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THE ROLE OF THE EXCHANGE INTERACTION IN THE ONE-DIMENSIONAL
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The commensurate p/q-filled n-component Hubbard chain was investigated by bosonization and
high-precision density-matrix renormalization-group analysis. It was found that depending on the
relation between the number of components n, and the filling parameter q, the system shows metallic
or insulating behavior, and for special fillings bond-ordered (dimerized, trimerized, tetramerized etc.)
ground state develops in the insulating phase. A mean-field analysis shows that this bond ordering is
a direct consequence of the spin-exchange interaction, which plays a crucial role in the one-parameter
Hubbard model — not only for infinite Coulomb repulsion, but for intermediate values as well.

PACS numbers: 71.10.Fd

Recent experimental results in ultracold gases in op-
tical lattices may be simulated by multi-component
fermionic systems in which spins can take more than two
degrees of freedom1. A natural candidate for the de-
scription of such systems from the theoretical point of
view is the SU(n)-symmetric generalization of the stan-
dard SU(2) Hubbard model2 which has been investigated
intensively in the past by both analytic and numerical
approaches1,3,4,5,6,7,8,9,10. In fact this model may mimic
strongly correlated electron systems where the orbital de-
grees of freedom of d and f electrons play important role
and these extra degrees of freedom are taken into account
by considering n-component fermions.
The Hamiltonian of the model is usually written in the

form

H =
N
∑

i=1

[

−t
n
∑

σ=1

(c†i,σci+1,σ+c†i+1,σci,σ)+
U

2

n
∑

σ,σ′=1

ni,σni,σ′

]

,

(1)
where N is the number of sites in the chain. The oper-

ator c†i,σ (ci,σ) creates (annihilates) an electron at site i
with spin σ, where the spin index is allowed to take n
different values. ni,σ is the particle-number operator, t is
the hopping integral between nearest-neighbor sites, and
U is the strength of the on-site Coulomb repulsion. In
what follows t will be taken as the unit of energy.
It is well known that in the weak-coupling regime the

half-filled n-component Hubbard model is an insulator
with gapped charge and spin modes (for n > 2), while
in the large U limit the system can be described — at
least for even n — by an effective Heisenberg model3,6.
Away from half filling, based on leading-order renormal-
ization group analysis, where the higher-order umklapp
processes do not give contribution, one can find Lut-
tinger liquid behavior with gapless bosonic charge and
spin modes. However, one can expect that these higher
order processes become relevant for commensurate fill-
ings and cannot be neglected. To see their effect, first we
analyze how the spectrum of a Luttinger liquid is modi-
fied by these processes and then we study the occurrence
of phases with spatial inhomogeneity for special fillings.

In order to describe the low temperature physics of the
system, one can consider only that part of the Hilbert
space which contains states close to the Fermi surface.
Therefore, in one dimension the dispersion relation can
be linearized around the Fermi points ±kF. With this
approximation the properties of the fermion problem can
be calculated by using the renormalization group method
and bosonization11. One finds that for generic fillings,
the n-component Hubbard model — as well as the usual
n = 2 component model — is an n-component Lut-
tinger liquid. The well-known one-particle and particle-
hole excitation spectrum of the two-component Luttinger
liquid12 can be easily generalized for fermions with n in-
ternal degrees of freedom:

E =
∑

j

~uj
2π

L

(

nj
+ + nj

− +∆j
+ +∆j

−

)

, (2)

where the momentum is quantized in units of 2π/L,

and nj
± are integers describing the particle-hole type

bosonic excitations: the term j = c describes the exci-
tations of the charge mode which is the symmetric com-
bination of the bosonic phase fields φσ(x) of the corre-
sponding fermion fields, φc(x) = 1√

n

∑n
σ=1 φσ(x). The

terms j = ms describe the excitations of the n − 1
spin modes which are independent antisymmetric com-
binations of the appropriate boson fields, φms(x) =
(m(m + 1))−1/2 [

∑m
σ=1 φσ(x)−mφm+1(x)]. In Eq. (2)

∆j
± corresponds to the one-particle excitations: ∆j

± =
1
16
(
√

KjJj ± δNj/
√

Kj)
2, where δNj is the change in

the number of particles, and Jj describes the current in
the jth channel generated by processes which break the
chiral particle-number or spin conservation. Since the
total momentum is given by

P = ~kFJc +
∑

j

~
2π

L

(

nj
+ − nj

− +∆j
+ −∆j

−

)

, (3)

and the charge current Jc is an even number due to the
total particle-number conservation, in the termodymanic
limit soft modes appear not only at zero momentum but
also at even integer multiples of kF = πf for filling f .
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For commensurate filling the higher-order umklapp
processes are not irrelevant anymore, and they mod-
ify the Luttinger liquid spectrum. In the considered
restricted Hilbert space (with low energy states), the
higher-order umklapp processes can be described only by
multiparticle scatterings in fermion representation, and
in these processes the number of scattered particles de-
pends on the filling factor f . Namely, for f = p/q filling,
exacly q particles take part in the leading-order multi-
particle umklapp processes. Therefore, due to the Pauli
principle these processes are forbidden for local interac-
tion, if q > n, and the system remains Luttinger liquid.
If, on the other hand, q ≤ n, at least for strong interac-
tions these processes are relevant, and their contribution
has to be taken into account. The q-particle umklapp
processes can be described in the terms of the bosonic
fields as

HU = g3

∫

dx
∑

{σi}′

cos
[

2
(

φσ1
(x) + . . .+ φσq

(x)
) ]

. (4)

Here g3 is the coupling of q-particle umklapp processes
and prime indicates that the summation over the spin
indices gives contribution only for terms which contains
phase fields with different spins. The other terms are for-
bidden by the Pauli principle. One can easily see from
Eq. (4) that for q = n the leading-order umklapp pro-
cesses modify only the spectrum of the symmetric com-
bination of the boson fields, which means, that the exci-
tation of the charge mode needs a finite energy of order
g3, while the spin modes remain gapless. It is more in-
teresting, as we will see, that if q < n, the leading-order
umklapp scatterings couple the spin and charge modes,
and due to this coupling the whole spectrum becomes
gapped — not only at zero momentum, but at k∗ = 2kF,
and integer multiples of k∗, too.
Considering the analytical predictions it is expected

that the behavior of the system should be determined
by the k∗ = 2kF modes. We have, therefore, studied
the model numerically using the high-precision density-
matrix renormalization group (DMRG) method13 for sev-
eral system sizes and values of q and n as a function of U .
We have detected and located quantum phase transition
points (QPTs) and determined the spatial characteristics
of the ground state using various quantum information
entropies14,15,16

sN (l) = −Tr
[

ρN (l) ln ρN (l)
]

, (5)

where a finite block of length l of a long chain of N sites
is considered with the corresponding reduced subsystem
density matrix ρN (l). As has been shown before14,15,
anomalies in the entropy functions or in their derivate
signal QPTs, and peaks in the Fourier spectrum of
sN (l) carry information about the position of soft modes
(for critical models) or the spatial inhomogeneity of the
ground state (for gapped systems)16. In the latter case
the spatial modulation of the ground state can be a site-
or a bond-centered density wave. A site-centered density

wave would manifest itself in an oscillation of the en-
tropy of single sites or in the local electron density. The
existence of a bond-centered density wave can be demon-
strated by studying the variation of the bond energy or
the two-site entropy along the chain15.
We have found that for models with q ≥ n, for finite

systems, the block entropy oscillates with a period deter-
mined by the filling, but all Fourier components except
for q = 0 disappear in the N → ∞ limit. Therefore, the
ground state of the system is spatially uniform. Using
the analytic form of the block entropy known for critical
models17,

sN (l) =
c

6
ln

[

2N

π
sin

(

πl

N

)]

+ g , (6)

where g is a shift due to the open boundary, we have also
determined the value of the central charge c. For q > n
the model remains critical with c = n for finite U as well7,
while when q = n, a charge gap opens for finite U > 0,
whereas the spin modes remain gapless, c = n − 18, in
agreement with the theoretical expectation. This means
that the ground state for p/n-filling is a critical SDW
phase without true long-range order.
A significantly different behavior has been found for

systems with q < n. The block entropy function satu-
rates beyond some system size7 for finite U values, indi-
cating that the corresponding models are fully gapped18.
In fact, gap opens in the spectrum of all modes for U >
08. Even more interestingly, the translational symmetry
of the Hamiltonian is broken and a spatially nonuniform
ground state emerges whose periodicity depends on the
filling. Since all Fourier components of the site entropy
and local charge density have been found to vanish for
long chains, the ground state is a bond-centered density
wave. Therefore, we have identified bond-ordered dimer-
ized, trimerized or tetramerized phases depending on the
filling.
The occurrence of this spatially nonuniform phase was

further investigated analytically on mean-field level in the
large n limit, for one-third-filled system, with n an integer
multiple of 3. It was mentioned above that the change of
the periodicity of the translational invariance can be re-
alized by site- or bond-centered density waves, however,
bond ordering cannot be taken into account within the
applied method7 if there is no nearest-neighbour inter-
action in the system. In order to analyse the possibility
of bond ordering, too, we have considered a more gen-
eral model, the Hubbard-Heisenberg model3, which con-
tains antiferromagnetic nearest-neighbour spin-exchange
J , in addition to the on-site Coulomb repulsion U . The
Hubbard-Heisenberg Hamiltonian is

H =

N
∑

i=1

[

− t

n
∑

σ=1

(c†i,σci+1,σ +H.c.)

+
U

2

n
∑

σ,σ′=1

ni,σni,σ′ + J ~Si
~Si+1

]

, (7)
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where we use the same notations as in Eq. (1), and ~Si is
the SU(n) spin operator.
We have found that the periodicity of the transla-

tional invariance changes for arbitrary small positive
value of J : it seems that the Hubbard model is un-
stable against the antiferromagnetic nearest-neighbour
Heisenberg exchange, independently of the value of the
on-site Coulomb interaction. Considering this instability
and the well-known behaviour of the Hubbard model in
the strong-coupling limit — where it is equivalent to the
Heisenberg model with an effective antiferromagnetic ex-
change — one can conclude, that in the Hubbard model
the Heisenberg interaction becomes relevant in the in-
termediate regime, too, not only in the strong-coupling

limit.
The above analysis for the role of the Heisenberg ex-

change was done only for f = 1/3 filling and special
values of n, therefore the question of the relevant ex-
change interaction and its role in the occurrence of the
symmetry broken phase needs further investigation, e.g.,
it would be interesting to analyse the phase diagram of
the n-component t-U -J model for different commensu-
rate fillings, and for different values of the couplings.
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