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THE CONNECTION BETWEEN GAUSSIAN MARKOV PROCESSES AND
AUTOREGRESSIVE-MOVING AVERAGE PROCESSES

A. Kramli and J. Pergel

In this paper we examine the connection between stochastic difference (differential)
equations and multidimensional Gaussian Markov processes. We are using the definitions and
notations of [1].

Definition 1. We call a stationary Gaussian process §(n) an autoregressive moving
average (ARMA) process if it satisfies the equation

3 :
(1) En) = '_Zaif(n—l)+i:lb‘e(n~l)+e(n)

=1

where {e(n)} is a sequence of independent, identifically, distributed (i.i.d.) Gaussian random
variables, and e(n) is independent of A" ! (§).

Theorem 1.The equation (1) has a unique stationary solution if and only if all zeros of the

i

[+ 4
characteristic polynom of the autoregressive part p, (p) = p* — 2 a;p*" "' are inside the
i=1

unite circle. In this case ¥(u) is the first component of a k = max {a, g+ ]} dimensional
stationary Gaussian Markov process.
g = V@, ... . 890)
Proof. Let us assume that £V(¢) = &) and consider the system of equations
(2) Em=*Dn-1+C_,en) if i<a-1
B+1

4
@) () = Dn —
&m t‘-Z:a“”"E( = i=a+1

b 180 — 1) + Co _e(n)
£ D(n) = e(n)
Fa+D () = gari-D, if l+a<i<pg+1

(Naturally in the case a« < the suitable terms and equations are omitted.)
If the constants ¢ (J=cy...(a— 1)) satisfy the equations

(1) c0=l
¢, —a, c0=bl
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then the system (2) is equivalent to the equation (1). It is easy to see that the characteristic
polynom p,(p) of (2) is equal to p,(p) if < a, and pﬁ * lpl(p) otherwise. So the
system (2) of stochastic difference equations has a unique stationary solution, which is a k-
dimensional Gaussian Markov process and its first component will be the unique stationary
solution of the equation (1).

Q.E.D.

Remark 1. The solution of the equation (1) can be obtained in a constructive way similarly
to the first order autoregressive process

(4) = 2 c e(n—k)

Proof. Indeed, if the coefficients ¢, satisfy the infinite recursive system of equations
(5) gy = 1

cl—alc0=b1

=b., if k>a,

(44
Cp ~ 2 Y i ™ Oy
i=1
(notice that the first a equations concide with system (3)), and kZ ey 12 < oo then the
=1

process (4) is a correctly defined stationary Gaussian process satisfying (1).

As b, =0 for k> p, and the roots of characteristic polynom p,(p) are inside the
unite circle, system (5) has a unique solution with the desired property.

A multidimensional Gaussian Markov process £(n) has the representation

£ (n) = kZ; Q" €(n— k). As the matrix Q satisfies its own characteristic equation:
a 3
¢ ,Zl'a,-Q““' =0,
’ =

all the elements of { Q"] satisfy a recursive system of equations similar to (5), therefore

1
the components of §(n) are sums of ARMA processes. Notice that if &(n) = kZ d, EB ),
— =1

a [}
where %) (n) = .Z;a,’é(n -+ ‘Ff) bgg) €®(n—i) and {e®(n)} isa sequence of i.i.d.
‘ = ‘ =

Gaussian vectors, then §(n) is ARMA process. So we get the converse of theorem 1.

Theorem 2. Any component of a multidimensional stationary Gaussian Markov process
is ARMA process.
In the continuous time case the equation



—h Oy =

o
(1" £ = ,Zl’a,é‘“ Dy + ‘fl bwB 240y + w'(n)
5= =

would correspond to equation (1). Before giving an exact meaning to (1’) we try to solve it
formally. For this purpose we need the following.

Lemma 1. If the function f(t) is differentiable and

[ UADR + 1 (D12)di < o,
0

then

t+h

t
(6) [ f(t+ h —s)dw(s) — [ f(t — s)dw(s) =

— 5)dw(s) + f(O)(w(t + h) — w(D)).

The proof can be carried out by changing the order of integration. The relation (6) formally
can be considered as a ’rule of differentiation”:

t ] t
(7) ( [ £t —s)dw(s)) = [ f'(2 - s)dw(s) + FOW'(2).

t
We are looking for a solution of (1°) in the form &(r) = [ f(t — s)dw(s), suggested by the

representation of the first order autoregressive process. If < a, then there exists a unique
function f(r) satisfying the homogeneous differential equation

(4
(8) f(a)(,) . z; aif(a —D(I) =0
i=

and the initial conditions

©  f0)=1
£'(0) —a, - f(0) = b,

a-1

fE=0. F g fRI=Vap.
i=1

@Gt 1>8; b,=0).
Using the formal differentiation rule (7) we may convince that

t
(10)  En= [ f(t— s)dw(s)

is a formal solution of (17).
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. If the roots of the characteristic polynom p,(A) = A& — 21' a,.)\“" have negative parts,
' =

then flf(')(t)lzdt <o forevery i= 0,1,... .In this case the process £(¢) given by (10)
0

is a correctly defined stationary Gaussian process. We may assume (10) as the definition of
continuous time ARMA process. (We notice that for > a (1°) has only generalized solution.)
For continuous time ARMA processes theorems corresponding to theorems | and 2 are valid
too:

Theorem 3. A continuous time Gaussian process £(t) is ARMA if and only if it is a
component of a multidimensional stationary Gaussian process §(1).

