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Abstract. This paper reviews the various 1D nanostructures, which were prepared by 

electrospinning and atomic layer deposition (ALD). On the one hand, electrospinning served to 

make a sacrificial polymer template for the ALD growth; and thus various single or multilayer 

inorganic nanotubes were obtained. On the other hand, a polymer, a polymer/inorganic or an 

inorganic nanowire template was produced by electrospinning. By a consecutive ALD reaction 

various core/shell nanowires were synthesized. 

1.  Introduction 

One dimensional (1D) nanostructures have attracted considerable attention in the recent decades. They 

have very interesting size dependent chemical, mechanical, electrical, optical, magnetic, etc. 

properties, which are due to their one dimensionality. Owing to their unique features, they have been 

used in a large number of fields, including optoelectronics, nanoelectronics, plasmonics, medical 

diagnostics, catalysis, drug delivery, therapeutics, separations, and sensing. [1-4]  

Historically, some decades ago materials synthesis studies focused a great deal to prepare good-

quality single crystals. Nevertheless, some materials grow easier in one dimension, rather than in 3D; 

however, this was considered a problem and the growth of nanowires was tried to be eliminated. The 

research on nanowires and nanotubes, accelerated in the 1990s, as the nanosized features moved into 

the center of interest. [5-8] 

By now, numerous ways have been developed to prepare 1D nanostructures, i.e. spontaneous 

growth, vapor-liquid-solid (VLS) route, templating on patterned surfaces, growth in porous channels, 

using self-assembly templates, templating against existing 1D nanostructures, preparation from the 

vapor phase, solvothermal methods, growth oriented by capping agents, self-assembly of 

nanoparticles, and electrospinning. These are bottom-up approaches, but also top-down methods are 

available, e.g. isotropic deformation of amorphous or crystalline material, anisotropic etching of single 

crystals to prepare e.g. grooves, and lithography. These synthesis methods can result in nanorods (with 

aspect ratios, i.e. AR, usually below 20), nanowires (AR>20), nanobelts, nanotubes, nanoneedles, 

whiskers. [5, 9, 10] 

Among the various synthesis methods, electrospinning is a convenient and widely used method to 

obtain 1D nanostructures in a short time and large scale. By this way, polymer, polymer/inorganic and 



 

 

 

 

 

 

inorganic nanofibers can be prepared. Atomic layer deposition (ALD) is becoming a key tool in 

nanotechnology, and it can be both a preparation method for 1D nanomaterials and also as a unique 

technique to program the surface properties of 1D nanosystems. 

This paper reviews the various 1D nanostructures, where the synthesis relied both on 

electrospinning and ALD. Electrospinning served either to make a sacrificial template for the ALD 

layer to obtain nanotubes, or provided a nanowire template for ALD to prepare core/shell materials. 

2.  Electrospinning 

Electrospinning is a convenient and cost-effective method for the fabrication of universal 

nanofibers. The earliest studies date back to the 1930s, but for long the technique remained 

unexploited. It was newly discovered in the 1990s and has gained a lot of attention since then. 

The origin of the method stems from the early “electrostatic spinning” terminology; implying, on 

the one hand, the application of electrostatic force and, on the other hand, the spinning movement of 

the ejected polymer solution. [11] The experimental setup basically consists of four main parts: the 

power supply for achieving high voltage, the needle electrode connected to the polymer solution, the 

capillary for delivering the precursor solution and the earthed collector (Fig. 1). [12] Conceptually 

high voltage is applied between the ejection site and the earthed collector. The polymer solution is 

conducted through a syringe and charged by the applied potential by means of which it starts to form a 

Taylor cone. The spinning movement is the result of the counteraction of the electrostatic force and 

the surface tension. By the time the polymer reaches the collector the liquid jet has lost its solvent 

content and has been elongated due to electrostatic repulsion. The properties of the final product 

depend upon influencing factors including the characteristics of the polymeric solution, the operation 

conditions and the surrounding temperature and humidity. [13, 14] 

