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A FIRST PASSAGE PROBLEM FOR AN M/M/1 QUEUE
By Ahmed S. Mashour

INTRODUCTION

Consider the queue size process |Q(f), 0< < T} associated with the queueing system
M/M/1. Let L(f) be a given integral valued non-increasing step function with L(0)> 0,
L(T) = 0. One purpose of this paper is to investigate the random variable

T= <ir[1]f<T{u QW)= L(u)} and its characteristics. An algorithm is presented in Sec.l in

order to obtain an explicit formula for the distribution function of 7.

In Sec.2 it is shown that such a problem arise when we deal with an M/M/1 system which
offers service for the arriving customers during a finite interval (0,7). Every served customer
provides a revenue r> 0. After the closing time 7, no new customers are admitted and the
present customers, if any, are to be served in an overtime, at a runing cost Clunit time. The
system has to be operated in order to make the expected net revenue as high as possible. The
influence of the overtime costs on the net revenue, necessitates choosing a policy to control
the input process.

A rejection time policy, closing the input earlier than 7, is considered. A deterministic
rejection time has been discussed in [2]. The random variable 7 introduced represents a
stopping time the optimal choice of which is discussed in sec.2.

A formula for the expected net revenue associated with a policy L(¢) is given in Sec.3.
Then the deterministic and the described random rejection policies are compared.

1. THE DISTRIBUTION OF 7

We are concerned with an M/M/1 queueing system where the customers arrive in a
Poisson stream at mean rate A and the service times are independently, identically and expo-
nentially distributed with mean 1/u. We assume that the system starts with no customers.
Let L(f) be an integral valued non-increasing step function given by:

a) L(O)=N,
b) L@p)=N-i, i=12,...,N

where t;; < I
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L(1)

In this section we show that the random variable 7 given by 7= %)né“ s T{u Q)=
u

> L(u)} is of mixed type i.e the distribution function of 7 is a mixture of an atomic and
continous distribution. An algorithm is presented to obtain a formula for that distribution
function and its expectation and variance.

Define the event

E, = {Q)> L(u) for some O<u<t}, and

(D -
B,(t)=Pr{E, n Q0 =k}, k=0, 1,005 L)~ 1

where E, = Q)< L) forall O0<u<t), isthe complement event of Et.
Form (1) and Fig. 1, it can be easily seen that 7 may assume the discrete values tl?‘ S
with probabilities

2 P(r=1t})=B

L(t;-O)-l(’f—O)’ = 1,2cs:5N3

the queue size process touches the function L(7) at r* from the left. Also 7 may assume
any value lies between the ti*'s since the queue size process may touch L(f#) from below as
a result of an arrival. It follows that

(3) Pr<u)=\ [ B, . . (Ddt+ B, o (15— 0),
R @) L) -1 t:*é'u L(ti 0)—1%4

where R(u)= {t:1€ (Qu),t#t¥, i= R

Our problem now is to give an explicit formula for the functions B, (7). We show that
Bk (1), k=0,1,..., satisfies different systems of linear differential equations on different
intervals.
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From equation (1) it follows that for small interval A
B,(t+ h) = B, (1)(1 — ) + o(h) ty_St<ty
then Bb (0)=—-AB,(1).

Also Bo(t+h)=BO(t)(l — M)+ Bl(t);xh+o(h), 0<t< Iy 1
then B(')(t) = —A\B, (1) + uB, (1)

Similarly it can be shown that

By ()= — (\+ wB, (1) + \By (1), AP S0 S
Bi(t)= —(\+ wB, () + \B, (D + uB, (1),  0<t<t}_,,
B, ()= — (A + w)B, (1) + \B (1), L SEREL s
B,y(1)= — (A + wB, () + \B (1) + uB, (1), 0TI o,
By _(0=—O\+WB, _(D+AB,_,(1), 0<t<tr.

It is more suitable to rewrite these equations in the following form
if th_<t<ty, then

By(H) = — \By (1),

if ty_,<t<ty ,, then
B;)(t)= —)\Bo(t)+ uB, (1),

B ()= -+ wB (1) + B, (1),

if g L k=0;1,.::s N—=2,
B'O(t)= - ABO(t?+ uB, (1),

B'l (t) = = ()\+ #)Bl(t) G xBo(t) + I.le(t) >

................................

B;V_(k+2)(t)= -\ + p)BN_(“z)(t) S }\BN_(k+3)(t) + uBN_(kﬂ)(t),

;V—(k+1)(t) =-QA+ y)BN_(kH)(t) + )\BN_(k+2)(t) :

Since the system starts with no customers at #= 0, then
By(0)=1,
4) B, (0)=0, k=1, 2 conNi— 1.



