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A FIRST PASSAGE PROBLEM FOR AN M/M/l QUEUE 

By Ahmed S. Mashour

INTRODUCTION

Consider the queue size process ( Q(t), 0 < t < T  j associated with the queueing system
M/M/l. Let L(t) be a given integral valued non-increasing step function with L(0) >  0 ,
L(T) = 0. One purpose of this paper is to investigate the random variable
t — inf j и :Q(u)> L(u)\ and its characteristics. An algorithm is presented in Sec.l in 

0 <U<T
order to obtain an explicit formula for the distribution function of r.

In Sec.2 it is shown that such a problem arise when we deal with an M/M/l system which 
offers service for the arriving customers during a finite interval (0,7T). Every served customer 
provides a revenue r > 0. After the closing time T, no new customers are admitted and the 
present customers, if any, are to be served in an overtime, at a runing cost С/unit time. The 
system has to be operated in order to make the expected net revenue as high as possible. The 
influence of the overtime costs on the net revenue, necessitates choosing a policy to control 
the input process.

A rejection time policy, closing the input earlier than T, is considered. A deterministic 
rejection time has been discussed in [2]. The random variable r  introduced represents a 
stopping time the optimal choice of which is discussed in sec.2.

A formula for the expected net revenue associated with a policy L(t) is given in Sec.3. 
Then the deterministic and the described random rejection policies are compared.

1. THE DISTRIBUTION OF r

We are concerned with an M/M/l queueing system where the customers arrive in a 
Poisson stream at mean rate X and the service times are independently, identically and expo­
nentially distributed with mean 1/ju. We assume that the system starts with no customers.
Let L(t) be an integral valued non-increasing step function given by:

a) Д 0) = N  ,

b) L ( t p  = N - i ,  i= 1 , 2 , . . .  , N  

where < T.
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In this section we show that the random variable r  given by r  = inf \u :Q(u)>
o<u< T

> L(u)} is of mixed type i.e the distribution function of т is a mixture of an atomic and 
continous distribution. An algorithm is presented to obtain a formula for that distribution 
function and its expectation and variance.

Define the event

Et = {Q(u) > L(u) for some , and
(D

Bk(t) = P r { E t n ( Q ( t )= k ) }  , k=  0, 1

where E ( = | Q(u) <  L(u) for all 0 <  и <  t) , is the complement event of E .

Form (1) and Fig. 1, it can be easily seen that т may assume the discrete values t*' s 
with probabilities

(2) P(t = t p  = Вщ _ о) _ P *  -  0) , i= 1 , 2 , . . . ,  N ;

the queue size process touches the function L(t) at t* from the left. Also r  may assume 
any value lies between the t f  s since the queue size process may touch L(t) from below as 
a result of an arrival. It follows that

(3) P(t < u) = X  /  Bm _ l (t )d t+ £  BL(t*-
R (“) t f<u 1

where R(u) = {t : t G (0,u),t Ф t p  /=  l , . . . , i V j .

Our problem now is to give an explicit formula for the functions Bk(t). We show that 
Bk (t), к = 0, 1, . . . , satisfies different systems of linear differential equations on different 
intervals.
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From equation (1) it follows that for small interval h

BQ(t+ h)= B0(t)( 1 - \ h ) + a ( h )  t * _ x < t <  t* 

then B'Q(t) = -  \ B Q( t ) .

Also B0(t + h) = ő Q(f)(l — ЛЛ) + (г)дЛ + o (h ) , j ,

then B'0(t) = - \ B 0(t) + MŐj(t).

Similarly it can be shown that

B \ ( t )=  - (X  + m) ^ ! ( 0 +  Xő 0( í) ,  í * _ 2 < Г< ,

5 ^ ( 0 =  -  (X + M)51( 0 +  X£0( O+ Mß2( 0 ,  0 < / <  t * _ 2 ,

ő'2( 0 =  - ( X +  m) 52( 0 +  Х Я / 0 ,  ^ _ 3 < f̂ _ 2 ,

B'2(t)= - ( X  + m) 5 2( 0 +  Х5х( 0 +  M#3( 0 ,  ОС í <  í* _ 3 ,

^ _ ! ( Г ) =  - ( X +  m)57V_ 1( 0 +  X ß ^ _ 2(t) ,  0 <  / <  t* .