Electrospinning received much attention recently owing to its low cost, high efficiency and good 

reproducibility. [11] Numerous research areas try to exploit the benefits of what this technique could 

offer. The nanofibers in general could play key role in environmental protection. [15] In the oil spill 

cleaining, nanofibrous highly porous membranes are used as sorbents taking advantages of the various 

functionality, and high uptake capacity could be achieved by electrospun nanofibers. [11] The so-

called colloidal nanofibers are considered as good candidates in the field of filtration, adsorption or 

even as sensors due to the special surface roughness and enhanced properties introduced by the 

colloidical particles. [16] Besides the high specific surface area, the nanofibers exhibit outstanding 

charge transport properties owing to their high aspect ratio character, which enables less interfacial 

interaction at grain boundaries with travelling electrons. This feature could highly promote the 

efficiency of light-harvesting devices, such as dye sensitized solar cells (DSSC) or photocatalytic 

systems. [17, 18] In the opto-electronic industry a specific class of electrospun nanofibers, the 

conjugated polymer filaments, could potentially revolutionize future devices by providing the 

attractive possibility to fabricate flexible and light-weight products. [13, 19] Electrospinning attracted 

a substantial interest in the medical research as well, especially in the development of effective drug 

delivery systems where the high encapsulation and loading efficiency of a wide range of drugs are 

desired. [15] 

3.  Atomic layer deposition 

The basic theory of ALD has been developed already in the 1950s by Aleskovskii in the USSR. He 

and Koltsov made the first experiments in the 1960s with the method they called molecular layering 

(ML). Independent of them, Suntola and coworkers developed also the basic principles of ALD in 

Finland in the 1970s, and it was them who enabled ALD to be used widely in the industry. At first 

they used only elemental precursors and the method was named atomic layer epitaxy (ALE). [20-23] 

The first industrial application of ALD was thin film electroluminescent (TFEL) flat-panel 

displays. Almost from the beginning, ALD has been researched to be utilized in various other fields as 

well (e.g. catalysis), but the real international interest has arrived only in the 1990s, when ALD was 

considered to be a key future method in the semiconductor industry. As the dimensions decreased in 



 

 

 

 

 

 

silicon-based microelectronics devices, serious conformality problems with the thin films deposited by 

the existing methods were foreseen to arise in the coming years. Therefore, ALD was selected to be a 

major method in depositing thin films for several fields, including high dielectric constant gate oxides 

in metal oxide semiconductor field effect transistors (MOSFETs), copper diffusion barriers in backend 

interconnects, high aspect ratio trench structures of memory capacitors, etc. Already in the 2000s, 

major semiconductor companies used ALD partly in their manufacturing technologies. Also in the 

2000s, ALD has started to gain interest in nanotechnology, e.g. in sensors, fuel cells, solar, catalysis, 

nanocoatings, displays, LEDs, nanocomposites, nanodevices, etc. [24-28] 

A general ALD reaction has four consecutive steps (Fig. 1): (i) the first precursor is pulsed into the 

reactor, which chemisorbs on the surface of the substrate; (ii) the unreacted precursor or reaction 

byproducts are removed by an inert gas purge and/or by evacuation; (iii) the second precursor is 

purged, which reacts with the first precursor solely on the surface; (iv) the unused second precursor 

and the reaction byproducts are removed. [29-32]  

 

Figure 1. Schematic representation of (a) an 

electrospinning setup; (b) an atomic layer 

deposition (ALD) reaction cycle [75] 

 

ALD and chemical vapor deposition (CVD) have many similarities, yet there are several distinctive 

features, which make ALD unique. In ALD the adsorption of reactants is self-limited and the various 

precursors meet only on the surface of the substrate. [33, 34]  

The self-limiting growth leads to the many advantages of ALD. ALD can provide thickness control 

at an atomic level, as the film thickness can be programmed easily by the number of the ALD cycles. 

Not only the thickness, but also the composition of the film can be controlled precisely. With ALD, 

finely tuned doping of thin films or preparation of nanolaminates is easily achievable. ALD can 

prepare extremely conformal layers, and due to the volatile precursors and self-limiting growth even 

high aspect ratio structures can be uniformly coated. In ALD there is no shadow effect, which is a 

hindrance of various other physical and chemical gas phase thin films deposition methods; where, if 

there is an object between the source and the target, it can reduce the growth rate behind it. [35-39]  