Proof. The first part of the proof is obvious. The a-dimensional process |£?} =

t
={ f 9~ s)dw(s)} (i=0,...a — 1) satisfies system of equations:

(11 dt® = g+ D) + caw(t), i=0,...,a—-1,

a-1
ds(a =1 = ,?5’6 aa 2 ,E(i) + Ca = ldw(t)l

where ¢, = f9(0).
The converse assertion can be obtained similarly to the discrete time case, using the integral
representation of a multidimensional Gaussian Markov process, and the fact that the matrix

(A t)('), where the

a1
function €' satisfies the differential equation (e?)® = _Z('-) @
i=

coefficients @, coincide the coefficients of the characteristic polynom of A.

Remark 1. If we suppose that 3> a« we would have to add further equations to system
(11) among them the equation dt®*V(¢) = dw(f) which has no stationary solution. This is
the reason of the additional condition < a.

Remark 2. The system of equation (11) has the following visual meaning: an ARMA
process £(1) is not differentiable in general — but by the addition of a suitable Wiener process
it becomes differentiable. This procedure can be continued up to the (a — 1)-th derivative

of §(1).

Remark 3. Combining theorems 1., 2. and 3. with Doob’s theorem (see [2]) we get that
the discrete time sample process §(n8) of a continuous time ARMA process £(¢) is also
ARMA. But, the sample process §(nd) of a pure autoregressive process isn’t generally a dis-
crete time pure autoregressive process, because if a matrix 4 has the form

0 1 0
0 1
0 0 1
a4,

its exponent e4% has not the same one.
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In this work we have avoided the spectral approach to stationary processes because of
the necessity of deep analytic tools. But in some technical applications the spectral density
function has a simple visual meaning and it can be easily measured. For this reason we breefly
summarize (without proofs) the basic facts concerning to the ARMA processes. A regular
discrete (continuous) time stationary process has the representation (see [3])

2m .
(12) £(n) = Je"“"g(w)dww)

(13) &= [ eMadwn)

where w(yp), w(A) are standard Wiener processes (’random measures’), and functions g(p)
resp. h(A) can be analitically continued to the open unit circle resp. upper halfplane. The
sequence of i.i.d. Gaussian random variables (resp. the white noise process) corresponds to
the identically constant function on the interval (0, 2m) (resp. (— o, =)). Using this fact we
can easily find the connection between the “moving—average’ representations (4) and (10)
and the spectral representations (12) and (13):

3. o
= Z3C em‘p,
&ly) =Cn

0 i\
h) = [ f(-9eds.

Using the formal correspondences

E(n) ~ g(p)e™?, E(1) ~ h(\)e'M
£'(1) ~ h(\)ine'M

w'(t) ~ ¢'M we get for ARMA process the correspondencees

g8

5 i .
"‘{:JO bnf’ np n;:%) bn (l)\)n

8(p)=—% ; Q)= ———

by, - ing N )7
=l 4 £ (ix
n=0 “n n=0 n .

In continuous time case we can see from the form of Ah(\) that in the case = a
the integral of the spectral density function |#(\)|> would be infinite. By physical reasons
such a system can’t exist.
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Pe 30ME

CBA3P MEXAYy NpolecCaMy I'ayCCOBCKOI'O MapKOBC—
KOO THUIA M TUIIA 8BTOPEI'DECCH C KOHEYHHM

CKOJB3fAllMM CYMMHDOBAHMEM

B craThe 2JIEMEHTapHHMU METOZaMH NO0KAa3HBAETCHA, YTO I'ayCCOB-
cKuit mpollecC YZOBIETBOPAET CTOXACTHYECKOMYy pasHocTHOMY (zudde-
pesnuanpHoMy ypaBHexuo TMma I (I°) trorza ¥ TOXNBKO TOrZa, KOrZa
OH ABIAETCH KOMIIOHEHTOM MHOT'OMEDHOTO CTAllMOHAPHOI'0O I'ayCCOBCKOI'O
MapKOBCKOTO mpouecca. [ponecc aABiANMuACA pemeHUeM ypaBHEHUA |
(I’) B caydyae ZUCKpeTHOro (HeIpepHBHOIO) BPEMEHHOI'0 IIapaMeTpa
Ha3HBAeTCs NMPOIEeCCOM THUINA @BTOPErDECCHU C KOHEUHHM CKOJ3AMUM
CYMMUDPOBaHMEM .
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