It is more suitable to rewrite these equations in the following form 

if _ 1 < t < t *  , then

5'0( i )= - X ß 0(t) ,

if (n - l  > Леп

B'Q(t)= - \ B Q(t)+ n B ^ t ) ,

B \ ( t )=  - ( Л +  ß)B1(t)+ X50(O,

if + k=  0, 1......... iV— 2 ,

5'0( /)=  - X B Q(t)+ t i B ^ t ) ,

B \ ( t )=  - ( X +  M)Äj(t)+ XB0(t)+ m5 2( 0 ,

B N - ( k  + 2 ) ^  ^  +  ^ ' S y - ( f r  + 2 ) ^ +  ^ - ( *  + 3/ ' >  +  l*-B N - ( k  + 1 ) ^  »

BN - ( k  + = -  (X + М)^дг _ (fc + !)(0 + XÄ^ _ (A. + 2)(0  .

Since the system starts with no customers at t = 0, then

Я0(0)=  1 »

(4) ŐA( 0 ) = 0 ,  1 , 2 , . . .  ,7V— 1 .
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We start by solving the last system of A  linear differential equations on the interval (0,t*) 
using the initial values given by (4). Then we can determine the values of 
BQ(t), .S jU ), .  .  .  ,BN _ j  (t) at t= t* and use these values as the initial condition of the next 
system of A — 1 linear differential equations on the internal On repeating this pro­
cedure we can get the forms of Bk(t) on different intervals.

THE SOLUTION OF THE FIRST SYSTEM OF LINEAR EQUATIONS 

In matrix form this system can be written in the form

(5) ^ B ( t )  = AB(t)

where

~BQ(t)
B x{t)

-X  p 0 . . .  0
X -  (X + p) ju . .  . 0
0

B(t) =

в N- ! (0

A  =

0

0
M

. . . X  — (X + p)

(AX N)

with

B{0) =

1
0
0

0

(AX 1)

We seek the solution in the form 

B{t) = h ewt

where

h =

N

(AX 1) .
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Then from equation (5), it follows that

(6) (A - w l ) h = 0 .

In order to obtain a non-trivial solution, it is necessary and sufficient that

(7) \ A - w I  | = 0 .

Concerning the roots of this characteristic equation we prove.

Lemma 1. All the roots o f  the characteristic equation (7) are negative and distincit.

Proof. Denote

X +  w  -  p 0 . . . 0
- X  X + j u + v v  -  p  . . . 0
0

D (w) =П V '

0
-M

-X  X + n + w

(n  X n )

It is easy to see that

(8) Dn(w) = (X+ p + w)Dn l (w) -  XpZ)n _ 2( w) , n >  2

where £>0(w) = 1 , D ^ w )  = X + w also Dn(0) = X" > 0 for all n > 1 .
We prove now by using the recurrence relation (8) that all the roots of DN(w) = 0 are 
distincit and negative. D {(w) = 0 has only one root = -  X 
but D2 (w) = (X + p + w)Dl (w) — Xp.
Since D 2(0) = X2 > 0 , D 2( -  X) < 0 and Z)2( -  °°) > 0 it follows that £>2(w) = 0 has two 
distincit negative roots , w^2) such that

0 > w(j2) > -  X >  w*2)

generally if the roots of Dn_ 2(w) = 0 are

( n - 2 )  ( n -  2) ' ( n -  2)
> >  n-2  ’

and the roots of Dn l (w) = 0 are _ ^ , . . . ,  such that

0 >  ^  >  w(.” 2) >  w<" >  w*" 2) > , . . . ,  >  w(” 2)>  w("1 1 2 2 7 7 П — 2 П — 1



-  58 -

then Dn_ 2(.w(f  -  1}) >  0 , Dn 2 ( w ^ ~ l)) <  0 , Z)n_ 2(w (3" _ 1}) > 0 , . . .

i.e. sign Dn 2(w£* “ 1}) = ( -  l )*-1  , k =  1, 2 , . . .  ,n  -  1 .

