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Abstract

The Anomalous Mole Fraction Effect (AMFE) in negatively charged pores has been considered as a
signature of Ca2+ vs. monovalent ion (K+, in this study) selectivity. Increasing the mole fraction of
CaCl2 in the KCl/CaCl2 mixture, the total conductance first declines as Ca2+ ions replace K+ ions
inside the pore, then it increases as Ca2+ becomes the main charge carrier. While the AMFE was first
pointed out in calcium selective ion channels, in a previous study (Gillespie et al., Biophys. J. 95 (2008)
609–619.) we showed that it is also present in synthetic nanopores. Here we use the Local Equilibrium
Monte Carlo method coupled to the Nernst-Planck transport equation to study a simple model of a finite
nanopore in a membrane with ions being explicitly modeled as charged hard spheres and water as an
implicit continuum. The novel component of the model is the treatment of the pore charges that are
present in localized COO− groups on the wall of the nanopore. Therefore, we study the effect of localizing
the pore charges instead of smearing them as a continuous surface charge. Localized charges profoundly
influence Ca2+ vs. K+ selectivity because they enhance charge inversion at the pore wall. Ca2+ ions
overcharge the pore wall at which the K+ ions have a disadvantage in the K+ vs. Ca2+ competition
because the overcharged pore wall does not attract them so strongly.

1. Introduction

Doug Henderson was a great master of our gen-
eration, and I (D. Boda) had the honor to be his
Padawan. This paper is dedicated to his memory.
It was a decisive step in my career when Doug
approached me to do Monte Carlo (MC) sim-
ulations for certain colleagues named Wolfgang
Nonner and Bob Eisenberg (the complete story
is found in Bob’s paper in this issue [1]). The
question was whether we can figure out a sim-
ple model that can reproduce an interesting bio-
physical phenomenon called the Anomalous Mole
Fraction Effect (AMFE).

It was presented to us for the L-type calcium
channel, which is a very important ion channel in
the membrane of muscle cells and neurons and is
responsible for letting Ca2+ into the cell when the
action potential arrives and opens the channel.
Those calcium ions do other important things in
the cell, but for now it is enough to say that this L-
type calcium channel is a pore that is highly selec-
tive for Ca2+ against monovalent ions, Na+ and
K+, for example. In experiments, when Almers
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and McCleskey gradually added CaCl2 to a back-
ground of 32 mM NaCl, as little as 10−6 M Ca2+

is enough to block the Na+ current (black solid
curve with circles in Fig. 1). [2, 3] The curve has
a minimum where Na+ does not carry current be-
cause it is squeezed out of the pore, but Ca2+ does
not carry current either because it is present in the
bulk in small concentration. [4–8]

Wolfgang and Bob realized that certain as-
sumptions of the excess chemical potentials pro-
duced a “rainbow” of anomalous phenomena. [11].
Later, they used the bulk Mean Spherical Ap-
proximation [12] to quantify ionic correlations ex-
pressed by the excess chemical potential. Using
a bulk theory made Doug jump up at BYU, stat-
ing that you cannot use a bulk theory in strongly
inhomogeneous circumstances.

That led to that historical hiking of Doug with
Wolfgang and Bob in Utah and to a series of
papers [4–8, 13–17] in which we used a model
that was an inhomogeneous version of the original
model of Wolfgang and Bob. It had been named
charge-space competition (CSC) mechanism and
states that Ca2+ has an advantage over Na+ in
the very narrow and crowded selectivity filter of
the channel because it provides twice the charge
to neutralize the negative stuctural charges of the
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Figure 1: The AMFE experiments for different nanopores:
Ca2+ is added to a fixed background of monovalent salt.
The normalized (I0 is the current in the absence of Ca2+)
current is plotted as a function of the 10-based logarithm
of the concentration of the added Ca2+ measured in M. In
the case of the L-type calcium channel (black), CaCl2 is
added to a background of 32 mM NaCl [2, 3]. The black
dashed line is the result of previous MC simulations [4]. In
the case of the Ryanodine Receptor (RyR) calcium channel
(red), CaCl2 is added to a background of 100 mM NaCl.
The red dashed line is the result of DFT calculations of
Gillespie. [9] In the case of a synthetic PET (Polyethylene
terephthalate) nanopore (blue), CaCl2 is added to a back-
ground of 100 mM KCl. The blue dashed line is the result
of previous MC simulations. [10]

selectivity filter (four COO− groups altogether in
a very small volume) while occupying about the
same space. This is basically a competition of
energetic (electrostatic attraction) and entropic
(hard-sphere exclusion) effects.

Before our CSC model, this high selectivity was
attributed to a picture of ions diffusing through
the pore in single file. This model received a se-
rious wound when Michael Fill performed similar
AMFE measurements for the Ryanodine Recep-
tor (RyR) [9, 18], following earlier AMFE exper-
iments in mixtures of monovalent ions by Ger-
hard Meissner [19]. Because the RyR selectivity
filter was known to be much wider than that of
the L-type calcium channel, single filing was un-
likely. The calcium AMFE was found in this chan-
nel too (red solid curve with squares in Fig. 1)
and the density functional theoretical (DFT) re-
sults of Dirk Gillespie based on the CSC ap-
proach (red dashed line in Fig. 1) nicely repro-
duced the experimental data (actually, predicted
them, because the calculations preceded the mea-
surements). [9, 18, 19] The RyR channel is less
selective for Ca2+ over Na+, which is manifested
in that the I/I0 curve starts declining at larger
Ca2+ concentration and that the minimum is less
deep.

The pervasive idea that single-filing was the
only cause of AMFE was finally killed when the
AMFE was found in synthetic nanopores whose
diameter is much larger than that of ion chan-
nels. [10] The pores used in the experiments of
Zuzanna Siwy were biconical, with a “bottleneck”
in the middle with diameters about 5 nm. Single-
filing is out of question in such wide pores. A
curve for a CaCl2 added to 100 mM KCl experi-
ment is shown in Fig. 1 with blue solid line and
triangles.

In our 2008 papers on the AMFE, we reported
a simple theoretical framework that is based on
dividing the nanopore into slices considered as re-
sistors connected in series. [4, 10] The electrical
conductance of each ionic species in a slice was
assumed to be proportional to its average ionic
concentration in the slice. The average concentra-
tion was computed from the radial concentration
profiles obtained from equilibrium Grand Canon-
ical Monte Carlo (GCMC) simulations performed
for the slices. These simulations for the slices
were independent, with each performed for an in-
finitely long nanopore (periodic boundary condi-
tion in the axial dimension) of a given diameter.
The negative surface charge (σ=−1 e/nm2) was
smeared on the wall of the pore as a collection
of fractional point charges on a fine grid that re-
produced the prescribed surface charge density, σ.
The adjustable parameter of that model was the
effective diffusion coefficients of the ions. This
was a concentration dependent parameter. The
result of the calculation is shown in Fig. 1 with
blue dashed line.

In this paper we return to this problem for sev-
eral reasons. (1) Now we have a non-equilibrium
simulation method that combines the Nernst-
Planck (NP) equation with GCMC simulations
and provides ionic fluxes that are the natural
outputs of experiments. This method had been
developed in 2012 [20] and was not available at
the time of our previous simulations (2008). (2)
Here, we have a finite pore embedded in a mem-
brane that makes it possible to study axial effects.
(3) We find it important to model the surface
charges as localized at given positions on the pore
wall instead of continuously smeared over the sur-
face. [21] Because the surface charge is present in
discrete COO− groups on the surface of the PET
nanopore, this is a more realistic model, and, as
we will see, gives better results.

2. Model and method

We use a reduced model, by which we mean
that the number of degrees of freedom of the sys-
tem is reduced, i.e., some of the degrees of freedom
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Figure 2: Schematic drawing of the simulation cell.

are not treated explicitly, but are taken into ac-
count in some approximate way. The most impor-
tant such reduction is to consider water molecules
implicitly as a medium rather than explicitly as
molecules. Implicit water interacts with ions in
different ways (dielectric screening and friction)
represented by response functions (dielectric con-
stant, ε, and diffusion coefficient, Di(r)). The
criterion for building a good reduced model is to
explicitly consider the important degrees of free-
dom, while implicitly considering the less impor-
tant ones, but in a way that is consistent with the
physics of nanopore current conduction. [21]

Using a reduced model instead of a more de-
tailed one can be advantageous for several rea-
sons. It is computationally cheaper that is an
important issue when we need to perform simula-
tions for a large number of state points at various
conditions as it is the case in this study. Fur-
thermore, efficiently sampling of milimolar and
lower concentrations in all-atom molecular dy-
namics (MD) simulations is extremely difficult.
Indeed, explicit-water MD simulations for selec-
tivity in electrolyte mixtures are relatively scarce
in the literature [22–24]. Finally, starting with
simple models and making them more complex
gradually is a useful engineering approach that
we also apply in this work.

