MTA Szamitastechnikai és Automatizaldsi Kutaté Intézete, Kézlemények 14/1975

AN ESTIMATION PROBLEM IN THE PROCESS
OF SERVECING MACHINES

by Jacob Eshak Samaan

Introduction

Consider the repairman problem described in [3], pp. 462, in which a set of m machines
are attended by one repairman. If a machine breaks down, it is served immediately, unless the
repairman, is already at work on other machine, in which case it joins a waiting line. We say
that the system in state i at time ¢ if i/ machines are not working. Thus the state space
X= {0, | ,m} contains m + 1 elements. Let us assume that the intervals between the
breakdown of machines are independent identically distributed random variables with exponential
distribution with parameter A, and the service time of a machine is exponentially distributed
random variable with parameter pu.

Thus, the number of machines failed is a birth—and—death process with transition
intensities:
}\i=(m~i))\ 0<i<m,
M= M 0<i<m,

the other transition intensities being zero.

Billingsley [2], had investigated the estimation of the parameters A and u assuming
that m is known.

In this paper we assume that A and p are known, and find estimators for the discrete
parameter m. We discuss two methods for estimating . The first method, we call it, the
direct method, and the second is the Maximum Likelihood method, Numerical results based
on simulation are also given to illustrate and Compare the two methods.

The direct method for estimating m:

Assuming that we observe the system for a period of time of length 7T, let:

(1) = denotes the number of failed machines at time ¢,

17, = denotes the first passage time to the state i,

p;(#) = denotes the probability that the system is in the state i at time 7, assuming
that the state m is an absorbing state.

Since, the number of failed machines is always less than or equal m, then we may
consider the statistic. ‘
m, = max u(f)
T  o<i<T
Beérkezett: 1974, december 10.
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as an estimator of the true number m of machines.

To investigate the properties of this estimate, we first calculate the probability:

Q,, (1 = pm, = m)

For this purpose we have by [6], that:

0, () =plm, =m)=p(r, <0)=p, ),

and it may be found by solving the sequence of forward equations assuming that m is an

absorbing state.

This sequence of forward equations is:

1 <

v

D, _

[ PG = = NPy (1) + wp, (1)
p;([) = v ()\, + #)Pi(t) 5 )\,'__ 1P _ l(t) + #le(l‘),
p;n(t)= 7\m—lpm—l(t)

which may be written in the form:

d
ar P(t) = AP(1),

where

Pt =| .

(py(D)]
p, (D)

£, 1)

s m+ 1)x1.

From (1), we get the general solution:

l<is<m—2

(m+ 1)x

Xx(m+ 1)
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where Ci, i=1,2,...,m+ 1 are arbitrary constants, and the w; ’s are the eigenvalues of the
matrix A, that is, the solution of the characteristic equation:

3) A —wl| =0,
and a;i) is the j th component of the eigenvector corresponding to the i th eigenvalue w,.

Since we assume that all the machines are in working state at time ¢= 0, then:

F'l'

0
P(0)=|. s Amt 1) xl.

Thus the arbitrary constants Ci’s are determined by:

m +1

%+
Z C.o® =0.
=1

3 +1
i i m

By a similar way as in [1] we can prove that, one of the roots of the characteristic

equation (3) is W= 0 and the other roots w w are all negative and

g3 Was e sWo g
distinct.
Thus (2) may be written as:
a m+1 . Wit
(2) Py (D= C, “m)+1 * 1_221 ¢ af,',),,l e’

where, the second term on the right hand side-tends to zero as ¢ tends to oe.

It is well known that P, (¢) is a proper distribution, since it represents the distribution
of the first passage time to the state m of a finite Markov chain, which is irreducible and

recurrent. Thus



=Y o

@ p,e)=1

(See [3], pp. 392.) We can prove (4) also by simple calculations using the laplace transform
of the system (1).

Note that, this fact is true for any P (D), k< m, if we assume that k is an absorbing
state.

Relation (4) means that ’;\1: is a consistent estimator for m.

Now, from (2’) and (4) we have

(1 =
Cl am)-v-l =1,
ie.
m+1 ) Wi
(5) Q,(N=p,(N=1+ 2 call e’

Il
S
W
=
N

where the constants C,’s are determined from the relations:

m+1

) —
i=21' Cai’=1,

1
Cao® =0, 2<j<m,
157

3
+

~
—

1
Ca®  =_1.

i m+l

3
+

-~
n
N

Since p, (1) is the distribution function of the first passage time to the state m, then
it is an increasing function in ¢, this fact is clear also from table (4) of the last section. This
means that:

+

1
Aly= 2 Cuo”

: +
i m+1

w.t
e 1

[ S)

is an increasing function. In fact we have:
A0)= -1, and A() = 0.

Thus, for given A, u,m and a small positive value e, we can find a value ¢ for which
p,H>1—¢

This means that, if we observe the system for a time interval of length ?, then the
probability that we get the true value of the number of machines is, at least, equal to (1 — ¢).

To determine ?, we have to find the minimum value of ¢ for which
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—es A <.

The distribution of m,:

To investigate the distribution of m,
we note that the event m ? > k occurs if
and only if, the event 7, < also

occuts, k= 1,2,...,m.

~¥

Then:
p, () = P(1, < 1) = P(m, > k),
Pror () =P(1, . <O =Pm,>k+ D).
So:
Q, (0 = Pim, = k)= p, () — p,, (), I<k<m-—1
while:
Q,, () = p,, (1) = p(m, = m)
as discussed before.

The quantities pk(t), k=1,2,...,m—1 are again obtained by solving the system (1),
assuming that k is an absorbing state. Thus:

k+1 & it
= E i i
Pk(t)— s Ciak+1 e .

By the same argument as for p,, (?), we have:

k+1 o > ¢
= i 1
p=1+ 2 Cafl e’

when t— e, each Q,(7), k=1,2,...,m—1 tends to zero, while:
Q,(H—1.
Also, we have:

&, (0= EGn) = 2 p(®)

and when ¢—e, each p(H)—1, ie.
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(6) lim E(m,) = m.

t >
So, r’r\zt is an asymptotically unbiased estimate for m.

For the variance of m ; We have:
A A m= 1
Var(,) = E0n, =, (07 = 2 (= e, () [,(D) = P; 14 (D]
l:
+(m — o, (0)?p,, (1)
18
Q) Var(m,) >0 as e,

From (6) and (7), it follows again that the estimator m, is consistent estimator for m
(cf. [S], pp. 281).

Maximum likelihood estimate for m:
Assuming that we observe the breakdown times and repairtimes of the machines in a time
interval of length 7', let:
8= denotes the total number of transitions from the state i to the state i+ 1,
b. = denotes the total number of transitions from the state i+ 1 to the state i,

]

denotes the total time spent in the state i during the time of observation.

Rf;

The log— likelihood function of this sample, by [2] pp. 50, is

A A

mp—1 mp—1
(8) Ltm)= 2 [g;In (n —DN) —70m — DN + ZO (b, In p— 1, , ).
i= i=

The maximum likelihood estimate for m is that value m which maximizes the function
LT(m).

Thus we try to find an integer m > 0 such that:
AL, ()< 0< AL (m — 1)

where AL.(m) is the first difference of the function LT(m) given by:

. — 1
mT—

O ALy =Lym+ D =Lym= 2 gLy

1 m =i 1

In other words, the maximum likelihood estimator for m is the first value m which
satisfies:

ALT(m) <0,
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Since

——+)\i=(m—i))\ as T — oo,

then, for large values of T we have:
=1

ZT ; k+1—i

(9) AL ()= 2 yN(m—1) In—————1],

Now, it is quite easy to see that the right hand side takes its maximum at k= m which is

the true value of the number of machines, and that this maximum is unique.

To see this, one can show by elementary calculations that, for any 0< i<k,

>0 for k<m
k—i+ 1
k—i

(m—1i)In -1

<0 for k=>m.

From (9) and (9°) we see that for k> r?zT we have:
A
m -1

Ay,
k= FALL(K) - >fl 7l —din

k+1—i
k—i -1

o)
e
I

L m(s . ] k+1—i
=ig(; T[—;y——(m—z))\ ln—ﬁ—

=0, as T-—»>oo,

a, ) v:

because 7’ — (m — i)\ and 7’ — p;‘ as T — o where p;"s are the stationary probabilities
i

of finding the system in the state i.

This proves the consistency of the maximum likelihood estimation.
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Numerical examples and illustrations:

With some modifications of the algorithm given in [4] to simulate the system M/M/m, we
can get a simulating algorithm for our present case. Hundred samples are simulated and estimates
for the number m of machines are founded. The following tables summarize ‘'some of these
results for different values of the parameters.

Let IQ * denotes the number of times we get the true value of the number of machines
out from the 100 samples using the direct method, and N* represents the same but using the
maximum likelihood method of estimation.

In the tables we present both the values 1\/}* and N* in addition to the probability
Qm (#) calculated from formula (5). '

Table (1) gives the results for fixed A, u and m and different values of ¢.

Tl N*| N* |Q @

20 47 38 0.41

50 T 76 0.77

100 91 94 0.95

200 98 | 100 0.99

500 [ 100 | 100 1.00

A=03, u=1.0, m=5

Table 1.
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Table 2. shows the effect of increasing the value of p = Au on the results.

A |u | p |N* |[N*|Q,0

0.1 1.0 0.1 | 54 5 0.05

0.2 1.0 0.2 78 56 0.57

0.3 1.0 0.3 93 91 0.95

0.5 1.0 0.5 98 |100 0.99

0.7 1.0 0.7 97 |100 1.00

0.1 1.0 0.1 54 5 0.05

0.1 0.7 1/7 70 12 0.15

0.1 0.5 0.2 67 29 0.33

0.1 0.3 1/3 70 66 0.68

0.1 0.1 1.0 52 99 0.98

T=100, M=5

Table 2.

From this table, we see that, by increasing p we get better results. But, in fact, the
accuracy of the estimators does not effect notlceably by increasing the value of m. To show
this, we present in table 3., the values of N*, N * and Q (1) for the same values of \,u
and 7, but for m = 8, and also we give in table 4. the values of N* and N * for fixed
A, u and T and increasing m.




A | w | o |F*[R 0,0
01 | 1.0 |01 | 42 0 |oo01l
02 |10 |02 |77 | 38 |040
03 [ 1.0 |03 | 8 | 97 |092
05 | 1.0 |05 | 95 [100 |099
07 |10 |07 |99 |100 |1.00
01 [1.0 |01 | 42 0 |00l
ol |07 |17 | 50 8 | 0.06
01 [05 |02 |57 |24 |o021
o1 o3 |z |71 |s6 |oel
01 |01 |10 |59 |100 |0.97

T=100, M= 8

Table 3.

7m N* ](/*
3 96 | 100
5 90 92
7 91 98
10 81 89
15 90 89

A=0.3, u=1.0, T=100

Table 4.
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From tables 2. and 3. we note that, although, the accuracy of the maximum likelihood
estimator increases with increasing p, but when A and u have small values, (A = 0.1,
u= 0.1), the accuracy of the method is not so good as in the preceding cases with smaller
values of p. This may be because of the decreasing of the number of transition for such
small values of the parameters, which effect the accuracy of the method.

Table 5 shows that, when we increase A and u by the same ratio keeping p fixed,
both the maximum likelihood method and the direct method give better results.

Al ow | N* [N o

0.1 1.0 54 5 | 0.05
0.2 2.0 68 14 | 0.11
0.3 3.0 78 15 | 0.16
0.5 5.0 94 19 | 025

0.7 7.0 97 29 | 0.34

1.0| 10.0 | 100 49 | 045

20| 20.0 | 100 74 | 0.70

3.0( 30.0 | 100 81 | 0.83

5.0| 50.0 | 100 97 | -0.95

10.0 | 100.0 | 100 100 | 0.99

p=01,M=5 T=100

Table 5.

To explain the effect of increasing A and u, by the same ratio keeping p fixed, on the
accuracy of the direct method, we replace A -and u by RA and Rpu respectively. Thus we
can easily prove that the eigenvalues are replaced by Rw,,Rw,,..., me 1 while the
components of the corresponding eigenvectors and also the values of the constants

C1 , C2 S do not effect. (See the proof in the appendix.)

m+1
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This means that the probability Q (1), in this case, takes the form

m‘tl . Rw.t
(10) Q, (0= l+:=22 Coll e !

and we have
Qm(t)—» 1 as R — oo,
In fact, formula (10) shows that, increasing A and u by a ratio' R is equivalent to

increasing T by the same ratio R. We can insure this fact numerically, by comparing tables
1. and 6.

N | u| Ne|N* | Q0

0.06| 0.2 47 38 041

0151 0.8 77 76 0.77

0.3 1.0 91 94 | 0.95

- 0.6 2.0 98 100 | 0.99

1.5 5.0 100 | 100 | 1.00

p=03,M=5, T=100

Table 6.
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Appendix

In this appendix we prove that if we increase the arrival rate A\ and the service rate pu
by the same ratio R, keeping p fixed, then the eigenvalues of the matrix A increases by

the same ratio R while the components of the corresponding eigenvectors and the constants
Cl 555 C do not change.

$ %5 Tm g

To see this, let us write the characteristic equation in the form:

14 — wl| = wf, (W)= 0

where generally:

)\0 +w — 1
- ?\l +u+w -p
f;.(w)= R
—)\1_3 s +ut+w =
L e | )\1_1+y+w-'
Then it is easily seen that, the sequence fo(w), T fm (w) of functions satisfies the

recurrence relation:

(11 W= _; +tp+wfi_ W) =N _,uf;_,W), 2<i<m

with
fo(W) = 1’
fl(w)= w+ )\0, and
[ 1 (W) = wf, (W).

m

We know that one of the eigenvalues of the matrix A is equal to zero and the other m
eigenvalues are the solution of the equation:

f. £ (w)=0.
Let us write

(12)  fw=aw +q_ W14 . +awta =0

0
where the coefficients ay,ay,...,a are functions of A and ..

Now we prove the following:
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Lemma. The coefficient a; of w in [, (W) is a homogeneous function of order
(i—j) in N\ and

1=0,1,....% =012, 0,

Proof. It is clear that the lemma is true for:

fiw)=w+A,, and
LW =w2 + (A, + A + Ww+ N,

Let: a}i) denote the coefficient of w/ in f;(w). Thus using the recurrence relation (1 1) we
have: ’

d =y +wafV+ai 0N paf-?, 1<j<i and
(13) i
al) = £0) = KAy oo ey

Thus by mathematical induction and using (13) it is possible to see that the lemma is
true.

Now, replacing A and u by RA and Rpu respectively, equation (12) for i= m takes
the form

(14) . WP am_lRw'""1 + am_szwm"2 + ...+ alR'"‘lw+ a,R™ = 0.
Thus, if the roots of (12) are WisWyseo s Wy then the roots of (14) are Rw1
Rw,,Rw,, ... ,Rw,_  as required.

Also, since the components of the eigenvector corresponding to any eigenvalue w* are
determined by:

o
al—l
)\0+w*
a¥= ——a*
2 7 12
A + u+w* A :
* k—2 ¥ - k—'3 *
o = m @1 " g %-2 3<k<m,
A
* PO | s P
@41 — i Lo *

Then, it is clear that the values of these components and consequentely the values of the -
constants C,, Cosevns Cm +1. are not effected by the replacement of A and u by RX and
Ru.
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Peabpue

PaccuaTpuBanTCHs XBa METOX& OIEGHWBAHES UYHCHNA MANKNH BHCTa-

HABIMBAEMHX OXHHEM pa6oumM, JANTENHHOCTH PAGOTH B BPEMA DEMOH~-
TA NMpeAnoJarapTCH HMETh 3KCNOHEHNHANBHOE DaCNpeXeleHEe C napa-
MEeTpaME A M u COOTBETCTBEHHO.

OnpezengeTcd pacnpefeleHNe MeKCEMyMa B EHTepsaze (0,7)

quCcl&a JOMAHHHX MANMHKH,

Mprpexernsw nkcxennxo NPpHEMEPH IOJAYyIYSHHHE CTOXAQCTHYEeCKHM MO-

HeXVPOBAHEEM XAJA CPABHEHHA DACCMATPHBACGMHX ABYX METONOB.
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