Then from the recurrence relation (8) it follows that the sign of Dn(w ^ ~  **) =
= -  Хд£>л_ 2(wjj" “ 1)) alternates i.e the roots of Dn(w) = 0 are separated by the roots of
£ „ _ i ( w ) =  0 .

Consequently all the roots are negative and distincit.

We get a system of N  solutions

wW t
Bm W  = h ™ e \  Я(2)(Г) = /z< V 2

and the general solution of the system (5) is

(AT

(9)
N N (

B{t)= 2  d .B (iM )=  2  d. h ^ e W‘
i=i 1 11 > /= l '

ело.

where dr i = 1, 2, . . . , N  are arbitrary constants to be determined from the initial condition 
(4) at t= 0 .
The general solution (9) can be written in the form

N . W(A0,
BQ(t) = 2  d . a ^ e  1

N (N)
(90 B A t )=  2  d . a f e Wi

1 i=i 1 1

N w{N)t
BN -  1 = fz[ di aN e 1

The constants d.’s are determined from

N
1 = 2  di ,

0 = Í di a  2 -

0 = 2  ./= 1 1 *

The Column vector h* associated with a root w* according to the equation 

(10) A h * = w * h *

is given by Lemma 2.
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Lemma 2. The componants o f  the eigen vector h* corresponding to w* are

.  Dk-X
= -------Г ~ Г ~ а * > k = 2 y . . . , N

where Dk (w) is defined by the recurrence relation (8). 

Proof: The coefficient matrix of the equation (10) is

-  (X + w*) 
X 
0

p 0 . . .  0
(X + p + w*) p . . . 0

0
P

X — (X + p + w*)

(NX N )

since the determinant of this matrix is DN (w*) = 0 but DN jCw*) Ф 0, it follows that the 
rank of this matrix is 2V — 1 and the first N  — 1 rows are linearly independent while the last 
row is a linear combination of the others. It follows from the first equation in the system (10), 
that

a~ =_ (X+ w*)
P a, =

Djiw*)

from the second equation

a , =_ (X + p +
..2

W*) a ;  - X * — a. 
P 1

(X + p + w*)D1 (w*) — \ p
a, = ■

D 2(w '

P

similarly
DAw*)

ж J  *

a4 -------— <*1
P

d n - i (w *)
aN -  _N _ J “ 1 >

m"-

where can be arbitrarly chosen, say a* = 1.

Now the solution of the system (5) is well defined and the values of the functions 
BQ(t), B x( t ) , . . .  ,BN l (t) can be obtained at the end f* of the first interval.
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Repeating the same steps for the smaller system of iV -  1 linear differential equations on the 
interval and so on untill the last system, which contains one differential equation on
the interval j ,  t * ) ,  is reached.
The distribution function of r  given by (3) can be written in the form

if 0 < и < t *

P{ t < u )  = \  J BN _ x(t)dt= ' - D >
N  d  л«') (AO — i N  >u

i~-1 w ) (AO

if

(ID

t* < u < t*

Р(т< и) = \  J BN Í (t)dt+ BN Í (t*) + X f  BN 2{t)dt =

= x 2
N  d  «(О (Л0 *

i= 1

A( _ ÍA0Í#
-  1) + ^  1 1 +

/=1

N — \ d a l) (N -  1) + x 2  и
i~ 1 'w f - D

— e

where d.’s are the arbitrary constants on the interval 1 represents the componants
of the eigen vectors corresponding to the eigen values on the interval (t*, t*).

Р(т < и) where t£_ x < и < t*, к = 3, . . . , N  can be easily obtained in the same way.

2. AN M/M/l ASSOCIATED WITH REWARDS

We consider an M/M/l which offers service for the arriving customers during a finite 
operating time (0, T). Every served customer provides a revenue r > 0. At the closing time T 
no new customers are admitted and the present customers, if any, are to be served in an 
overtime, at a runing cost С/unit time with r < clß. The system has to be operated in order 
to make the expected net revenue as high as possible. The influence of the overtime costs on 
the net revenue, necessitates choosing a policy to control the input process. Such a policy may 
take the form of a decreasing function L(t) that give the upper limit of the number of 
customers present in the system at time t. Because of the steplikeness of the process Q(t), 
one can reduce the function space ( Щ ),  0 <  t < T) to the space of integer valued non­
increasing step functions. According to such a policy the input is closed at the moment

r =  inf ! и : Q(u) > L(u) j 
о< u  < T

(i.e no customer is admitted after r). Then a question arises how to choose L(t)  from the 
space of integer-valued non-increasing step functions in order to make the net revenue as high 
as possible.

A
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THE OPTIMAL POLICY Lit)

Let f ik ,  t) denotes the total expected overtime costs when there are к customers in 
the system at time t (t is measured in the negative direction where the origin represents the 
closing time T) ignoring later arrivals, then

( 12) f ik ,  t) = c f  (x — t )y . ( x )d x  , k >  1
t K

where 7f(x) = ß' x'~ 1 е~^х !(i — 1)! x > 0 .

At any moment 0 < и < T, the net revenue of the queue operator according to a policy 
Liu) is rL{u) — /(L(u), u) .

A  A

The optimal policy Liu) is that policy which maximizes the difference rLiu) —f(L (u ), u) 
for all 0 < и < T. The points of jumps for the optimal L(t) function can be determined as 
follows:

Define.

gt(n) = rn - f i n ,  t) ,

Ag,(rt) = gt(n + 1) -  gt(n) = r -  Af in,  t)

where

(13) Afin,  t) = f in  + 1 , t ) - f i n , t )  = ^
M /=0 I-

since Afin, t) is increasing in n and decreasing in t, then Agtin) is decreasing in n and 
increasing in t.
Thus Li t ) is the first integer for which Ag(in) < 0, i.e Lit) = min {и > 0; gf( n ) < 0 | .
At t = 0 we have

Д£дМ = r -  Afin),  0 = r -  c/n < 0

for any n > 0.

Therefore L(0) = 0. Lit) remains zero untill the point tQ = {t : Agr(0) = Oj is reached, since
AgAO) is increasing in t. Now Ag. (0) = 0, but Ag, ( 1 ) < 0  since AgAn) is decreasing in 

r '0 0
n. It follows that LitQ) = 1.
Similarly Lit) = 1 for t > tQ untill the point t x = {t :Agf( l ) =  О* is reached, at t x, Li t)  
must jump from 1 to 2 in-order to keep Agti.) negative.
With the same argument, we see that Lit) jumps from i to i + 1 at the point
t .=  {t : Agtii) = Oj . I f  the maximum value of Lit)  on the interval (0, T) is N, then it is
convenient to use the transform

t* = T  -  tN l , i = 1, 2.........N  ,
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so that all the times are measured from the opening time t = 0. The individual customers 
optimal balking strategy for the system M/M/l was given in [ 1] and has a similar nature as 
W ) .

3. THE EXPECTED NET REVENUE ASSOCIATED WITH L(t)

Let \N (, t >  O' be the poisson process denoting the number of the arrivals during 
(0, t). It follows from [3] that for the stopping time r

ENT = \ E t .

If we denote
Ra : the reward associated with the admitted customers during (0, r),
V: the overtime cost associated with the policy L(t), then we have noting that our assumptions 
imply that r >  0 ,

(14) E(RA \ t > 0) = \ r E N T = ХгЕт

(15) E( V I r  >  0) = cE sup

N ( г Ur)
С I  E\  

0 1Ll s , - - ( r 4 + | r =  t dPT{t)

where £.’s are independently and identically exponentially distributed random variables with 
mean 1/p which represent the service time, and

PT(t) = P(t < t) .

The integral in (15) can be written as the sum of integrals according to the nature of the 
distribution function of r.
Therefore from (2) and (9) we have

t*N 1
(15’) E { V \ t > 0 ) = X 2  f f ( N  — /  + l , T  — t)BN At)dt  +

r  l,*' л
7 -  1

N
+ 2 № ^ j , T - t p -  p (t = t p .  

r  1 ; 1

The expected net revenue given that r  >  0 is

(16) E(Ra \ t > 0 ) - E ( V \ t > 0) .