During the recent decades, ALD precursor chemistry has developed rapidly. ALD can use solid, 

liquid or gaseous precursors. If the partial pressure of the solid or liquid precursors is low at room 

temperature, they can be heated to have better sublimation or evaporation conditions. The precursors 

can be elements, molecules, radicals. By now the variety of materials that can be grown by ALD is 

very rich. ALD can be used to deposit elements (Au, Ag, Pt, Ru, Fe, etc.), binary compounds (e.g. 

oxides, nitrides, carbides, sulfides, fluorides, like Al2O3, TiO2, ZnO, HfO2, GaN, TaC, CaS, SrF2, etc.), 

ternary compounds (e.g. MgAl2O4, TiAlN). Even polymers and organic materials can be grown by 



 

 

 

 

 

 

ALD. Molecular layer deposition (MLD), a recent version of ALD, where a molecular fragment is 

deposited during each ALD cycle, can increase the number of ALD prepared materials even further 

with organic or organic/inorganic (e.g. zincones, alucones) polymers. [40-47] 

The usual reaction temperature is between 100-400 °C, and the ideal reaction temperature zone is 

often described by the so-called ALD window. The elevated temperature is useful for increasing the 

precursor and the substrate reactivity, and also to accelerate the sorption processes. However, ALD 

reactions can be performed at both higher and lower temperatures as well. Low temperature ALD 

makes it possible to coat heat sensitive substrates, e.g. polymers, biomaterials. [48-50] 

Considerable efforts have been made to extend the possibilities of traditional ALD to meet the 

industrial requirements. Plasma or radical enhanced ALD made it possible to deposit Ag or Au, which 

were not possible by thermal ALD. Usually ALD reactions take place in vacuum, but it is also 

possible to grow thin films by atmospheric pressure ALD, which makes it much easier to adapt the 

ALD reaction to other industrial processes. Especially in the semiconductor industry, it might be vital 

not to grow thin films on the complete substrate but only on parts of it, and this can be achieved by 

area selective ALD. The slow growth rate of ALD can be overcome by coating a large numbers of 

substrates at the same time, or by using roll-to-roll or spatial ALD technology. [51-54] 

As ALD allows deposition of uniform thin films on three dimensional (3D) objects with thickness 

control of sub-nanometer precision, ALD provides new strategies in modifying the properties of 

nanoscaled materials and new synthetic routes to novel nanostructures. By now, outstanding results 

have been achieved by ALD in nanotechnology: preparing or coating nanodots, nanotubes, nanowires, 

nanolaminates, nanoporous materials, inverse opal structures, various nanocomposites, 

bionanomaterials, etc. [55-60] 

4.  1D nanostructures obtained by electrospinnning and ALD 

The combination of electrospinning and ALD is a powerful tool to prepare nanotubes and core/shell 

1D nanostructures, which is clearly reflected by the dozens of already published studies. The various 

steps for preparing nanotubes and core/shell nanofibers by electrospinning and ALD are summarized 

in Fig. 2. [61] When a core polymer nanofiber is produced by electrospinning, and a shell layer is 

deposited by ALD, an organic/inorganic core/shell fiber is obtained. If the polymer core is removed by 

e.g. annealing, a nanotube is prepared (Fig. 2a). If the electrospinning solution contains inorganic salts 

as well, then a polymer/inorganic fiber can be electrospun. After annealing the polymer part, the as-

obtained inorganic nanofibers can also serve as substrate for the ALD reaction, and hence inorganic 

core/shell nanofibers is produced. It is also possible to load nanoparticles into nanotubes by combining 

electrospinning and ALD (Fig. 2b). For this, the as-spun polymer/inorganic nanofiber is covered with 

an ALD layer before removing the polymer part. If the inorganic salt has appropriate (i.e. low enough) 

concentration in the electrospinning solution, then instead of a core/shell nanofiber a particle-loaded 

nanotube will be the product (Fig. 2c). 

 

Figure 2. The preparation of (a) nanotubes; (b) core/shell nanowires and (c) particle loaded nanotubes 

by electrospinning and ALD [61] 



 

 

 

 

 

 

 

In the next sections, at first nanotubes, then core/shell nanofibers are reviewed, which have been 

obtained by the synergy of electrospinning and ALD. 

