MTA Széamitdstechnikai és Automatizaldsi Kutat6 Intézete, Kozlemények 15/1975.

SCHEDULING ALGORITHMS IN CONTROL DATA’S NETWCRK
OPERATING SYSTEM (NOS)

K. Tantscher

In a modern operating system the two objectives of best utilization of computer resources
and reasonable service for time sharing users (response time!), which are to a certain extent
exclusive, create the necessity for effective scheduling algorithms.

All really implemented algorithms have to live in a certain environment — the given hard-
ware. Since the hardware architecture of the CDC CYBER 170 Series is rather unique, we
shall start with a brief description thereof.

Fig. 1 shows that a CYBER 170 System consists of a Central Processing Unit (CPU), a
Central Memory (CM), at least 10 Peripheral Processors (PPU), at least 12 Data Channels and
some peripheral equipment. The Extended Core Storage is optional and treated by the Operat-
ing System like any rotating mass storage.

The uniqueness of the system starts with PPU’s which are independet processors with
their own memory (4K 12bit bytes) and access to CM.

Their main purpose is to relieve the CPU from 1/0 — work and operating system func-
tions.

This leads to a system lay—out as shown in Fig.2.

Two PPU’s are dedicated to the operating system: PP contains the MONITOR at all
times. This is the routine which keeps track of all time dependent and periodic functions of
the system. PP1 is dedicated to drive the CRT—Console,thus giving the operator the various
system—status information in clear text.

The remaining 8 PP’s form a pool and can be assigned on a demand basis.
According to Fig.3 the CPU is time shared over all active jobs in CM.

Figures 4, 5, 6 and 7 illustrate the Control Point Concept. Central wiemory can be
assigned in any size (no partitioning or paging!). For convenience in addressing the system
assigns memory in increments of 100 words. (1 word = 60 bit, max. memory size = 262K
words).

Each Control Point has an area of 200 words in low core which contains status and acc-
counting information of the job presently running at this Control Point. The ”Exchange Jump”
instruction which is used to switch the CPU from one to another job saves the register con-
tents in the first 16 words of this “Control Point Area” in low core. In case all Control
Points are occupied the system has the possibility to swap the field length of a job together
with all his information contained in low core to disk in order to free space for a higher
priority job.

s,

Figures 8 — 11 show the external effects of the scheduling system on the example of
one job.

As jobs are read in (e.g. from a card reader), they are placed in the INPUT—Queue on disk
with an initial or entry priority. An aging routine increases this priority according to a given
aging rate. After some time, the priority will be higher than the priority of presently running
jobs and the job will be scheduled for execution, that means he will be assigned to a Control
Point and loaded into Central Memory. There he will stay with the upper bound priority of
the INPUT—Queue until his allowed CM—time slice or CPU—time slice has elapsed. At this
point in time his priority will be lowered to the lower bound priority of the INPUT— Oueue.
This makes him a candidate for being swapped out. When the scheduling program decides that
there are other, higher briority jobs to run, it will initiate the swap out of this job. Now he
enters the ROLLOUT—Queue (only the first time!). The aging begins again untillthe schedule
decides to swap him in again and so forth.

The reason to give a job the lower bound priority of the INPUT_—Queue the first time
he enters the ROLLOUT—Queue, is to give short jobs a shorter turnaround time.

Fig.12 shows that there are 5 classes of jobs depending on their origin. For each class the
priority parameters for the queues, the ageing rates and the service parameter as CPU time
slice and CM time slice can be set independently. The setting of the parameters is done at
assembly time of the system but they can be changed by the operator in the running system.
Additional ”"Delay Parameters” control how often scheduler and priority aging program have
to be called.

Summarizing the facts up to now we can see that there is a dynamic scheduling of jobs
being in INPUT and ROLLOUT—Queue in concurrency with active jobs.

One slightly different strategy is used in the case of interactive jobs performing output—
operations. To free meimory from these jobs the output is done from disk rather than from a
memory buffer. That means an interactive job which has used his time slices and has output
data available for the terminal is swapped to disk regardless of the load of the system and
the priority level of other jobs. A special PP—routine will then route the output from disk
to the terminal.

All these operations described are performed by routines which are dynamically loaded
from disk to any free PPU.

The scheduler (1SJ) can be called by several other routines after certain events which
have managed the system status. Monitor calls him at least every time his delay period has
elapsed (Fig.13).

Figures 14 and 15 give an overview of the schedular folw.

First thing 1SJ does is to check if the priority aging routine 1SP has to be called. If yes
ISP will increase the priorotes of all jobs in the queues and after completion call 1SJ back.

b

- T8

The next task of 1SJ is to do necessary housekeeping functions of the active jobs. That
is mainly to establish a memory map.

If there is any active job requesting more storage we try to fulfil the request. If not, we
search the queues for a possible candidate to swap in. This is done by algorithm 1 (Fig.17).

Note that on occurrance of equal priority jobs the one with the bigger memory require-
ments is preferred (“best fit”).