2.1. Model of the nanopore

The model is composed of two parts: a cylindri-
cal nanopore embedded in a membrane and two
bulk phases on either side of the membrane. A
schematic of the simulation cell is shown in Fig. 2.
The figure is rotated around the z-axis to obtain a
three-dimensional model with the nanopore (with
length, H, and radius, R) in the center. The walls
of the pore and the membrane (the thick black
line bordering the grey area) are rigid, so that ion
overlap with the walls is forbidden.

The space containing the electrolyte solution
(light blue area in Fig. 2) can be further divided

Table 1: Pauling diameters and bulk-phase diffusion con-
stants of ions.

Ion di / nm Dbulk
i / m2s−1

K+ 0.266 1.96×10−9

Ca2+ 0.198 0.792×10−9

Cl− 0.362 2.032×10−9

into two parts: the transport regions and the
equilibrium bulk phases (constant chemical po-
tentials). In the transport regions, the chemical
potential is not constant, therefore, a transport
process (electrodiffusion) takes place. We impose
boundary conditions at the interface separating
the two parts of the space (blue line in the figure),
as this is the interface that bounds our domain of
solution.

One of these boundary conditions is the elec-
trostatic (Dirichlet) boundary condition imposed
on the boundary of the solution domain, which
allows us to model the electrodes. We create
an electrical potential difference (voltage, U) be-
tween the two sides of the membrane by setting
the left half-cylinder to the prescribed voltage and
the right half-cylinder to 0 V.

The ions of the electrolyte are explicitly mod-
elled, i.e., the ions are treated as hard spheres
with point charges in their centers (the “primi-
tive” model of electrolytes). The spheres cannot
overlap, either with the membrane wall or with
each other. The interaction between ions is

u(r) =

 ∞ for r < (di +dj)/2
1

4πε0ε

qiqj
r

for r≥ (di +dj)/2
,

(1)
where di and dj are the ionic diameters of species
i and j, ε0 is the permittivity of vacuum, r is the
distance between the centers of the ions, and qi
and qj are the charges of the ions (qi = zie, where
zi is the ionic valence and e is the charge of the
proton).

The diameters of the ions are twice the Pauling
radii. We prefer the Pauling radii to the increased
“solvated radii” of the ions in implicit solvent as
in many previous studies for ion channels [4–6,
8, 16, 21, 25], nanopores [10, 26, 27], and bulk
solutions [28–31]. The effect of the hydration shell
on the adsorption of ions at charged surfaces can
be taken into account by an adjusted distance of
closest approach of the cations to the localized
charged groups. This effect will be considered in
future studies. Experimental diffusion constants
are applied in the bulk phase (Dbulk

i , see Table 1).
The pore wall is negatively charged. To be con-

sistent with the experimental situation [10], we
use a surface charge density of σ=−1 e/nm2 by
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Figure 3: A homogeneous (left panel) and a localised (right
panel) charge distribution (in blue).

distributing fractional point charges in a grid on
the inner wall of the pore such that the sum of the
point charges divided by the surface area of the
pore wall gives the required charge density. The
charges cannot move.

The grid spacing (∆x) is a variable in this
study. If, for example, a ∆x≈ 0.2 nm for a pore
of length H = 6 nm, then 2550 point charges are
placed on 30 rings, where the magnitude of the
point charges is −0.0399167e. This fine grid mim-
ics well the uniform and continuous charge distri-
bution used in theories (left side of Fig. 3).

If the ∆x parameter is increased, the size of
the point charges must be increased to obtain the
required −1 e/nm2. If ∆x= 1 nm, for example,
the magnitude of the point charge is −e. This is
consistent with the experimental setup where the
wall charges are localized in COO− groups (right
side of Fig. 3).

The grid is constructed as a series of rings in
distance ∆x from each other. The distance of
charges inside a ring is not necessarily equal to
∆x but as close as possible. This allows us to
monitor the effect of localized charges in the axial
concentration profiles in the form of cation peaks
at the rings and/or depletion zones in between.