Inorganic nanotubes prepared by electrospinning and ALD 

Al2O3 nanotubes with tuned wall thickness represent one of the first examples of 1D nanostructures, 

which were produced by combining electrospinning and ALD. 200-400 nm thick polyvinylalcohol 

(PVA) nanofibers were electrospun, and Al2O3 nanofilms were deposited on the fibers by ALD (60 °C, 

trimethyl aluminium (TMA) and H2O as presursors). After removing the polymer core by annealing at 

400 °C for 24 h, Al2O3 nanotubes were obtained with tuned wall thickness (14-28 nm). [62] 

Al2O3 nanotubes with porous, coral-like structure and extremely high specific surface were 

produced using the same precursors, but with a different polymer core removal process (Fig. 3). PVA 

nanofibers (ca. 340 thick) were obtained by electrospinning. They were covered uniformly by 25, 50 

and 100 nm Al2O3 films by ALD. The PVA core was not removed by annealing, but by dissolution in 

water at varying temperatures and times (20-100 °C and 30-180 min, respectively). From 40 °C, the 

polymer swelled in water causing cracks on the shell Al2O3 layer. As the dissolved polymer migrated 

out, a complex channel structure was formed on the tube walls, resembling a nanocoral structure. The 

as-formed porous nanotubes grew in diameter (1300 nm), and the material had very high specific 

surface, i.e. 323 m
2
/g. This structure was suggested to be beneficial to prepare porous materials for 

filtration or catalysis. [63] 

PVA electrospun nanofibers (300 nm thick) served as a template also for a multilayer Al2O3 (18 

nm)/ZnO (8.5-39 nm)/Al2O3 (22 nm) nanotubular structure. Al2O3 (TMA and H2O) and ZnO (diethyl 

zinc (DEZ) and H2O, 45 and 65 °C, respectively) were deposited by ALD. The PVA core was 

removed by annealing at 450 °C for 12 h, or by dissolution in H2O for 12 h. After this the 

Al2O3/ZnO/Al2O3 multilayer nanotubes were annealed at 700 °C for 12 h, and during that ZnO 

diffused into both the inner and the outer Al2O3 layers. The vacancy supersaturation and Kirkendall 

void production resulted in two isolated ZnAl2O4 spinel nanotubes. The Kirkendall gap between the 

tube-in-tube structure was influenced by the intermediate ZnO layer. [64] 

ZnO nanotubes were prepared using polyvinylpirrolidone (PVP) nanofibers as sacrificial templates 

as well, but in this case the obtained nanotubes were not multilayer, but single. 180 nm ZnO layers 

were grown by ALD (70 °C, DEZ and H2O) onto the 630 nm thick PVP nanofibers, then the PVP core 

was eliminated by annealing at 500 °C for 4 h. The ZnO layer consisted of 30 nm ZnO nanoparticles, 

and the calcination lead to their oriented grain growth. As a result the wall of the free standing ZnO 

nanotubes were composed of 200 nm ZnO nanoplatelets. [65] 

Besides PVP, also polyacrylnitrile (PAN) as-spun nanofibers were templates for ZnO nanotubes. 

On the 100-150 nm electrosun PAN nanofibers 10, 30 and 50 nm ZnO films were deposited by ALD 

(150 °C, DEZ and H2O). If the PAN/ZnO composite was only annealed at 500 °C for 2h to remove 

PAN, the thin ZnO walls collapsed. Thus, an O2 plasma treatment was applied before the annealing, 

and the nanotubular structure was well preserved. The ZnO nanotubes were tested as gas sensors to 

ethanol (EtOH). The ZnO nanotube with 10 nm wall thickness was wholly depleted, and due to this it 

was the most sensitive to 100 ppm EtOH with an extreme response of 1184, and subsecond response 

time between 350-500 °C. [66] The sensor was selective to EtOH, relative to H2. 

Using PAN nanofibers as core materials, gas sensitive SnO2 nanotubes were obtained as well. 100-

200 nm thick PAN nanofibers were electrospun, onto which 8, 22 and 37 nm SnO2 layers were grown 

by plasma enhanced (PE) ALD (100 °C, dibutyltindiacetate (DBTDA) and O2 plasma). The 

amorphous as-deposited SnO2 became crystalline during annealing (700 °C, 1 h), and the polymer core 

was eliminated as well. Similar to ZnO nanotubes, the SnO2 nanotubes with the smallest wall 

thickness had the highest response (188) to 100 ppm EtOH and shortest response time (few seconds). 

This was due to the complete electron depletion and effective gas diffusion through the permeable 

wall, composed of interconnected SnO2 nanoparticles. The sensors were selective to EtOH in the 

presence of reducing gases (H2, CO, NH3), but not in when oxidizing gases (NO2) were present. [67] 



 

 

 

 

 

 

The same group prepared a continuously aligned and assembled structure, i.e. a ca. 50 m thick 

yarn, by electrospinning, aligning and twisting PAN nanofibers. They deposited SnO2 films by the 

above mentioned PE-ALD process on the PAN yarn, then annealed the composites at 700 °C. Hence, 

the obtained SnO2 yarn consisted of nanotubes with a diameter and wall thickness of 500 and 70 nm, 

respectively (Fig. 4). The main advantage of the yarn was its easy handling, which was demonstrated 

in preparing a H2 sensitive gas sensor. [68] 

TiO2 nanotubes were prepared as well by electrospinning and ALD. 500 nm PVP fibers were 

electrospun, onto which 60 nm TiO2 was deposited by ALD (70 °C, Ti(OiPr)4 and H2O). To remove 

the polymer, the PVP/TiO2 fiber was annealed at 500 °C for 4 h. During this the as-grown amorphous 

TiO2 crystallized into 16 nm anatase platelet grains, parallel to the direction of the tube axis. [69] 

 

  
Figure 3. SEM images of Al2O3 nanocoral 

formed after dissolving the PVA core from PVA/ 

Al2O3 core/shell nanofibers at (a) lower and (b) 

higher magnifications [63] 

Figure 4. SEM images of (a) SnO2 nanotube 

yarn; (b) individual SnO2 nanotubes [68] 

 

TiO2 nanotubes served the basis of an Ag/Al2O3/TiO2 nanotube composite too. 15-80 nm Ag 

nanoparticles (NPs) were obtained by sol-gel method and mixed in a polyethylene oxide (PEO) 

solution. From this Ag NP embedded PEO nanofibers (650 nm thick) were electrospun. Ca. 0.15-1.5 

nm Al2O3 layer was deposited on the fibers by PE-ALD (65 °C, TMA and O2 plasma), then 4-14 nm 

TiO2 was grown by PE-ALD (Ti(OiPr)4 and O2 plasma). The PEO polymer was dissolved in water and 

the Ag/Al2O3/TiO2 nanotube was annealed at 500 °C for 1 h. This hybrid system was tested in a DSSC 

applications), and showed an enhanced light absorption and an increased photocurrent generation, 

compared to Ag/TiO2 nanotubes. The plasmonic effect of Ag NPs could be controlled with the 

thickness of the dielectric Al2O3 spacer between the Ag NPs and the dye molecules. [70] 

SnO2/TiO2 multilayer nanotubes were prepared as lithium ion battery anodes. PAN nanofibers 

(200-300 nm thick) were electrospun, onto which 12 nm SnO2 and 22 nm TiO2 layers were deposited 

consecutively by PE-ALD (100 °C, dibutyltindiacetate and O2 plasma, Ti(OiPr)4 and O2 plasma, 

respectively). The PAN core was removed by annealing at 700 °C for 1 h. While pure SnO2 nanotubes 

disintegrated into nanoparticles during electrochemical charging/discharging, the TiO2 encapsulation 

of SnO2 prevented this. The high capacity of SnO2 and the superior cycling performance of TiO2 were 

synergistically combined in the SnO2/TO2 double shell nanotube electrode. [71]  

HfO2 is another material from which nanotubes were produced by electrospinning and ALD. The 

core polymer nanofibers (70 or 330 nm) were made of nylon 6,6. The fibers were covered by 15 or 70 

nm HfO2 layers by ALD (200 °C, Hf(NMe2)4 and H2O). The polymer core was removed by heating at 

500 °C for 2 h to obtain HfO2 nanotubes. [72] 

 



 

 

 

 

 

 

Organic core/inorganic shell nanofibers produced by electrospinning and ALD 

In a pioneer study, the etching of electrospun nylon nanofibers by the most common ALD precursor, 

i.e. TMA, was investigated, and also it was studied how it could be prevented. Nylon nanofibers were 

obtained from polyamide-6 (PA-6) solution. Al2O3 (60 and 90 °C, TMA and H2O), and ZnO (60 °C, 

DEZ and H2O) were grown on the fibers by ALD, while an organic/inorganic hybrid layer (120 °C, 

TMA and gylcidol) by MLD. The TMA precursor is highly reactive and it caused significant fiber 

degradation. When ZnO was deposited prior to Al2O3, it decreased the corroding effect of TMA, yet a 

certain part of TMA could still reach the core polymer by diffusing through the polycrystalline ZnO. 

In constrast, protecting the fibers by both the ZnO and the MLD layer was effective and the shape of 

the original polymer fibers was maintained. [73, 74] 

Electrospun nylon 6,6 nanofibers (80, 240 or 650 nm thick) were used also as templates for 90 nm 

ZnO nanolayers grown by ALD (200 °C, DEZ and H2O). The electrospun nylon/ZnO fibers formed a 

flexible and mechanically stable mat. Their photocatalytic activity increased with a decrease in the 

core polymer diameter. [75] 

 

Figure 5. TEM images of electrospun nylon nanofibers coated (a) with remote ZnO nanoparticles 

(NPs); (b) densely with ZnO NPs; (c) with 27 nm thick layer of ZnO NPs [76] 

 

The photocatalytic activity of ALD deposited ZnO (200 °C, DEZ and H2O) nanoparticles or 

nanofilms on similar, electrospun 80 nm thick nylon 6,6 nanofibers was investigated further. Varying 

the ALD parameters, i.e. normal dose and dynamic vacuum, increased dose and dynamic vacuum, 

normal dose and static vacuum, the polymer nanofibers were decorated with remote 20 nm ZnO NPs, 

with densely packed ZnO NPs, or with a continuous 27 nm thick ZnO layer consisting of ZnO NPs 

(Fig. 5). All composites were good photocatalysts, and the nylon nanofibers packed densely with ZnO 

NPs had the largest activity, due to their highest specific surface. [76] 

The application of ALD ZnO coated electrospun fibers was studied further in photocatalysis. 1000 

nm thick polysulfone (PSU) as-spun fibers were coated by ALD with distinct 10 nm ZnO 

nanoparticles (quantum dots), and also with 43, 56, 75 nm ZnO nanocoatings built up by this particles. 

The PSU/ZnO composite with the thickest ZnO layer had the highest photocatalytic activity. The role 

of oxygen vacancies (VOs) and Zn interstitials (Zni) were investigated. As the ALD cycle number and 

the ZnO thickness increased, the number of VOs grew, while the density of Zni remained basically the 

same. It was concluded that VOs are more effective in the context of photocatalysis than Znis and 

related defects. [77] 

In a recent study, a flexible mat of 655 nm thick electrospun PAN nanofibers was covered with 60 

nm ZnO thin films by atomic layer deposition. This ZnO layer served as seed in a consecutive 

hydrothermal process, where 25 nm thick and 600 nm long single crystalline ZnO nanowires were 

grown on the PAN/ZnO composite fibers. The as-obtained hybrid had excellent photocatalytic 

activity, which was due to the synergy of the catalytic activity at surface defects (of ALD ZnO seed 

coating), of the valence band and the conduction band (of ZnO nanoneedles). [78] 

Besides ZnO and Al2O3, TiO2 nanofilms were also deposited on electrospun polymer fibers. It was 

studied how the precursors-substrate interactions during ALD coating influenced the mechanical 

properties of the fibers. Al2O3, ZnO and TiO2 thin films were deposited by ALD (50 and 150 °C) on 

nylon nanofibers (200 nm in diameter) prepared by electrospinning. Smaller ALD precursors (TMA 

for Al2O3, TiCl4 for TiO2) diffused into polymer and formed particles there, while larger precursors 



 

 

 

 

 

 

(DEZ for ZnO and Ti(OiPr)4 for TiO2) rather formed a film on the surface of the polymer. The 

diffusion of oxide precursors into the polymer increased Young’s modulus and decreased the ultimate 

strain. [79] 

Such nanofibers were prepared by electrospinning as well, which contained both PAN and an iron 

salt (Fe phtalocyanine). Onto these, TiO2 was deposited by low temperature ALD (50 °C, TiCl4 and 

H2O), and the hybrid was pyrolyzed in N2 at 900 °C for 2 h. As a results core/shell Fe-containing 

carbon/TiO2 composite fibers were obtained. These were used as electrocatalysts for the oxygen 

reduction reaction (ORR) of fuel cells. Adding Ti species to the Fe-C fibers increased the mass 

activity of the ORR and decreased the production of the side product H2O2, i.e. increased the 

selectivity of the reaction. [80]  

Al2O3 coated Si/C nanofibers are another examples, where not polymer but carbon fibers were in 

the core. 30-50 nm Si nanoparticles were mixed with PAN, and 150-300 nm Si/PAN composite fibers 

were prepared by electrospinning. The composite was carbonized by annealing at 800 °C for 2 h in Ar 

atmosphere. Onto the Si/C nanofibers 7-28 ALD cycles of Al2O3 were deposited (120 °C, TMA and 

H2O). The Si-C/Al2O3 fibers were tested as anode materials for rechargeable Li ion batteries. The 

Al2O3 coating significantly increased the capacity retention and the coulombmetric efficiency, because 

it increased the mechanical integrity of the electrode structure and prevented side reactions between 

the electrode and the electrolyte. [81] 

Inorganic core/shell nanofibers produced by electrospinning and ALD 

In the last group of composite nanofibers, there is no organic material in the core of the fibers. 

WO3/TiO2 core/shell nanofibers with enhanced visible light photocatalytic activity are good examples 

for these materials. Polymer/inorganic PVP/ammonium metatunsgstate composite nanofibers were 

electrospun. They were annealed at 500 °C for 1 h in air to get 250 nm thick WO3 nanofibers, 

composed of 20-60 nm interconnected nanoparticles. The authors studied in detail the effect of heating 

program during annealing and concluded that the polymer/inorganic fibers had to be annealed very 

slowly (1 °C/min) and at the lowest possible temperature, in order to prevent the disintegration of the 

as-formed oxide fibers into particles. [82] On the WO3 nanofibers 1.5-20 nm TiO2 thin films were 

deposited by ALD (250 °C, TiCl4 and H2O) (Fig. 6). Under visible light, the WO3/1.5 nm TiO2 

nanofibers had the highest photocatalytic activity, even higher than Degussa TiO2, while the thicker 

TiO2 layers filled the voids between the NPs of the nanowires and reduced the specific surface area, 

weakened the photocatalytic activity. [83] 

  

Figure 6. (a) SEM image of electrospun WO3 

nanofibers; (b) HRTEM image of the WO3/1.5 

nm TiO2 core/shell nanofiberscomposite [83] 

Figure 7. FESEM (a) and STEM (b) images of 

Fe2O3 particle filled TiO nanotube [61] 

 



 

 

 

 

 

 

The photocatalytic activity of TiO2 nanofibers was also increased by doping with Nb and 

depositing Pt nanoparticles onto them. A solution of polyvinyl acetate (PVAc), Ti(OiPr)4 and 

Nb(OEt)5 was electrospun, then annealed at 500 °C in air for 24. As a result, 152-220 nm Nb-doped 

TiO2 nanofibers were obtained. Onto them 4-14 nm Pt nanoparticles were deposited by ALD (270 °C, 

(MeCp)Pt(Me)3 and O2). The hybrid fibers were studied as possible fuel cell anodes. The Nb doping 

increased the conductivity of TiO2, and thus the ORR became 20 fold larger. A larger Pt load and post-

treatment in 5% H2 at 500 °C increased the ORR even further. [84] 

In another study, it was investigated what happened if the core and shell materials were exchanged 

in photocatalytic core/shell nanofibers. PVP/Ti(OiPr)4 and PVP/ZnAc nanofibers were electrospun, 

then annealed at 500 °C in air for 3 h. Then they were covered with ZnO (200 °C DEZ and H2O) and 

TiO2 (200 °C, Ti(NMe2)4 and H2O) thin films by ALD to get 200 nm thick TiO2/ZnO and 270 thick 

ZnO/TiO2 core/shell nanofibers, respectively. These two combinations exposed electrons and holes 

selectively to the environment, which migrated to TiO2 and ZnO, respectively. During photocatalysis, 

the TiO2/ZnO had considerable higher activity owing to the efficient hole capture by oxygen 

vacancies, and to the lower mobility of holes. [85] 

Reusable magnetic and photocatalytic CoFe2O4 and Fe2O3 nanoparticle loaded hollow TiO2 

nanofibers are presented as last examples (Fig. 7). PVP/Fe(NO3)3/Co(NO3)2 and PVP/Fe(AcO)2 

polymer/inorganic composite fibers were obtained by electrospinning, onto which TiO2 nanofilms 

were grown by ALD (250 °C, TiCl4 and H2O). The composites were annealed in air at 500 °C for 4 h 

to remove the polymer. If the concentrations of the Fe and Co precursors were low enough in the 

electrospinning solutions, then after annealing the CoFe2O4 and Fe2O3 filled only partially the voids of 

the TiO2 shells, and nanoparticle loaded nanotubes were prepared. The CoFe2O4/TiO2 and Fe2O3/TiO2 

composites were good photocatalysts, and after the photocatalytic reaction they could be collected 

simply by a magnet instead of centrifuging or filtration. [61] 

5.  Conclusion 

Electrospinning is an easy and cost-effective way to prepare various nanofibers. ALD has been proven 

to be a valuable tool not just in semiconductor industry but also in many fields of nanotechnology. 

Their combination is a powerful way to prepare nanotubes and core/shell nanofibers with tuned 

properties. The first study on using both electrospinning and ALD to prepare 1D nanostructures was 

published less than ten years ago, and since then the number of materials prepared by the synergy of 

these two techniques has increased rapidly.  

For electrospinning, such polymers (PVA, PVP, PAN, PEO, nylon, PSU, PVAc) were used, which 

had some heteroatoms that could serve as nucleation centers for ALD. Onto them usually the most 

widespread ALD oxide materials (Al2O3, ZnO, TiO2) were deposited, but other oxides (SnO2, HfO2) 

and even nobel metals (Pt) were also grown, either by thermal ALD or by PE-ALD. 

To obtain nanotubes, the polymer core had to be removed, which was done mostly by annealing, 

but occasionally also by dissolution or by O2 plasma treatment. In several cases, simple nanotubes 

(e.g. Al2O3, ZnO, TiO2, SnO2, HfO2) were prepared, but also more sophisticated structures (nanotube 

Al2O3 yarns, multilayer Al2O3/ZnO/Al2O3, SnO2/TiO2 and Ag nanoparticle embedded Al2O3/TiO2 

nanotubes) were synthesized. 

In the case of many core/shell nanofibers, the as-spun polymer fiber itself served as the core. In 

many examples, flexible core/shell fiber mats were obtained, which had beneficial mechanical 

properties. It was shown that depending on their properties, the ALD precursors can diffuse either into 

the fiber and start nucleation there, or they start to form films only on the surface. By using various 

precursors and ALD reaction parameters, on the polymer cores Al2O3, ZnO and TiO2 films, and ZnO 

nanoparticles were grown by ALD, but also hybrid organic/inorganic Al-O-glycidol layers by MLD. 

In few cases, the polymers contained Fe or Si salts or nanoparticles, and when after the ALD reaction 

the polymer core was carbonized, and Fe-C/TiO2 and Si-C/TiO2 core/shell composites were produced. 

When the polymer core was oxidized before the ALD run, inorganic core/shell nanofibers were 

prepared. When the core inorganic fiber consists of nanoparticles, the ALD layer should be thin in 



 

 

 

 

 

 

order not to reduce the specific surface by filling the voids between the particles, as was shown by the 

example of WO3/TiO2 composite. When the inorganic salts had lower concentration in the polymer 

solution, even magnetic nanoparticle loaded hollow Fe2O3/TiO2 or CoFe2O4/TiO2 nanofibers could be 

obtained. With ALD and electrospinning it could be studied what happens if the core and shell 

materials are exchanged (ZnO/TiO2, TiO2/ZnO). Not just films but also nanoparticles could be 

deposited on the inorganic nanofibers by ALD, as in the case of Nb-doped TiO2/Pt composites. 

The various nanotubes and core/shell nanofibers had versatile applications ranging from 

photocatalysis and solar cells to batteries, gas sensors and fuel cells. It is clear that the combination of 

electrospinning and ALD can provide both simple and sophisticated 1D nanostructures as well. The 

present examples are only show the potential in the synergy of these two methods, but there is large 

room and also need for novel 1D nanomaterials with programmed properties, which predicts a huge 

development of the field. 
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