We compare now the random stopping time policy and the deterministic optimal rejection time 
policy from the point of view of the expected net revenue associated with each. First we 
consider the queuing system M/M/l for which a) p = Х/м <  1 , b) the initial distribution
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of the queue size is stacionary one:

Pq = ^ ‘(2(0) = Oj = 1 - p ,

P*k = /» {0 (0 )=  k\  = (1 - p ) p k , k >  1.

The random stopping time policy states that r  = 0 whenever the system starts with TV or 
more customers and г > 0 when the system starts with TV -  1 or less customers. Then we 
get

Ат > 0) = 1 -  pN .

It follows that the distribution function of r  will take the form

(17) A t < t) = A r  = 0) + A t < t, т > 0) = pN + (1 -  p*)A r < t \  т > 0)

where P(t < t \ r >  0) is given by (3) with the initial condition

If we denote
Rj  : the reward associated with the initial number of customers, 
R : the total reward, then R = Rj  + RA .
From the law of total expectation

(18) ER = pNE(R I t = 0) + (1 -  pN )E(R | t >  0) =

k =  0 ,  1 , .  . .  ,TV -  1 .

N -  1
r 2  kp*к --1 k + E(Ra I r  >  0)

Y ^  + (1 - P N ) \ tEt

also by ( 12)
r

(19) EV= pNE( V\ T=  0 )+  (1 -  pN )E(V I t > 0) =

= 2 p l f ( K T ) + ( \ - p N ) E ( V \ T > 0 ) .
k=N K

Thus the expected net revenue associated with the random stopping time policy is
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( 20) E R - E V

On the other hand when the case of the deterministic optimal rejection time policy is 
considered for the same system., from [2] we can deduce easily that the expected net 
revenue C(t') associated with a rejection time t' is given by

a( \ - ß ) ( T - t ' )
C(t') = j \ t '  + r ^ — ! r +c p

У 1 P )P )  '  X —  M 

taking the derivative with respect to t', and equating with zero, then

= 0 ,57  « ''>  -  *
r _  £  е(Х-м)(г-С) 

M

or T - t ' =  ~ ~ in ИX - M \ c )

( 21) t' = T - ^ - ш ЫX —M (. C )

Noting that

c(f') = pc(X — ц) f' )< о
dt '2

for all t' it follows that C(i') attains its maximum at t' given by (21). 

The optimal rejection time = t* = m ax(0, t') i.e

( 22) t* -  max 0, T  + 1
ß — X In DL

c

The associated Expected net revenue = C(t*) =

I Q I (Х-мКГ-г*)(23) , ( x , . + r ^ j r + c p i L _ _

4. DESCRIPTION OF THE PROGRAM USED FOR THE COMPUTATIONS

A computer program is written to fulfil the calculations necessary for obtaining numerical 
results. Firstly we should give the parameters X, /x, r , C , T . Then the control function L(t) 
should be described. This is made by the means of the points t*, t * , . . . , t* . If one would 
like to use the optimal control policy then the i*’s have to be determined in accordance with 
sec.2. To do this the subroutine DELFNT calculates the value of Д/(и, t) for n > 1, t > 0. 
Then the subroutine POINT determines the values t .= {t  : r = A/(/, t)} where the t.ys are 
measured from the closing time T in the negative direction.
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After this we turn to find the roots of Dn (w) = 0 ,  n = 1, 2 , .  . . ,  N  . This is done by 
the means of the recurrence relation (8) and the property of the sequence of roots proved. 
Lemma 2. is applied in calculating the eigen vectors corresponding to the intervals. After this 
it remains only to determine the arbitrary constants. Starting from the first interval we use the 
initial condition (4). The Bk(t*)y к = 0, 1, . . . , N  — 1 values serve for the initial condition 
on the next interval and so on.

These quantities are quite enough to determine the mean value Et and the expected net 
revenue.