If there is no candidate to be found, 1SJ will perform the EXIT functions (Fig.16).

If there is a candidate, we try to satisfy his memory requirements. Either there is already
enough free memory then 1SJ branches to SCJ4, or it tries to free space using algorithm 2.
(Fig.18). The interesting fact of this algorithm is that 1SJ searches the active jobs starting with
lowest priority (TACP is sorted in descending order of priorities) and collecting their used
space. If he found enough but too much, he searches once again downwards the list if one
of these lower priority jobs could live in the excess memory, so it would not be necessary to
swap him. This, at that point very simple task, ensures best memory usage while avoiding un-

necessary swaps.

Starting at SCJ4 finally 1SJ tries to find a Control Point for the candidate to swap in
using algorithm 3 (Fig.19). This algorithm looks for a best fit Control Point with minimum
swaps or stroage moves.

The EXIT functions of 1SJ try to schedule a candidate (by repearting the whole thing
if there was no success the first time), but also to keep scheduling activities in reasonable
limits.

The system default values are 1 second recall time for the schedular and 16 seconds
for the priority aging routine.

— 76 —

Osszefoglalo

A CDC NOS — operacios rendszerének scheduling algoritmusai
K. Tantscher

A dolgozat ismerteti a CDC Network Operating System scheduling algoritmusait. Ezek az al-
goritmusok 1j, elméleti tudoméanyos eredményeken alapulnak, és egyidejuileg torekednek az ers-
forrasok hatékony kihasznalasan és a minél révidebb kiszolgalas biztositdsara.

Peasawnue

AJITOPUTMH paCHOUCAHUN OHGp&LIMOHHOffI CHUCTEML
CDC NOS

K. Taxuep

B paboTe zaercA 0030p 00 aJropuTMax pacnucaHuy NOS.
JTH QJrOPUTME OCHOBHBAWTCH HQ HOBHX TEOPETHMUYECKUX HAYUHHX pe-
3yJIBTATaX ¥ OZHOBPEMEHHO OHU CT8panTCA HCIOIB30BaTH 3QHEKTUB-
HO pecypcH, 4 oOeclneunBaTh HAuUOOJEEe KapOTKOE OOCIHyXUBaHUE.

CDC CYBER 170 SERIES

CENTRAL N
PROCESSOR A
UNIT 7

CENTRAL EXTENDED
MEMORY CORE

STORAGE
_— (OPTIONAL)

nnika

PERIPHERAL PROCESSORS (10,14,17, 20) / Zl 'i
MATRIX / lj
CONSOLE 1 DATA CHANNELS (12,18,21,24) -

gz 1W 2%

PERIPHERAL EQUIPMENT

Fig.l.

CPU

SYSTEM LAY-OUT

CMR

CENTRAL PERIPHERAL
MEMORY PROCESSORS
TABLES MTR

EXECUTIVE DSD
SUBSYSTEM 1 i
SUBSYSTEM 2]

|

SUBSYSTEM 3 |

|
|
|
SUBSYSTEM N :
POOL

PP

)

|

USER :

PROGRAMS i

|
|

Fig.2.

|

SYSTEM
DISK

CFL

MULTI -

PROGRAMMING

CENTRAL
MEMORY

CMR

JOB 1

JOB 2

JOB 3

\l\

=

JOB N

Fig.3.

MTR

Monitor lets Job in CPU run:
-For CP Time-Slice
-For CM Time-Slice
-Until 1/O Request

-Until Job Completes

200

400
30
1000

CENTRAL MEMORY

CP AREA 1

CP AREA 2

017 CP AREA 3

CP AREAN

CP AREA n+1

Fig.4.

CONTROL POINT CONCEPT

CONTROL POIN AREA

EXCHANGE
PACKAGE
JOB NAME
CPU TIME CM USAGE
RMS USAGE MT USAGE
SENGE SWITCHES
EQUIPMENT ASSIGNED
[LAST DAYFILE
MESSAGE
CONTROL CARD
BUFFER
RA, FL,ERROR FLAGS
VARIOUS
OTHER
CONTROL
INFORMATION

MEMORY PROTECTION

REFERENCE RELATIVE
ADDRES (RA) ADDRESS
000
/
/
/
/
F
/
USER PROGRAM
FREA FIELD LENGTH (FL)
i
\
b L/

Fig.5.

STORAGE MOVES

Input Q

CM

NEW
JOB

CM
Input Q
Job 1 .
NEW
JOB

Job 1

Job 2

Fig.6.

Job 2

SWAPPING

CENTRAL
MEMORY

CPU

CMR

7 zfg/i////

7
7 /////

PP

MTR

//Jos k/y%/

SYSTEM DISK

D

2?08 J 22|

i

~_

QUEUE PRIORITY

JOB SCHEDULING-ENTRY INTO SYSTEM

INPUT
QUEUE

Upper Bound

o

Entry Priority

Lower Bound

TIME

Fig.8.

JOB SCHEDULING-ENTRY INTO A CONTROL POINT

INPUT CONTROL
QUEUE POINT

Upper Bound

e

Entry Priority
Lower Bound

!

QUEUE PRIORITY

TIME

Fig.9.

JOB SCHEDULING-ENTRY INTO ROLLOUT QUEUE

INPUT CONTROL ROLLOUT
QUEUE POINT QUEUE
Upper Bound
Upper Bound

il

Entry Priority

QUEUE PRIORITY

Lower Bound

Lower Bound

TIME

Fig. 10.

- QUEUE PRIORITY

NPUT
QUEUE

Upper Bound

JOB SCHEDULING —
LEAVING AND RE-ENTERING ROLLOUT QUEUE

CONTROL
POINT

ROLLOUT
QUEUE

Upper Bound

CONTROL
POINT

-

Entry Priority

Lower Bound

|
e - —Th

Lower Bound

ROLLOUT
QUEUE

Upper Bound

Lower Bound

TIME

Fig.11.

JOB
ORIGIN
TYPE

SYSTEM

BATCH

EXPORT]

IMPORT

TELEX

MULTI-
TERMINAL

— R

QUEUE PRIORITY

C

QUEUE ENTRY
TYPE PRIORITY PRIORITY PRIORITY

INPUT 6600
ROLLOUT 6600
OUTPUT 400

INPUT 2400
ROLLOUT 2400
OUTPUT 200

INPUT 3400
ROLLOUT 3400
OUTPUT 200

INPUT 4000
ROLLOUT 4004
OUTPUT 200

INPUT 6774

ROLLOUT 6774 .

OUTPUT 6000

DELAY PARAMETERS

JS CR
1 10

LOLER
BOUND

700
100
100

2000
1010
100

2400
1400
100

3770
3740
100

6700
4000
100

UPPER |
BOUND

3000
1000
7700

4010
4004
7000

4010
4006
7600

7006
7000
7000

7400

7400
7700

CS
10

Fig.12.

INCREMENT

TIME SLICE

CPU

100

400
400

400
400

40

400

CM

20

200

200

30

60

INITIAL
CPU
PRIORITY

30

30

30

31

@

recall time expired

CPU slice time elapsed

after completion

of priority eval.

after job
1 €]J

completion of a job

SJ>7‘ after begin

after TELEX whenever a job was

rolled out or in, resp.

1 RO
1RI

Philosophy: 1SJ should be called when the system status has changed

Fig. 13.

— 90 —

SCHEDULER FLOW

EXECUTE1SH

“housekeeping”

called by anyone

at least every JS seconds

time for priority evaluation

eval CP stat
calc AM
RM

establish tables:
TACP-table of active CP s
TAFL-table of avail FL per CP

search Q, s
for poss.

candidate

Fig.14.

TJFL-table of assigned FL
TRST-table of rollout stat

FJOT-table of origin types
TIPR-table of job priorities

any active job wants to
increase FL

XXX ALGORITHM 1 (SFJ)

did we find such a job

Y .
@ enough free memory
n

try to rollout
low prior. jobs xxX ALGORITHM 3 (CFL)

to free space

find best
free CP xxx ALGORITHM 3 (CCP)

assign CP

and memory:
rollin job

< EXIT >

Fig.15.

did we receive another
scheduler request in the meantime

rollout activity too high
(sgt. 3)

recycle count exceeded
(-gt. 4)

‘ recycle ’

Fig. 16.

ALGORITHM 1

SFJ —search for job

9

read next

reads entries in INPUT and
ROLLOUT queue

entry in Q

. at end return to caller

this priority higher than previous one

memory requirements higher than

previous one

© -

is there a
CP available

look if we can rollout
lower priority jobs to

satisfy requirements

if not loop back to SFJ

y —=— some validation checkes at this point

put job on

“counter”’

loop back

Fig.17.

_ 94 —

ALGORITHM 2

CFL — commit field lenght

@

search TACP in at end return to caller

order of asc. prior. and indicate not enough

memory found

priority of active aliiti
job higher no success
n)

set flag

for rollout

enough memory now

did we collect too return

SHOCESS found exact amount

much memory

search back we are looking now for a job
downward which was indicated to be
TACP rolled out but could live now

in excess memory

if we find one we clear rollout flag

initiate
all rollouts

return
success

Fig.18.

ALGORITHM 3
CCP —commit control point

any
free CP,s
?

we have to rollout

one active job

find best f t CP, even| if no fit, find the one
if if we have to move which causes least storage

to move

return
With CP no

rollout CP with lowegt

priority if there is onp

return
no success

return
success

Fig. 19.

	K.Tantsher: A CDC NOS – operációs rendszerek scheduling algoritmusai
	Oldalszámok������������������
	73���������
	74���������
	75���������
	76���������
	77���������
	78���������
	79���������
	80���������
	81���������
	82���������
	83���������
	84���������
	85���������
	86���������
	87���������
	88���������
	89���������
	90���������
	91���������
	92���������
	93���������
	94���������
	95���������

