at2+bts+cs2−A(t4+s4) dt ds == I1 + I2 − I3,

where
I1 =

∫∫
∆

e
−i

(
lkh1
4√n

+
slh2
4√n

) (
wn
(

t
4
√

n
, s

4
√

n

)
− eat2+bts+cs2−A(t4+s4)

)
dt ds,

I2 =
∫∫

4
√

nD\∆
e
−i

(
lkh1
4√n

+
slh2
4√n

)
wn
(

t
4
√

n
, s

4
√

n

)
dt ds,

I3 =
∫∫

R2\∆
e
−i

(
lkh1
4√n

+
slh2
4√n

)
+at2+bts+cs2−A(t4+s4);

∆ =
{
(t, s) : |t| ≤ nλ, 0 < λ < 1

28

}
.

Integral I1 estimation comes out of Lemma 1. Really, according to (2) B > 0
exists, that

∣∣∣∣wk

(
t

4
√

n
,

s
4
√

n

)
− eat2+bts+cs2−A(t4+s4)

∣∣∣∣ ≤ B

(
|t|5 + |s|5

4
√

n

)
, (t, s) ∈ ∆.

Then

|I1| ≤
B

4
√

n

∫∫
∆

(
|t|5 + |s|5

)
dtds =

4B

3
n7λ− 1

4 =
4B

3
n−7( 1

28−λ).

So as λ < 1
28 , then I1 → 0 by n →∞.

Out of the Lemma 2 the I2 estimation comes out. Using (3), we receive

|I2| ≤
∫∫

4
√

nD\∆

eat2+bts+cs2−A(t4+s4)dtds.

The positively determined square form permits an upper estimation:

at2 + bts + cs2 ≤ a0

(
t2 + s2

)
, a0 > 0.
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Then

|I2| ≤
∫∫

4
√

nD\∆

ea0(t2+s2)−A(t4+s4) dt ds ≤ 4

 ∞∫
nλ

ea0t2−A0t4dt

2

.

We should take into consideration that by sufficiently large n for t ≥ nλ

4A0t
3 − 2a0t > 4A0n

3λ − 2a0n
λ,

I2 integral permits the further estimation :

|I2| ≤ 1
(2A0n3λ−a0nλ)2

∞∫
nλ

((
4A0t

3 − 2a0t
)
ea0t2−A0t4dt

)2

=
(

ea0n2λ−A0n4λ

2A0n3λ−a0nλ

)2

,

therefore, by n →∞ I2 → 0.
I3 integral estimation is analogical to the second stage of I2 integral estimation.

The Theorem is proved. �

The received theorem could easy be generalized in case of quasiprobable lattice
distributions with Fourier-Stieltjes transformation in

w (t, s) = eΨ2(t,s)+Ψ4(t,s)+...+Ψ2q−2(t,s)−Ψ2q(t,s)

form,where Ψ2 (t, s) ,Ψ4 (t, s) ,Ψ2q (t, s) are positively-determined forms with orders
indicated by indexes.

Such generalization could be used to the approximate problems solving linked
with the evolutional equation in the form of:

∂u(x, y, τ)
∂τ

=
(

(−1)q+1 Ψ2q

(
i

∂

∂x
, i

∂

∂y

)
− (−1)q Ψ2q−2

(
i

∂

dx
, i

∂

∂y

)
−

− . . .−Ψ2

(
i

∂

∂x
, i

∂

∂y

))
u (x, y, τ)

according to the scheme, for example, in [3].
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