We start by solving the last system of N linear differential equations on the interval (O,t;‘)

using the initial values given by (4). Then we can determine the values of

By (1), B, (1),..

sBy 4 (f) at t= ty and use these values as the initial condition of the next

system of N — 1 linear differential equations on the interval (z*, t;). On repeating this pro-
cedure we can get the forms of Bk(t) on different intervals.

THE SOLUTION OF THE FIRST SYSTEM OF LINEAR EQUATIONS

In matrix form this system can be written in the form

d _
$) 5 B®=AB®
where
| By ()
B, (1)
B(t) =
BN =l ()
with
i
0
0
B(0) = . (NX 1)
0

We seek the solution in the form

B(t)= he"!
where
Tt
%
h= (NX1).

— A
A

~ A+ p)

Qiu: 0
7l 0
0
u

- —(7\+p)_

(N X N)



.

Then from equation (5), it follows that

(6) (A-whh=0.

In order to oBtain a non-trivial solution, it is necessary and sufficient that
(7 |IA—wll=0.
Concerning the roots of this characteristic equation we prove.

Lemma 1. All the roots of the characteristic equation (7) are negative and distincit.

Proof. Denote

A+ w — Ji O s 0
—\AN A+pu+w —p... O
0 ,
Dw=| . . (n X n)
0
—u
-\ A+ pu+w

It is easy to see that

® DW=+ pu+wD, W)= AuD, _,(w),  n>2

where Dy(w)=1, D (w)=r+w also D,(0)=2A">0 forall n>1.

We prove now by using the recurrence relation (8) that all the roots of D, (w)= 0 are
distincit and negative. D,(w)= 0 has only one root w(ll) =2

but D,(Ww)= QA+ pu+ w)D, (W) — Ap.

Since D,(0)=A2>0, D,(-N<0 and D,(~«)> 0 it follows that D,(w)=0 has two
distincit negative roots w(lz) . wgz) such that ;

0>w® >_A>w®
generally if the roots of D, _,(w)=10 are

(n-2) (n-2) 4 n-2)
wi y Wy sesesWol o

and the roots of D, _,(w)= 0 are wi" = wg" =0 tenn w,(l":ll) such that

(n—-1) (n—2) (n—1) (n —2) (n —2) (n-1)
0> wi > wy > wj > wy By o wog o WE ST WL
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fhen D, w50, D WPz, D .08 050,...
iesignD, W=, k=192..,n-1.

Then from the recurrence relation (8) it follows that the sign of D, (w{" ~ 1) =
=—A\pD, _ 2(w§c" — 1) alternates i.e the roots of D,(w)= 0 are separated by the roots of
D, (w)=0.

Consequently all the roots are negative and distincit.

We get a system of N solutions
W) ) )
= HDL - 705 %2 — M YNt
B(l)(t)—' h e 5 B(Z)(t)_ h e ""’B(N)(t) h € 5

and the general solution of the system (5) is

y N e,
9) Biy= 2 d,B,()= > d;hPe’"
i=1 =1
where dl., i=1,2,...,N are arbitrary constants to be determined from the initial condition

4)at t=0.
The general solution (9) can be written in the form

N (N)
B.i= 2 d.ot *
0 =1 11 ’

N

..............

The constants di’s are determined from

N .
1= 2 d o,
;1 1

S 4 o
0=i=1 d,.oz2 R
S 4 o

= 1

O—gdlaN

The Column vector h* associated with a root w* according to the equation
(10) Ah* = w*h™*

is given by Lemma 2.
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Lemma 2. The componants of the eigen vector h* corresponding to w* are

Dy _, (W) .
a";:——;c—-l_ar’ k=2, .u:N
m

where D, (w) is defined by the recurrence relation (8).

Proof: The coefficient matrix of the equation (IQ) is

—(A+ w*) I € foa s 0 7
A —AN+u+w*) pu... 0
0
) (N X N)
0
. M
0 A=QA+u+ w*

since the determinant of this matrix is DN(w*) =0 but D, ,(w¥)# 0, it follows that the
rank of this matrix is N — 1 and the first N — 1 rows are linearly independent while the last
row is a linear combination of the others. It follows from the first equation in the system (10),
that

* D, (w*)
a,z,___()\+w af = 1 o
n T

from the second equation

aallt sy o %5 BFatBNOGN—F 500
3
u? * gl 2 1 2 1
similarly
D, (w*)
az - a';' 3
e

_Dy_,w% |

o= lIN—l al s

where a7 can be arbitrarly chosen, say af = 1.

Now the solution of the system (5) is well defined and the values of the functions
Bo(t), Bl(t), e ,BN__I(t) can be obtained at the end t*l* of the first interval.
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Repeating the same steps for the smaller system of N — 1 linear differential equations on the
interval (t;*, t;) and so on untill the last system, which contains one differential equation on
the interval (t];;_ 1 t;;), is reached.

The distribution function of 7 given by (3) can be written in the form

if O0<u<tf
u N dial(vi) wy
— — 4 —
Par<u)=X [ By ()t }\IZI' Wiz (e 1,

if S a< i
i u
(11)  Pe<u)=\[ By _,(Ddt+ B, )+ \ [By _,(Hdt=
0 r*
1

N daold OV .« N V) %
: N owe ox WP
= A : el T-1y+ 2 detPet 14
i=21 w & -k
Notlday | W=D, N-Dg.
BVt i o i 1
+7\l.=.., S®-D (e e )

where Ei’s are the arbitrary constants on the interval (z*, t;), ;;\;)—1 represents the componants
of the eigen vectors corresponding to the eigen values on the interval (t;‘, t3).

P(r <u) where fp_<u<ty, k=3,...,N can be easily obtained in the same way.

2. AN M/M/1 ASSOCIATED WITH REWARDS

We consider an M/M/1 which offers service for the arriving customers during a finite
operating time (0, 7). Every served customer provides a revenue r> 0. At the closing time T
no new customers are admitted and the present customers, if any, are to be served in an
overtime, at a runing cost Clunit time with 7 < c¢/u. The system has to be operated in order
to make the expected net revenue as high as possible. The influence of the overtime costs on
the net revenue, necessitates choosing a policy to control the input process. Such a policy may
take the form of a decreasing function L(#) that give the upper limit of the number of
customers present in the system at time #. Because of the steplikeness of the process Q(?),
one can reduce the function space | L(#), 0<1t< T} to the space of integer valued non-
increasing step functions. According to such a policy the input is closed at the moment

F g 1
T= 0<1“nf< , {u: QW)= L))
(i.e no customer is admitted after 7). Then a question arises how to choose L(7) from the

space of integer-valued non-increasing step functions in order to make the net revenue as high
as possible.
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THE OPTIMAL POLICY L(#)

Let f(k,t) denotes the total expected overtime costs when there are k customers in
the system at time ¢ (¢ is measured in the negative direction where the origin represents the
closing time 7)) ignoring later arrivals, then

(12) f(k,t)=ctf(x—t)'yk(x)dx, k> 1

where 'yi(x) = u’xi‘le‘“"/(i - 1! X (0

At any moment O< u < T, the net revenue of the queue operator according to a policy
L) is rLu) — f(L(w), u) .
The optimal policy L(u) is that policy which maximizes the difference rf,(u) - f(i(u), u)
for all 0 < u < T. The points of jumps for the optimal L(f) function can be determined as.

follows:
Define.
gn)=rm-—f(n1,
Ag,(n) = g,(n+ 1) —g,(n) = r — Af(n, 1)
where
(13) Af(n, ) = f(n + l,t)—f(n,t)=ﬁi§:£j!&ye‘“'

since Af(n,t) is increasing in n and decreasing in ¢, then Ag,(n) is decreasingin n and
increasing in 1.

Thus L(¢) is the first integer for which Agt(n) <0,ie L(t)= min{n = 0 gt(n)< 0} .

At t= 0 we have :

Ago(n)= r—Af(n),0=r—c/lu<0
for any n = 0.

Therefore L(0)= 0. L(#) remains zero untill the point ty = {t :Agt(O) = 0} is reached, since
Ag,(0) is increasing in 7. Now Agto(O) = 0, but Agt0(1)< 0 since Ag,(n) is decreasing in

n. It follows that L(to) = 1.

Similarly L(#)=1 for t> ¢, untill the point £y - {t :Agt(l) = 0} is reached, at t L(?)
must jump from 1 to 2 in-order to keep Ag,(.) negative.

With the same argument, we see that L(#) jumps from i to i+ 1 at the point

£ - {t :Agt(i) = 0} . If the maximum value of L(#) on the interval (0, 7) is N, then it is
convenient to use the transform

tr=T—t

T " TIee
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so that all the times are measured from the opening time ¢ = 0. The individual customers
optimal balking strategy for the system M/M/1 was given in [1] and has a similar nature as
L(1).

