
MTA Számítástechnikai és Automatizálási Kutató Intézete, Közlemények 15/1975.

SCHEDULING ALGORITHMS IN CONTROL DATA’S NETWORK
OPERATING SYSTEM (NOS)

K. Tantscher

In a modern operating system the two objectives of best utilization of computer resources
and reasonable service for time sharing users (response time!), which are to a certain extent
exclusive, create the necessity for effective scheduling algorithms.

All really implemented algorithms have to live in a certain environment — the given hard­
ware. Since the hardware architecture of the CDC CYBER 170 Series is rather unique, we
shall start with a brief description thereof.

Fig. 1 shows that a CYBER 170 System consists of a Central Processing Unit (CPU), a
Central Memory (CM), at least 10 Peripheral Processors (PPU), at least 12 Data Channels and
some peripheral equipment. The Extended Core Storage is optional and treated by the Operat­
ing System like any rotating mass storage.

The uniqueness of the system starts with PPU’s which are independet processors with
their own memory (4K 12bit bytes) and access to CM.

Their main purpose is to relieve the CPU from 1/0 — work and operating system func­
tions.

This leads to a system lay-out as shown in Fig.2.

Two PPU’s are dedicated to the operating system: РР0 contains the MONITOR at all
times. This is the routine which keeps track of all time dependent and periodic functions of
the system. PP1 is dedicated to drive the CRT—Console,thus giving the operator the various
system—status information in clear text.

The remaining 8 PP’s form a pool and can be assigned on a demand basis.

According to Fig.3 the CPU is time shared over all active jobs in CM.

Figures 4, 5, 6 and 7 illustrate the Control Point Concept. Central Memory can be
assigned in any size (no partitioning or paging!). For convenience in addressing the system
assigns memory in increments of 100 words. (1 word = 60 bit, max. memory size = 262K
words).

Each Control Point has an area of 200 words in low core which contains status and acc-
counting information of the job presently running at this Control Point. The ’’Exchange Jump”
instruction which is used to switch the CPU from one to another job saves the register con­
tents in the first 16 words of this ’’Control Point Area” in low core. In case all Control
Points are occupied the system has the possibility to swap the field length of a job together
with all his information contained in low core to disk in order to free space for a higher
priority job.

- 74 -

Figures 8 — 11 show the external effects of the scheduling system on the example of
one job.

As jobs are read in (e.g. from a card reader), they are placed in the INPUT—Queue on disk
with an initial or entry priority. An aging routine increases this priority according to a given
aging rate. After some time, the priority will be higher than the priority of presently running
jobs and the job will be scheduled for execution, that means he will be assigned to a Control
Point and loaded into Central Memory. There he will stay with the upper bound priority of
the INPUT-Queue until his allowed CM—time slice or CPU—time slice has elapsed. At this
point in time his priority will be lowered to the lower bound priority of the INPUT— Oueue.
This makes him a candidate for being swapped out. When the scheduling program decides that
there are other, higher priority jobs to run, it will initiate the swap out of this job. Now he
enters the ROLLOUT—Queue (only the first time!). The aging begins again untillthe schedule
decides to swap him in again and so forth.

The reason to give a job the lower bound priority of the INPUT—Queue the first time
he enters the ROLLOUT—Queue, is to give short jobs a shorter turnaround time.

Fig. 12 shows that there are 5 classes of jobs depending on their origin. For each class the
priority parameters for the queues, the ageing rates and the service parameter as CPU time
slice and CM time slice can be set independently. The setting of the parameters is done at
assembly time of the system but they can be changed by the operator in the running system.
Additional ’’Delay Parameters” control how often scheduler and priority aging program have
to be called.

Summarizing the facts up to now we can see that there is a dynamic scheduling of jobs
being in INPUT and ROLLOUT—Queue in concurrency with active jobs.

One slightly different strategy is used in the case of interactive jobs performing ou tpu t-
operations. To free memory from these jobs the output is done from disk rather than from a
memory buffer. That means an interactive job which has used his time slices and has output
data available for the terminal is swapped to disk regardless of the load of the system and
the priority level of other jobs. A special PP—routine will then route the output from disk
to the terminal.

All these operations described are performed by routines which are dynamically loaded
from disk to any free PPU.

The scheduler (1SJ) can be called by several other routines after certain events which
have managed the system status. Monitor calls him at least every time his delay period has
elapsed (Fig. 13).

Figures 14 and 15 give an overview of the schedular folw.

First thing 1SJ does is to check if the priority aging routine ISP has to be called. If yes,
ISP will increase the priorotes of all jobs in the queues and after completion call 1SJ back.

- 75 -

The next task of 1SJ is to do necessary housekeeping functions of the active jobs. That
is mainly to establish a memory map.

If there is any active job requesting more storage we try to fulfil the request. If not, we
search the queues for a possible candidate to swap in. This is done by algorithm 1 (Fig. 17).

Note that on occurrance of equal priority jobs the one with the bigger memory require­
ments is preferred (’’best fit”).

If there is no candidate to be found, 1SJ will perform the EXIT functions (Fig. 16).

If there is a candidate, we try to satisfy his memory requirements. Either there is already
enough free memory then 1SJ branches to SCJ4, or it tries to free space using algorithm 2.
(Fig. 18). The interesting fact of this algorithm is that 1SJ searches the active jobs starting with
lowest priority (TACP is sorted in descending order of priorities) and collecting their used
space. If he found enough but too much, he searches once again downwards the list if one
of these lower priority jobs could live in the excess memory, so it would not be necessary to
swap him. This, at that point very simple task, ensures best memory usage while avoiding un­
necessary swaps.

Starting at SCJ4 finally 1SJ tries to find a Control Point for the candidate to swap in
using algorithm 3 (Fig. 19). This algorithm looks for a best fit Control Point with minimum
swaps or stroage moves.

The EXIT functions of 1SJ try to schedule a candidate (by repearting the whole thing
if there was no success the first time), but also to keep scheduling activities in reasonable
limits.

The system default values are 1 second recall time for the schedular and 16 seconds
for the priority aging routine.

- 7 6 -

ö s s z e f o g l a l ó

A CDC NOS — operációs rendszerének scheduling algoritmusai
K. Tantscher

A dolgozat ismerteti a CDC Network Operating System scheduling algoritmusait. Ezek az al­
goritmusok új, elméleti tudományos eredményeken alapulnak, és egyidejűleg törekednek az erő­
források hatékony kihasználásán és a minél rövidebb kiszolgálás biztosítására.

Р е з ю м е

Алгоритмы расписании операционной системы
CDC NOS

К. Танчер

В работе дается обзор об алгоритмах расписании nos.
Эти алгоритмы основываются на новых теоретических научных ре­
зультатах и одновременно они стараются использовать эффектив­
но ресурсы, и обеспечивать наиболее кароткое обслуживание.

CDC CYBER 170 SERIES

Fig.l.

SYSTEM LAY-OUT

CPU
CMR /

ч

CENTRAL
MEMORY

TABLES

EXECUTIVE

SUBSYSTEM 1

SUBSYSTEM 2

SUBSYSTEM 3

SUBSYSTEM N

4

USER
PROGRAMS

PERIPHERAL
PROCESSORS

4

SYSTEM
DISK

Fig.2.

MULTI - PROGRAMMING

CENTRAL
MEMORY

MTR

Monitor lets Job in CPU run:
-F o r CP Time-Slice
-For CM Time-Slice
-U ntil I/O Request
-Until Job Completes

sO

Fig.3.

CONTROL POINT CONCEPT

CENTRAL MEMORY

Fig.4.

MEMORY PROTECTION

CENTRAL MEMORY RELATIVE
ADDRESS

000

\

FIELD LENGTH (FL)

FL /

I
00

Fig.5.

STORAGE MOVES

Input Q

NEW
JOB

CM

Job 1

Job 2

Input 0

NEW
JOB

Fig.6.

CM

Job 1

Job 2

00Ю

SWAPPING

CENTRAL
MEMORY

SYSTEM DISK

SWAP FILE

Q
U

EU
E

PR
IO

R
IT

Y
JOB SCHEDULING-ENTRY INTO SYSTEM

INPUT

Fig.8.

Q
U

E
U

E

PR
IO

RI
TY

JOB SCHEDULING-ENTRY INTO A CONTROL POINT

INPUT CONTROL

Fig.9.

Q
UE

UE

PR
IO

RI
TY

JOB SCHEDULING-ENTRY INTO ROLLOUT QUEUE

INPUT CONTROL ROLLOUT

Fig. 10.

Q
U

EU
E

PR
IO

R
IT

Y

JOB SCHEDULING -

LEAVING AND RE-ENTERING ROLLOUT QUEUE
INPUT

QUEUE
CONTROL

POINT
ROLLOUT
QUEUE

CONTROL
POINT

ROLLOUT
QUEUE

Upper Bound Upper Bound
Upper Bound 11

Entry Priority

1
1
1
1
1
1

1
1
1
1
1
11

Lower Bound 1
1
L

Lower Bound Lower Bound

TIME

00

Fig.l 1 •

- 88 -

QUEUE PRIORITY

JOB c LOLER UPPER ' INITIAL
ORIGIN QUEUE ENTRY BOUND BOUND TIME SLICE CPU
TYPE TYPE PRIORITY PRIORITY PRIORITY INCREMENT CPU CM PRIORITY

SYSTEM INPUT 6600 700 3000 1 100 20 1
ROLLOUT 6600 100 1000 2
OUTPUT 400 100 7700 1♦

BATCH INPUT 2400 2000 4010 1 400 200 30
ROLLOUT 2400 1010 4004 1 400
OUTPUT 200 100 7000 2

EXPORT/ INPUT 3400 2400 4010 1 400 200 30
IMPORT ROLLOUT 3400 1400 4006 1 400

OUTPUT 200 100 7600 1

TELEX INPUT 4000 3770 7006 1 40 30 30
ROLLOUT 4004 3740 7000 1
OUTPUT 200 100 7000 1

MULTI- INPUT 6774 6700 7400 1 400 60 31
TERMINAL ROLLOUT 6774 . 4000 7400 1

OUTPUT 6000 100 7700 1
DELAY PARAMETERS

JS CR AR JA cs
1 10 200 10 10

Fig. 12.

- 89 -

Philosophy: 1SJ should be called when the system status has changed

Fig. 13.

- 90 -

SCHEDULER FLOW

’’h o u sek eep in g ’
eval CP stat
calc AM

RM

search Q , s

for poss.

cand idate

SCJ5

called by anyone

at least every JS seconds

tim e fo r priority evaluation

establish tables:

TACP-table o f active CP s
TA FL-table o f avail FL per CP
T JF L -tab le o f assigned FL

TR ST -table o f ro llou t stat

FJO T -table o f origin types

T JPR -table o f jo b priorities

any active jo b w ants to

increase FL

XXX ALGORITHM 1 (SFJ)

did we find such a jo b

Fig.14.

- 91 -

F ig .15.

- 92 -

did we receive ano th er
scheduler request in the m eantim e

ro llou t activity too high

(•gt. 3)

recycle co u n t exceeded

(-gt. 4)

Fig. 16.

‘ - 93 -

© -
is there a
CP available

ALGORITHM 1

SFJ — search for job

Fig.17.

- 94 -

priority of active
job higher

did we collect too
much memory

ALGORITHM 2

CFL — commit field lenght

search TACP in
order of asc. prior.

set flag
for rollout

search back
downward
TACP

initiate
all rollouts

at end return to caller
and indicate not enough
memory found

enough memory now

found exact amount

we are looking now for a job
which was indicated to be
rolled out but could live now
in excess memory
if we find one we clear rollout flag

return
success

Fig. 18.

- 95 -

ALGORITHM 3

CCP — commit control point

Fig. 19.

	K.Tantsher: A CDC NOS – operációs rendszerek scheduling algoritmusai
	Oldalszámok������������������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������

