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AN ESTIMATION PROBLEM IN THE PROCESS 
OF SERVECING MACHINES

by Jacob Eshak Samaan

Introduction

Consider the repairman problem described in [3], pp. 462, in which a set of m machines 
are attended by one repairman. If a machine breaks down, it is served immediately, unless the 
repairman, is already at work on other machine, in which case it joins a waiting line. We say 
that the system in state i at time t if i machines are not working. Thus the state space 
X  = {0, 1, . . . , m)  contains m + 1 elements. Let us assume that the intervals between the 
breakdown of machines are independent identically distributed random variables with exponential 
distribution with parameter A, and the service time of a machine is exponentially distributed 
random variable with parameter p.

Thus, the number of machines failed is a birth—and—death process with transition 
intensities:

X. = (m — i) \  0 < i< m,

p(. = p 0 < i <  m,

the other transition intensities being zero.

Billingsley [2], had investigated the estimation of the parameters X and p assuming 
that m is known.

In this paper we assume that X and p are known, and find estimators for the discrete 
parameter m.  We discuss two methods for estimating m.  The first method, we call it, the 
direct method, and the second is the Maximum Likelihood method. Numerical results based 
on simulation are also given to illustrate and Compare the two methods.

The direct method for estimating m:

Assuming that we observe the system for a period of time of length T, let:

KO = denotes the number of failed machines at time t,
T(. = denotes the first passage time to the state i,
p ((t) = denotes the probability that the system is in the state i at time t, assuming 

that the state m is an absorbing state.

Since, the number of failed machines is always less than or equal m,  then we may 
consider the statistic.

m - = max KO 
1
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as an estimator of the true number m  of machines.

To investigate the properties of this estimate, we first calculate the probability:

Qm i t ) = p(rht =  m)

For this purpose we have by [6], that:

Q„ (0  = P(mt = m) = р(тт <  t) = pm it),

and it may be found by solving the sequence of forward equations assuming that m is an 
absorbing state.

This sequence of forward equations is:

Pq( 0 =  - \ Qp Q(t) + jupj(0

P p )  =  -  ( \  + p ) p p )  + Xf_ , p .  _ ! (i) + p p .  +1 i t ) ,  1 <  / < m  -  2

p ; _ i ( o  = - ( x m_i  + g)pm _ i ( o

PmW = x « - i P m- i W

(i)

which may be written in the form:

where

Pit) = AP(t),

A =

X0 M

x 0 -  ( X j  +  m )

-  ( X 9 +  JU)

vm - 3 (Xm — 2 + P)

m —2 - ( K

к

M

! + M) 0 
, 0

(m + 1 ) X

x(m + 1)

Po(i)

p  i t )\_r m 4 -J

im  +  1 ) X 1.

From (1), we get the general solution:
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(2 )
m  + 1

V

where С., / = 1, 2, .  . . , m + 1 are arbitrary constants, and the w. ’s are the eigenvalues of the 
matrix A,  that is, the solution of the characteristic equation:

(3) \A -  w/| = 0,

and a^  is the j  th component of the eigenvector corresponding to the i th eigenvalue w.. 

Since we assume that all the machines are in working state at time t = 0, then:

1

0
д  o)= . (m + 1) X 1.

.0

Thus the arbitrary constants C.’s are determined by:

m +1

m +1
2 C(.a «  = 0 ,

i = l 1 1

m +1
2i = 1 Ct*

(«)
m +1 = 0.

By a similar way as in [ 1 ] we can prove that, one of the roots of the characteristic 
equation (3) is = 0 and the other roots w2, w>3, . . . , wm +1 are all negative and 
distinct.

Thus (2) may be written as:
m +1

(2-) « < » , +  2
w.t

where, the second term on the right hand side tends to zero as t tends to

It is well known that pm (t) is a proper distribution, since it represents the distribution 
of the first passage time to the state m of a finite Markov chain, which is irreducible and 
recurrent. Thus
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(See [3], pp. 392.) We can prove (4) also by simple calculations using the laplace transform 
of the system ( 1).

( 4 )  p m ( - )  =  1

Note that, this fact is true for any pk (t), k < m ,  if we assume that к is an absorbing
state.

Relation (4) means that m{ is a consistent estimator for m.  

Now, from (2’) and (4) we have 

С a(1) = 1° 1ат +1 15

i.e.

W.tm +1
(5) S , ( I ) = P , ( ( ) = H  2

= l + A ( t )

where the constants C.’s are determined from the relations:
m +1
2  Cta f  = 1,
1 = l 

m +1
2  c v »  =
i=l 1 ’ 
m +1

c  a0) = _  1
/ к  Ч ат*  1 L-

2 < /  < m ,

Since p {t) is the distribution function of the first passage time to the state m,  then 
it is an increasing function in t, this fact is clear also from table (4) of the last section. This 
means that:

m +1
ж о =  21=2

w.f
C a( ) e 1jam+1K

is an increasing function. In fact we have:

Л(0) = - 1, and y4(~)=0.

Thus, for given X, p , m  and a small positive value e, we can find a value t for which

Pm Ct)> 1 -  e.

A

This means that, if we observe the system for a time interval of length t, then the 
probability that we get the true value of the number of machines is, at least, equal to (1 — e).

Л
To determine t, we have to find the minimum value of t for which
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- e <  A(t) <  0.

• с- ЛThe distribution of т ( :
А

То investigate the distribution of mf 
we note that the event т { > к occurs if 
and only if, the event rk < t also 
occurs, к  = 1, 2, .  . , ,  m .

Then:

pk(t) =  Р(тк <  t) =  P(mt > k),

Pk+iV) = P(Tk +i <  0  =  P{mt > k +  1).

So:

Qk (t) = Д т ,  = k) = Pk U ) - p k+1(t), K k < m - l

while :

Qm(0  = Pm(0 = p(mt = m)

as discussed before.

The quantities pk (t), к = 1 ,2 , .  . . , m — 1 are again obtained by solving the system (1), 
assuming that к is an absorbing state. Thus:

m  vv. t
P * ( 0  -  2  C , . « ,  <r '  .

By the same argument as for pm(t), we have:

>+ I V i v ' ' '
when t -*• °°, each Qk(t), к — 1, 2, . . . ,  m — 1 tends to zero, while:

Ô (0 1.

Also, we have:
m

ocm (t) = E(mt) = 21 p f t )

and when t -*•»», each p . ( t ) -* l ,  i.e.
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(6 ) lim E(m ) = m.ь t

So, mt is an asymptotically unbiased estimate for m.

For the variance of m{ we have:
m - 1

Vai(mt)= E( mt - = 2  ( / - a m(f))2[pf( f ) . - p /+1(f)]

+ (m -  <*m (t))2p j t )

i.e.

(7) V ar(m )->-0 as t -*■ °°

From (6) and (7), it follows again that the estimator is consistent estimator for m

Maximum likelihood estimate for m :

Assuming that we observe the breakdown times and repairtimes of the machines in a time 
interval of length T, let :

a. = denotes the total number of transitions from the state i to the state i+  1,l
Z>. = denotes the total number of transitions from the state i + 1 to the state i, 

y. = denotes the total time spent in the state i during the time of observation.

The log— likelihood function of this sample, by [2] pp. 50, is

The maximum likelihood estimate for m is that value m which maximizes the function

(cf. [5], pp. 281).

( 8)

L T{m).

Thus we try to find an integer m > 0 such that:

E L T{m) <  0 < A L T(m -  1)

where ДLT(m) is the first difference of the function L T(m) given by:
Am rr~ 1

In other words, the maximum likelihood estimator for m is the first value m which 
satisfies:
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i.e.
m rp— 1
2  [a In Z±±X— l- -  7 X] < 0. 
i = o ' m -  i 1

Since

— -*• X. = (w — z)X as T
Ъ 1

then, for large values of Г we have:
m p - l

(9’) ЛLT(k) ^  2  7,X[(m -  i) In к + 1 — /
к — i -  U,

Now, it is quite easy to see that the right hand side takes its maximum at k = m which is 
the true value of the number of machines, and that this maximum is unique.

To see this, one can show by elementary calculations that, for any 0 <  i <  k,

(m — 0 In к — i + 1
к -  i

> 0 

< 0

for

for

k <  m

k >  m.

From (9) and (9’) we see that for
A

к > rrij. we have:

Х7,-
- •m к + -O ta  k .

— o x ]  In к + 1 — г
к — i

-  1]

—*■ 0, as T -*■

ai ъbecause — -*■ (m — j)X and - j  -*• p* as T  -*■ °° where p*’s are the stationary probabilities 

of finding the system in the state i.

This proves the consistency of the maximum likelihood estimation.
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Numerical examples and illustrations:

With some modifications of the algorithm given in [4] to simulate the system M/M/m, we 
can get a simulating algorithm for our present case. Hundred samples are simulated and estimates 
for the number m of machines are founded. The following tables summarize some of these 
results for different values of the parameters.

A

Let N* denotes the number of times we get the true value of the number of machines 
out from the 100 samples using the direct method, and N*  represents the same but using the 
maximum likelihood method of estimation.

A ._
In the tables we present both the values N *  and N* in addition to the probability 

Qm(t) calculated from formula (5).

Table (1) gives the results for fixed X, ц and m and different values of t.

T N*
A

N*

20 47 38 0.41

50 77 76 0.77

100 91 94 0.95

200 98 100 0.99

500 100 100 1.00

X = 0.3, Ц -  1.0, m = 5

Table 1.
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Table 2. shows the effect of increasing the value of p = X/p on the results.

X M P TV*
A

TV* ß * w

0.1 1.0 0.1 54 5 0.05

0.2 1.0 0.2 78 56 0.57

0.3 1.0 0.3 93 97 0.95

0.5 1.0 0.5 98 100 0.99

0.7 1.0 0.7 97 100 1.00

0.1 1.0 0.1 54 5 0.05

0.1 0.7 1/7 70 12 0.15

0.1 0.5 0.2 67 29 0.33

0.1 0.3 1/3 70 66 0.68

0.1 0.1 1.0 52 99 0.98

T = 100, M = 5

Table 2.

From this table, we see that, by increasing p we get better results. But, in fact, the 
accuracy of the estimators does not effect noticeably by increasing the value of m.  To show

___ Л

this, we present in table 3., the values of TV*, TV* and Qm (t) for the same values of X, p 
and T, but for m = 8, and also we give in table 4. the values of TV*' and TV* for fixed 
X, p and T  and increasing m.
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X P Р N*
А

N* Q (t)

0.1 1.0 0.1 42 0 0.01

0.2 1.0 0.2 77 38 0.40

0.3 1.0 0.3 86 97 0.92

0.5 1.0 0.5 95 100 0.99

0.7 1.0 0.7 99 100 1.00

0.1 1.0 0.1 42 0 0.01

0.1 0.7 1/7 50 8 0.06

0.1 0.5 0.2 57 24 0.21

0.1 0.3 1/3 71 56 0.61

0.1 0.1 1.0 59 100 0.97

T  = 100, M =  8 

Table 3.

т N*
А

N*

3 96 100

5 90 92

7 91 98

10 81 89

15 90 89

Л= 0.3, м = 1.0, Г =  100

Table 4.
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From tables 2. and 3. we note that, although, the accuracy of the maximum likelihood 
estimator increases with increasing p, but when X and p have small values, (X = 0.1, 
p = 0 .1), the accuracy of the method is not so good as in the preceding cases with smaller 
values of p. This may be because of the decreasing of the number of transition for such 
small values of the parameters, which effect the accuracy of the method.

Table 5 shows that, when we increase X and p by the same ratio keeping p fixed, 
both the maximum likelihood method and the direct method give better results.

X M N*
A

N* 0 . ( 0

0.1 1.0 54 5 0.05

0.2 2.0 68 14 0.11

0.3 3.0 78 15 0.16

0.5 5.0 94 19 0.25

0.7 7.0 97 29 0.34

1.0 10.0 100 49 0.45

2.0 20.0 100 74 0.70

3.0 30.0 100 81 0.83

5.0 50.0 100 97 0.95

10.0 100.0 100 100 0.99

p = 0.1, M =  5, T=  100 

Table 5.

To explain the effect of increasing X and p, by the same ratio keeping p fixed, on the 
accuracy of the direct method, we replace X and p by ÄX and Rß  respectively. Thus we 
can easily prove that the eigenvalues are replaced by R w l , R w 2, ... . ,R w m + l while the 
components of the corresponding eigenvectors and also the values of the constants 
C j, C2 , .  . . , Cm + j do not effect. (See the proof in the appendix.)
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Q (0 , in this case, takes the form

Rw .t  
6 1+1

and we have

Q (t) —*■ 1 as R -*■m

In fact, formula (10) shows that, increasing X and д by a ratio R is equivalent to 
increasing T by the same ratio R . We can insure this fact numerically, by comparing tables 
1. and 6.

This means that the probability

n  m
m + 1

(t\ = 1 -i- У  r  «(0

X M N* N* QmM

0.06 0.2 47 38 0.41

0.15 0.5 77 76 0.77

0.3 1.0 91 94 0.95

0.6 2.0 98 100 0.99

1.5 5.0 100 100 1.00

p = 0.3, M =  5, r =  100 

Table 6.
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Appendix

In this appendix we prove that if we increase the arrival rate X and the service rate p 
by the same ratio R, keeping p fixed, then the eigenvalues of the matrix A increases by 
the same ratio R while the components of the corresponding eigenvectors and the constants

Cl » • • • > Cm + i do n0t chan8e-

To see this, let us write the characteristic equation in the form:

\A — wl\ = w f  О )  = 0

where generally:

/j(w) =

\  + W - p

-  \  \  + P + w

-X , X, + p + w -  p

-X ,i - 3 - 2

- 2

+ p + W

V i

- p
+ p + w

Then it is easily seen that, the sequence / Q(w) , . . .  , / m (w) of functions satisfies the 
recurrence relation:

( 11) /,(w )=  (X; _ j  + p+  w)f i _ l (.w)r-X._2pfi _ 2(w), 2 < i < m

with

/ 0(w) = 1,

f x (w) = w + x 0, and

/ M+i (w)= w/M(w).

We know that one of the eigenvalues of the matrix A is equal to zero and the other m 
eigenvalues are the solution of the equation:

/ m( w ) = ° .

Let us write

( 12) f f(w) = a y  + at _ У  ~ l + . . .+  ayw + aQ = 0

where the coefficients aQ, ax, .  . . , a. are functions of X and p . .

Now we prove the following:
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Lemma. The coefficient a. o f  w1 in /j.(vv) is a homogeneous function o f  order 
(i — f) in X and /л

/ = 0 , 1, . . . , / ,  i = 0 , /, 2, . . . ,  m.

Proof. It is clear that the lemma is true for:

f x O )  = w + x 0 , and

/ 2(w) = w2 + (X0 + Xj + m)w + XqXj .

Let: denote the coefficient of W in /j.(w). Thus using the recurrence relation ( l i )  we
have:

(13)
a(p  = (X;. _ j + n)aj 1} + а р  21} -  X, _ 2 ß t fa -  2) l <  /  <  i and

«ï> -  / ,« »  = V > . . . X .Ï -  1 ■

Thus by mathematical induction and using (13) it is possible to see that the lemma is
true.

Now, replacing X and ß by RX and Rß  respectively, equation (12) for i - m  takes 
the form

(14) a wm + a . Rwm ~ 1 +a  ~R2wm ~ 2 + . . . + a . Rm _1w + anR m = 0.m m — l  m — i  1 U

Thus, if the roots of (12) are w x , w2, . . . , wm then the roots of (14) are R w 1 
R w x, Rw2, . . .  ,R w m as required.

Also, since the components of the eigenvector corresponding to any eigenvalue w* are 
determined by:

“ Ï - 1

* Xo + *
a2 ~ -----Д----«1*

\ - 2  + M+ W* 
M lk -  1

' k -  3 *
ß ak - T 3 < к < m,

m +1
m — 1 *----------a ** m w

Then, it is clear that the values of these components and consequentely the values of the
constants Cj .C j ......... C j. are not effected by the replacement of X and ß by RX and
Rß.
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P e з ю н e
Рассматриваются два метода оценивания числа мамин выста- 

навливаемых одним рабочим. Длительность работы и время ремон­
та предполагаются иметь экспоненциальное распределение с пара­
метрами X и м соответственно.

Определяется распределение максимума в интервале (0, г) 
числа ломанных машин.

Приведены численные примеры полученные стохастическим мо­делированием для сравнения рассматриваемых двух методов.
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