As a way of checking the results obtained, the system was simulated and all the quantities 
of interest were estimated and compared with the corresponding calculated quantities. The 
results obtained by both methods showed a good agreement. Point out the effectiveness of the 
exast procedure, we mention that for getting the numerical results presented in the foregoing 
tables 1 minute 47 seconds was needed for the exact values while for those of simulated 17 
minutes, 19 seconds.

In order to make the comparison mentioned in sec.3, we should start the system from the 
stationary state. This is equivalent to use the initial condition

N -  1
Bk(0) = p * l  2  p* , k =  0, 1

for the first interval.

The expected net revenue associated with the deterministic optimal rejection time is easily 
obtained by (23). The results obtained given that the system has been started with a stationary 
queue size are summarized in the following tables:

For r -  2, C =  50 ,

X M T N cal. 
E t

sim. 
E t

cal. 
E V

sim. 
E V

1 0.5 0.75 14 5 4.570 4.573 0.0947 0.0972
2 0.6 0.80 13 5 3.386 3.391 0.2919 0.3043
3 0.6 0.80 15 6 4.829 4.832 0.2025 0.2155
4 0.5 0.75 18 7 8.013 7.986 0.0469 0.0477

This table compare between the calculated and the simulated values for E t  and the expected 
overtime E V.
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X M T N E d cal. Er sim. Er

1 0.5 0.75 14 5 -  0.0263 3.8320 3.719
2 0.6 0.80 13 5 -  7.9263 -  4.5331 -  5.119
3 0.6 0.80 15 6 -  3.3350 1.6702 1.093
4 0.5 0.75 18 7 3.9737 9.6650 9.588

where ED : the expected net revenue associated with deterministic optimal rejection time 
policy.

Er : the expected net revenue associated with the random stopping time policy.

From the second table it follows that the random stopping time policy seems to be more better 
than the deterministic one.
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S u m m a r y

An M/M/l queueing system with a simple cost structure is considered, assuming that the 
system operates during a finite interval after which any remaining customers will require extra 
overtime service costs. For controlling the input a random rejection time, which is the first 
passage time that the queue size hints a given non-increasing positive L(t)  function, is 
discussed. Its distribution function is obtained by solving successive systems of differential 
equations. A computational procedure has been written and the numerical results obtained are 
presented showing that the effectiveness of the random rejection policy is higher than that of a 
deterministic one.

P e 3 ю M e

Рассматривается система обслуживания м/м/m , функцио­
нирующая в конечном интервале времени. Требования, оставши­
еся в системе по окончании периода функционирования, д о о б -  
служиваются сверхурочно, что приводит к дополнительной оп­
лате. Чтобы уменьшить сверхурочную работу, рассматривается 
управление входящим потоком, по которому вход системы закры­
вается , когда длина очереди пересекает данную невозрастающую 
функцию н о  . Такой момент закрытия входа представляет собой  
случайную величину, независящую от будущего. Для нахождения 
её функции распределения необходимо решить последовательность 
систем дифференциальных уравнений. Написана вычислительная 
процедура и приведены численные результаты, показывающие, 
что рассматренное правило закрытия входа более эффективно, 
чем правило детерминированного типа.



-  68 -

TARTALOMJEGYZÉK

Szepesvári István:
Konvergens véges differencia módszer bizonyos degenerált nemlineáris többvál­
tozós parabolikus egyenletre ..................................................................................... 3

Arató Mátyás:
A lineáris filtráció vizsgálata diszkrét Gauss folyamatok esetén ........................... 25

Jacob Eshak Samaan:
On the maximum Likelihood estimation of the number of servers for the M/M/m 
queueing system  ........................................................................................................  29

Ahmed S. Mashour:
A first passage problem for an M/M/l queue ..........................................................  53


	Ahmed S. Mashour: A first passage problem for an M/M/l queue�������������������������������������������������������������������
	Oldalszámok������������������
	53���������
	54���������
	55���������
	56���������
	57���������
	58���������
	59���������
	60���������
	61���������
	62���������
	63���������
	64���������
	65���������
	66���������
	67���������
	68���������


