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ON ABSOLUTE CONTINUITY OF MEASURES DEFINED BY
MULTIDIMENSIONAL DIFFUSION PROCESSES WITH
RESPECT TO THE WIENER MEASURE

A. Benczur and L. Szeidl

In [5] Lipcer and Shiryaev dealt with the absolute continuity of measures generated by a
diffusion type process and the Wiener process for one dimensional case. In this paper an
attempt is made to carry out their result for multidimensional case. We summarize the result
in tree theorems based on each other and we discuss; in details, a lemma the proof of which,
for multidimensional case, needs considerations different from those used in [5]. Before this
we give a concise list of preliminaries.

Let (£2, F, P) be the basic probability space, {F,C F, 0< t< 1] a monotonically
nondecreasing family of o-algebras, w = (. F ,,P) an n-dimensional standard Wiener process,
ie. it is an n-dimensional continuous martingal with respect to the family £, such that

W = 0 a.s. and

E[(w‘;—wi)(w/,—w’;)lF’]=Sii(t—s) oy e Lf=1,20...0

Let C, denote the space of the n-dimensional vector valued continuous functions x, on
(0,1] and B, the o-algebra generated by cylindric sets on [0, 7]. Further, let o, (x) be a
B[o 1] xB,, B[o 1] is the o¢-algebra of Borel sets of interval [0, 1], measurable n dimensional

nonanticipating functional, i.e. a,(x) B, measurable for every 0< < 1.

Let

The n dimensional (§,,F,) process is called a process of diffusion type if there exists a

nonanticipating measurable functional such that
!
P(g la,(§)1dt < =) = 1

r
(a,(§) = o, (§(w)), &w)= {E’, 0<t<1) and & = [ a(f)ds+ w, as. forany 0< <.
0
Denote by ut(uw) the measure on the space (C| ,Bl) generated by the process
Ew)= ¢, 0<1< 1] Ww)=|w,, 0<t<1})

ie. for Be Bl
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yE(B)=P{w:£(w)eB} (u,(B)= Pl w:w(w) €B)).

Let (v,, Fr) be an n-dimensional stochastic process satisfying the condition

1
(1) P(b{ lv,12dt < ) = 1

t Lo .
and such that §, = 1+ ] v, dw, =1 + =y 7;dw; is a nonnegative martingal with respect
0 i=1 0

~

to (Ft,P). Introduce now a new measure P on the measurable space (§2, F) by the formula

(2)  P(dw) = ¢ Pdw)

S

£y
Theorem 1. Let &, =- [ T ds+ w,, 0<1<1. Under conditions (1) and (2)
0 35

(&.F, P) is a n-dimensional standard Wiener process.

Girsanov proved, see [4], this statement for a more particular case considering

t 1 t
§t=exp{({—yndwn——§g

Iy, Izdn}

Lipcer and Shiryaev, in [5], dealt with general $; but for one—dimensional case. Their
proof is essentially simpler than that of Girsanov. Concerning the multidimensional case one
can quite easily observe that, upon replacing the ordinary scalar products by scalar products
of vectors, Lipcer’s and Shiryaev’s arguments remain valid.

The next two theorems deal with the absolute continuity of measures generated by the
process {, and w, .

Theorem 2. Let &, be a diffusion type process satisfying the equation
t

£ = ({ a(&)ds+w,, &£,=0
and suppose that
]
3) P(Of la,(W)12dt < =) = 1

The measure p, is absolutely continuous with respect to M, (u, < “E) and

dﬂw ] 1. 5

71:1: (W) = exp { —Of a,(Wydw, + 3 Of lee, (W) dt} P as

Under the condition F f = FY (3) is necessary for the absolute continuity.

If x, is not a Wiener trajectory, i.e. the stochastic integral in the exponent has no meaning,
the Randon—Nikodym derivative equals to 0. This remark can be correctly explained by the

notion of generalized to integral introduced by Lipcer and Shiryaev in one—dimensional case.
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Their considerations remains valid without any change for multidimensional case as well.

du
An analogous theorem holds for Ei :
w

Theorem 3. Let &, be the same process as in theorem 2. The condition
P(gjlat(&’)lzdt<°o) =1

is necessary and sufficient for the absolute continuity of My with respect to p_, and

du 1 1
ki 1 = s 2
dn, (%) exp{({ a,(§)dt, 3 gl lee, (8)1 dt}.
Concerning the meaning of this formula we should make again an analogous remark. The
proofs of the sufficiency of condition in theorem 2. and 3. do not require any changes in
Lipcer’s and Shiryaev’s proof but for proving its necessity we have to generalize a lemma used
by them.

Lemma 1. Let (2, F,P) be a probability space, and w= (w,, F,,P) be a standard n-
dimensional Wiener process. If {(w) isa F ;" measurable random variable (one—dimensional)
with E|§(w)| <o then there exists a measurable nonanticipating vy t(w) vector functional,

]
such that 0{ |7'(w)|2dt< e with probability 1 and for the martingale §,6 = E({(w)lF;") for

every t=s P almost everywhere

n

1 A .
(4) T ,-Z; [ wyaw! .
=g

This result is due to Clark [1] for one-dimensional case and to Kunita and Watanabe (2] for
multidimensional case, but under a bit stronger condition.

Proof. As the o-—algebra F}’ is continuous, the martingale ¢, is P a.e. continuous
(see [3]).

Set 1, = inf/{t:|§'t|=N‘,, TyN t=min(s,7,) and put §u(N=¢§ .7y
0<r<1 N

Markov—point and so gN(z) is a martingale

is obviously a

sup |§'N(t)|<N, P a.e.
0<t<|

The process {, (¢) is continuous and square integrable, therefore according to [2] it can be
represented in the form

X

i=1

[ SO :
tuii= 2 | (s widw,

where ‘ij(s, w), i=1,...,n a square integrable F;" measurable for every t.



On the set

Xy(O={w: sup I§I<N| for M>N
0<s<t

we have

Ev® =8, () O0<s<t ae., ie.
T T

N N
_ g’ Xy )&y () — &5, (5))2ds = g (OERMO AL g (¢, —¢§)*ds= 0.

Define for every 1< i< n the functional 'yi(t, w) by 'y"l(t, w) on the set

{w:0< sup |§ <1} and by v5(r,w) on theset {w:1< sup [§I<2},... and so on.
q 0<s<t 0<s<t
¥'(t,w) is, for every i obviously measurable process and for any fixed ¢t is F :" measurable.

Moreover

{w: 2 l (y'(t, w)dt = oo} C {w :6'1 21 (Y'(t, w) — vl (£, w)Pde > O}
1 =

=10

C lw: sup [§ 1> N|
0<s<t

' LA [
The probability of the last set tends to zero as N — =, so 2 [ (Y(t,w)*dt< o P ae.
el 0

4 =
Thus the to integral [ (s, w)dw_ can be correctly defined for every t. By the virtue of a
0

well known property of to integral

t
P{Icf (7y (s, W) — (s, w))aw, I > 0} < P{J’I'yN(s,w) — y(s, w)lds > 0} -0

as N — oo,

t -
From this it follows that {, (7) stochastically converges to f (s, w)dw_. Since  lim §, (1) =
0

1
N —
= {, in probability so that

§, = g’ y(s, wydw,_.

The uniqueness of the representation can be easily proved:
Let 71(1, w), 72(t, w) be functionals for which the representation (4) holds. Then for any
0< t< 1 applying to formula to

t
n} = [({ (7, (5, W) — 7,05, w))dw‘)2
we have

n
dwi + 2 oyl (s, w) — 7', (s, w))?ds.
i=10

s

n
0=n,2=_2312-n

Therefore 7l(s, w) = v,(s, w) for every 0< t< 1 with probability 1.
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Pes3awnwume

06 a0CoJOTHOX HENpepHBHOCTA MEp, COOTBET-
CTBYWWLMX n MEPHHM IpoueccaM Auddy3uMOHHOIO
TUIIa, OTHOCUTEJIBHO BUHEPOBCKOH

B HacTosfmeli padoTe paccmMaTpuBaeTCs aO0COMNTHAA HENPEPHBHOCTH
Mep (OTHOCMTENBHO BUHEPOBCKON MEpH) COOTBETCTBYOMMX MHOI'OME DHHM
npoueccam auddysuoHHoro Tuma. O0CoOWalTCA Pe3yabraTh Junuepa u
llupsieBa HAa MHOI'OMEPHH{ cJiyudail.
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