3. THE EXPECTED NET REVENUE ASSOCIATED WITH L(?)

Let {Nt, t> 0} be the poisson process denoting the number of the arrivals during
(0, #). It follows from [3] that for the stopping time 7

EN_= \ET.

If we denote
R " the reward associated with the admitted customers during (0, 7),

V: the overtime cost associated with the policy L(¢), then we have noting that our assumptions
imply that 7> 0,

(14) ER 17> 0)=ArEN_= ArE7

L(7) ]

2 &—(T—1,0

(15) E(V|7> 0) = cE sup [._1

N L
=c [ E[[Z s.—(T—r)]*|r= t] dP_(1)

0 =1 * T
where f,-’S are independently and identically exponentially distributed random variables with
mean 1/u which represent the service time, and

P(=Pr<1).

The integral in (15) can be written as the sum of integrals according to the nature of the
distribution function of 7.
Therefore from (2) and (9) we have

N Y
(15) EWV|r> 0)=)‘Zi [ fN—j+ 1,T— 0B, _J(ndt+
IS1»
j—1

=2

¥ 2 SN T =) « Py i),

j=1
The expected net revenue given that 7> 0 is

(16) ER,1T>0)—-EVI|7r>0).

We compare now the random stopping time policy and the deterministic optimal rejection time
policy from the point of view of the expected net revenue associated with each. First we
consider the queuing system M/M/1 for which a) p= Au< 1, b) the initial distribution
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of the queue size is stacionary one:
pg = P100) = 0}

py = P{Q(0) = k|

l—p’

(1 -p)p*, k>1.

The random stopping time policy states that 7= 0 whenever the system starts with N or
more customers and 7> 0 when the system starts with N — 1 or less customers. Then we
get

Pr>0)=1-p".

It follows that the distribution function of 7 will take the form

(17) Pr<t)=Pr=0)+Pr<t,7>0)=p" + (1 = p")P(r< t|7> 0)

where P(r<t|7> 0) is given by (3) with the initial condition

If we denote

R, : the reward associated with the initial number of customers,
R : the total reward, then R=RI+RA :

From the law of total expectation

(18) ER=p"ER|T=0)+ (1 -p")ER|7>0)=
o N-1
r 2 kpj r 2 kpp
W +(1-pN)¢‘——r+E(RA|r>0) =

=p e ——
o 1—p

e r _ AN
= l—p+(l PUINrET

also by (12)

(19) EV=p"EWVIit=0)+ (1 -p")EWV|7>0)=

= 2 ppf D+ (1= p"EV 17> 0).

Thus the expected net revenue associated with the random stopping time policy is
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(20) ER —EV .

On the other hand when the case of the deterministic optimal rejection time policy is
considered for the same system., from [2] we can deduce easily that the expected net
revenue C(7') associated with a rejection time (' is given by

o= (T — 1)

C(t')={7\t'+—9—]r+cp =

( 1—p

taking the derivative with respect to t', and equating with zero, then

4 ey = x[r— i—eﬂ—#xT—t')] =10,

or T—t'=%ln[£&]
— i

Q1)  =T- l#ln[ﬂij.

Noting that

2 — = r
c(t') = pe(\ — p) eR-MWT-1) - o
dt'?

for all ¢ it follows that C(¢') attains its maximum at ¢’ given by (21).

The optimal rejection time = t* = max (0, ¢') i.e

*= 1 w
(22) I* = max [0, T4 s In[ - JJ .

The associated Expected net revenue = C(¢*) =

e\ = BT - t%)

= [ B
(23) [)\t +1_er+cp =

4. DESCRIPTION OF THE PROGRAM USED FOR THE COMPUTATIONS

A computer program is written to fulfil the calculations necessary for obtaining numerical
results. Firstly we should give the parameters A, u, 7, C, T'. Then the control function L(¢)
should be described. This is made by the means of the points 44 3TN | 8 If one would
like to use the optimal control policy then the t}’s have to be determined in accordance with
sec.2. To do this the subroutine DELFNT calculates the value of Af(n,t) for n>1,¢>0. °
Then the subroutine POINT determines the values L= {t :r= Af(i, t)} where the tl.’s are

measured from the closing time 7 in the negative direction.
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After this we turn to find the roots of D, (w)=0, n=1,2,...,N. This is done by
the means of the recurrence relation (8) and the property of the sequence of roots proved.
Lemma 2. is applied in calculating the eigen vectors corresponding to the intervals. After this
it remains only to determine the arbitrary constants. Starting from the first interval we use the
initial condition (4). The Bk(tf), k=0,1,...,N —1 values serve for the initial condition
on the next interval and so on.

These quantities are quite enough to determine the mean value E7 and the expected net
revenue.

As a way of checking the results obtained, the system was simulated and all the quantities
of interest were estimated and compared with the corresponding calculated quantities. The
results obtained by both methods showed a good agreement. Point out the effectiveness of the.
exast procedure, we mention that for getting the numerical results presented in the foregoing
tables 1 minute 47 seconds was needed for the exact values while for those of simulated 17
minutes, 19 seconds.

In order to make the comparison mentioned in sec.3, we should start the system from the
stationary state. This is equivalent to use the initial condition
N-1

B, (0)=py/ Py s k=0,1,...,N-1

i=0
for the first interval.

The expected net revenue associated with the deterministic optimal rejection time is easily
obtained by (23). The results obtained given that the system has been started with a stationary
queue size are summarized in the following tables:

kot ¥=2 €¢=350,

cal. sim. cal. sim.

0.5 0.75 |14
0.6 0.80 |13
0.6 0.80 |15
0.5 0.75 |18

4.570 4.573 0.0947 | 0.0972
3.386 3.391 0.2919 | 0.3043
4.829 4.832 0.2025 | 0.2155
8.013 7.986 0.0469 | 0.0477

AW NN -
N O o

This table compare between the calculated and the simulated values for E7 and the expected
overtime E V.
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A M T N ED cal. ER sim. ER
1 0.5 0.75 | 14 5 — 0.0263 3.8320 3.719
2| 0.6 0.80 | 13 5 - 7.9263 | — 4.5331 | — 5.119
3 | 0.6 0.80 | 15 6 - 3.3350 1.6702 1.093
4| 0.5 0.75 | 18 7 3.9737 9.6650 9.588

where E : the expected net revenue associated with deterministic optimal rejection time

policy.

E, : the expected net revenue associated with the random stopping time policy.

From the second table it follows that the random stopping time policy seems to be more better
than the deterministic one.
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Summary

An M/M/1 queueing system with a simple cost structure is considered, assuming that the
system operates during a finite interval after which any remaining customers will require extra
overtime service costs. For controlling the input a random rejection time, which is the first
passage time that the queue size hints a given non-increasing positive L(¢) function, is
discussed. Its distribution function is obtained by solving successive systems of differential
equations. A computational procedure has been written and the numerical results obtained are
presented showing that the effectiveness of the random rejection policy is higher than that of a
deterministic one.

PeswnwMme

PaccuaTpuBaeTc cucTeMa OOCIyXMBAHUA M/M/m , QYHKIIMO—
HUpybIasd B KOHEYHOM MHTEpBale BpemMeHU. TpeGoBaHUA, OCTaBMU-
ecsl B CUCTEMEe II0 OKOHUaHUM Nepuoza QYyHKUMOHMPOBAHUA, Z000—
CIYyKUBANTCH CBEPXYPOYHO, YTO NPUBOLUT K ZOMOJHUTENBHON OI—
nare. YTOOH yMEHBUWUTH CBEPXYypPOUHYDL palGoTy, paccMaTpuBaeTCs
yIopaBlleHue BXOZAANUM I[IOTOKOM, IO KOTODPOMYy BXOZ CHCTEMH 3aKph-—
BaeTCcA, KoTja ZAJMHA OYepenu NepeceKaeT AaHHYW HEeBO3pacTanlyw
GyHELUmO L(r) o Taxoif MOMEHT B3aKpHTHUA BXOZa IPEZCTaBIfAET COOCOi
CIy4YaiiHyl BemuduHy, HE3aBHCALY OT OyAymero. [asd HaXOXmeHUs
€€ (QYHKIUUM paclpeneyieHUd HeOOXOZUMO pEUUTH IIOCHEL0BATEIBHOCTH
cucTeM nuddepeHUMANBHNX ypaBHeHMt. HamucaHa BHYUCIUTEIBHAS
npouezypa u IPUBEICHH UYUCJIEHHHE De3ylbTaTH, IOKa3HBawuue,
YTO pacCMaTpeHHOe IpaBUIO 33KPHTUSA BXxoza Oojnee 3PPEeKTHBHO,
yeM IpaBMiIO ZETEPMUHUPOBAHHOT'O THIIA.
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