2.2. NP+LEMC method

The driving force for diffusion is the gradient of
the chemical potential in the NP equation:

ji(r) =− 1

kT
Di(r)ci(r)∇µi(r), (2)

where µi(r) varies from place to place. In this
equation k is the Boltzmann constant (1.38×
10−23 J/K), T is the temperature (T = 298.15 K),
ji(r) is the particle current density, Di(r) is the
diffusion coefficient profile, ci(r) is the concentra-
tion profile, and µi(r) is the chemical potential
profile.

The diffusion constant profile is constructed as
a step function, where its value for a given ion is
a constant outside the pore (Dbulk

i , see Table 1)
and a different constant (Dpore

i ) inside the pore:

Di(z) =

{
Dpore

i for |z|<H/2
Dbulk

i for |z| ≥H/2 (3)

The value Dpore
i is used as a fitting parameter,

i.e., its value is fitted so that the calculated con-
ductivity matches the experimental value.

To couple the NP equation with GCMC simu-
lations, Boda and Gillespie introduced the Local
Equilibrium Monte Carlo (LEMC) method [20],
in which the simulation cell is divided into small
volume elements and a local chemical potential
is imposed in each one. The simulation then pro-
ceeds as a standard GCMC simulation except that
a particular volume element is assumed to be in
equilibrium with a bath whose chemical potential
is equal to the chemical potential of the given vol-
ume element. Accordingly, the variables in the ac-
ceptance criterion are the chemical potential and
volume of the volume element and number of ions
in the volume element (the formulas can be found
in the original communication [20]).

The LEMC simulation provides the concentra-
tion profile, ci(r), as an output to the the chemi-
cal potential profile, µi(r), as an input. The NP
equation must be solved together with the LEMC
simulation in a self-consistent way such that the
continuity equation describing the conservation of
mass is also satisfied:

∇· ji(r) = 0. (4)

To do this, an iteration method is used that varies
the chemical potential (and thus the concentra-
tion and flux) until the continuity equation is sat-
isfied. This iteration method is used to couple the
LEMC simulation to the NP transport equation
(NP+LEMC method).

The total flux through the cross-section A from
the current density determined from Eq. 2 is given
by

Ji =

∫
A

ji ·nda (5)

where n is the normal vector perpendicular to the
cross section A. This gives the total electric cur-
rent flowing through the pore,

I =
∑
i

qiJi =
∑
i

Ii. (6)

The conductivity of the pore is

G=
I

U
, (7)

while the conductivity for a given ion can be cal-
culated from

Gi =
Ii
U
. (8)

3. Results and Discussion

There are several ways to perform experiments
for mixtures of CaCl2 and KCl. One is the
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added-salt experiment depicted in Fig. 1 where
CaCl2 is added to a fixed KCl backround grad-
ually. The other one is the actual mole-fraction
experiment where the total concentration ctot =
[CaCl2] + [KCl] is kept fixed (another version is
when the total ionic strength is kept fixed).

The two experiments are practically the same
for low Ca2+ concentrations, but they become dif-
ferent when [CaCl2] ∼ [KCl]. In this work, we
perform simulations for the second kind of ex-
periment because experimental data are available
mostly for this setup in Ref. [10]. The total con-
centration is ctot = 100 mM in this work.

The nanopore in the experiment [10] was a bi-
conical pore fabricated in a 12 µm thick PET
membrane by the track-etching technique from
the two sides. The radius of the pore in the mid-
dle at bottleneck was 2.7 nm, while it was 79 nm
at the entrances of the pore. This results in a
0.73◦ cone angle. The narrow central section of
the nanopore, therefore, is long enough to domi-
nate the selectivity of the pore. As a consequence,
we use a finite cylindrical nanopore in this study
with a fixed radius of R= 2.7 nm.

The length of the real nanopore (12 µm), how-
ever, is much larger than the length of our model
nanopore (H) that is in the nanometer range. Be-
cause the conductance of the pore is inversely pro-
portional to the length of the pore, the conduc-
tance of the real nanopore is much smaller than
that of the model nanopore. In our model, we
balance this difference by fitting the diffusion co-
efficients of the cations in the pore, Dpore

i . The
length of the pore is a parameter in our model in
the range H = 6−18 nm.

We show the AMFE results as a function of the
mole fraction of CaCl2 defined as η=[CaCl2]/ctot.
At the ends of the mole fraction scale, for the
values η=0 and η=1 we have pure KCl and CaCl2
solutions, respectively. Our strategy is that we fit
Dpore

K+ and Dpore
Ca2+

at the ends (η = 0 and η = 1);
we calibrate our model to those points. We will
validate our model for the mole fraction values in
between: 0<η< 1.

3.1. Fitting the diffusion coefficients in the pore

The details are shown in Fig. 4. Because the
bulk diffusion constants are fixed at the exper-
imental values (Table 1), we use ratios of the
values in the pore and the bulk as a variable:
Dpore

i /Dbulk
i . It is seen that for this short (H = 6

nm) model pore, the Dpore
i values need to be re-

duced∼2−3 orders of magnitude compared to the
bulk values to achieve the experimental conduc-
tance. This is in accordance with the difference
in the lengths of the real and the model pore: 12
µm vs. 6 nm.

Figure 4: (A) Total conductance as a function of
the relative cation diffusion constants, Dpore

K+ /Dbulk
K+ and

Dpore

Ca2+
/Dbulk

Ca2+
for pure electrolytes. The left figure is for

KCl, the right for CaCl2. The black lines show the targeted
experimental conductance values. (B) Total conductance
as a function of the 10-based logarithm of the mole fraction
of Ca2+, lg(η). The black symbols are experimental data,
while the red solid line shows the results calculated by the
NP+LEMC method using the diffusion coefficients fitted
at the endpoints. The system parameters are H = 6 nm,
R= 2.7 nm, U = 100 mV, and ∆x= 0.2 nm. The ionic di-
ameters and the bulk diffusion constants, Dbulk

i , are found
in Table 1.

Because there are two endpoints, we can fit the
Dpore

i values of the cations. There is, however, a
third species, the anion, Cl−. Instead of choos-
ing a third reference point for fitting, we fix the
Dpore

Cl−
/Dbulk

Cl−
ratio to that of Ca2+. The effect of

this choice will be discussed in Section 3.5.
The procedure is the following. First, we

perform simulations for the pure CaCl2 (η =
1) case and change the diffusion constants of
Ca2+ and Cl− together so that Dpore

Cl−
/Dbulk

Cl−
=

Dpore
Ca2+

/Dbulk
Ca2+

. From fitting to experimental con-
ductance values, we obtain this ratio, and, conse-
quently, the Dpore

Ca2+
and Dpore

Cl−
values. Then, we

fix Dpore
Cl−

and change only Dpore
K+ in the pure KCl

simulations.

3.2. The effect of voltage

The result shown in Fig. 4B is for to a large
voltage (U = 100 mV), a short pore (H = 6 nm),
and a fine grid for the surface charge (∆x= 0.2
nm). The agreement with the experimental data
is not very good, therefore, we change the model
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Figure 5: Axial concentration profiles at two different volt-
ages for different Ca2+ mole fractions from top to bottom.
The pore length is H = 6 nm, the radius is R= 2.7 nm,
the grid width is ∆x = 0.2 nm, while the pore diffusion
constants are the values fitted to the pure systems.

and examine the effect of the above parameters.
Let us start with voltage.

Our model pore is short, so the axial effects
produced by the charge accumulation at the en-
trances of the pore on the two sides of the mem-
brane can have a large effect.

These axial effects are clearly shown by the ax-
ial concentration profiles in Fig. 5. The concen-
tration profiles are computed as

ci(z) =
1

A(z)

∫
A(z)

ci(r)da, (9)

namely, they are normalized by the cross sectional
area, A(z), at coordinate z. The cross section at
the entrance of the pore (|z|' 3 nm), however, is
much larger than inside the pore (|z|<3 nm). The
double layers shown by the figure, therefore, store
much more charge than implied by the figure.

The charge stored by the double layer has two
components. (1) A symmetric cation excess is in-

Figure 6: Total conductance and conductances of ions as
a functions of the mole fraction of Ca2+ at three dif-
ferent voltages. The magenta curve represents the re-
sult obtained from the GCMC-based equilibrium calcu-
lations [10]. Pore length is H = 6 nm, while ∆x= 0.2 nm.

duced by the negative pore charge; this screens
the pore charge “from outside”. (2) Voltage in-
duces a positive double layer on one side of the
membrane and a negative one on the other side
(polarization). This asymmetric ion distribution
is superimposed on the symmetric one produced
by the pore charge.

It is the second asymmetric component that
makes the concentration profiles asymmetric in-
side the pore when a voltage is applied. Indeed,
a considerable slope is observed in the concentra-
tion profiles inside the pore at U = 100 mV. This
influences the competition of K+ and Ca2+ in-
side the pore and it does so to the benefit of the
monovalent ion.

Therefore, to improve Ca2+ vs. K+ selectivity
and to bring the G(η) curve closer to the experi-
mental one, voltage should be decreased. We have
done the simulations (the Dpore

i values have been
refitted) for U = 10 mV and U = 1 mV. Fig. 6
shows the total (Eq. 7) and individual (Eq. 8) con-
ductances as functions of lg(η) for different values
of the voltage. A considerable difference can be
observed between the U = 100 mV and 10 mV
cases. The GK+ conductance starts declining and
the GCa2+ conductance starts rising at smaller η
values in the case of U = 10 mV. This results in
a total G vs. lg(η) curve more similar to the ex-
perimental one: the minimum is deeper and it
starts declining at smaller η values. The theory
of Gillespie et al. [10] (magenta curve), however,
still produces better results.

Fig. 6 also shows that the voltages U = 10 mV
and 1 mV produce the same result. From now
on, therefore, we use U = 10 mV because it allows
better statistics in the simulations.
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Figure 7: Axial concentration profiles of K+ (top panel)
and Ca2+ (bottom panel) for three different pore lengths
for a Ca2+ mole fraction η= 0.07. Voltage is U = 10 mV,
the grid width is ∆x= 0.2 nm.

3.3. The effect of pore length

The length of the real nanopore (∼ 12 µm) is
large enough so that the effect of the double layers
at the pore centers is neglectable. The charges
are effectively screened over such a large distance.
The model pore, on the other hand is short, so
the effect of the symmetric positive double layers
is considerable even if the asymmetric component
is neglectable at U = 10 mV.

Fig. 7 shows the K+ and Ca2+ concentration
profiles for a competitive situation (η = 0.07),
where the concentrations of K+ and Ca2+ inside
the pore are similar. Decreasing H has a large ef-
fect on the Ca2+ concentration profiles (cCa2+(z)
decreases as H decreases), while the K+ profiles
are less influenced. This results in a weaker Ca2+

vs. K+ selectivity in shorter pores.
The asymmetry regarding the behavior of the

Ca2+ and K+ concentration profiles follows from
the asymmetry in the ionic charges. The divalent
Ca2+ interacts more strongly with the double lay-
ers than K+ does.

The conductances for various pore lengths are
shown in Fig. 8. As H is increased, the curves
for the total conductance get closer to the one ob-
tained from the slope-conductance theory of Gille-
spie et al. [10] that can be considered as an infinite
pore, zero voltage limit.

The curves for H=12 and 18 nm are quite close
to each other, so we have chosen the value H= 12
nm to save computer time.

Figure 8: Total conductance and conductances of ions as
functions of the mole fraction of Ca2+ for three differ-
ent pore lengths. The magenta curve represents the result
obtained from GCMC-based equilibrium calculations [10].
The voltage is U = 10 mV, while ∆x= 0.2 nm.

3.4. The effect of the localization of pore charges

The parameters changed so far (U and H) have
some effect on selectivity but there is still space
for improvement. In the framework of this sim-
ple implicit-water model, it is the modeling of the
pore charges where we have room for maneuver.
The negative charge of the PET membrane is lo-
cated in discrete deprotonated COO− groups.

It is interesting that molecular simulations of
ionic systems in the implicit-water framework
mostly modeled the charges on surfaces as con-
tinuous charge distributions since the seminal pa-
pers of Torrie and Valleau [32–37]. This had sev-
eral reasons. (1) It was computationally efficient
in the planar geometry to compute the interac-
tion of the ions with the surface charge density
if σ was constant. (2) It was mostly the metallic
electrode that was in focus. The metallic nature
of the electrode can be taken into account with
the image charge method in the planar geometry
while maintaining the pair-wise additive feature
of the interactions. [33, 37] (3) At the beginning,
simulations served as gold standard for theories
where continuous surface charge distributions are
inherent.

If the membrane is made of an insulator, how-
ever, the simplification of the continuous surface
charge distribution may not be sufficient. Still,
the number of studies using localized charges in
the implicit-water framework is limited. [38–41]
In molecular dynamics simulations, on the other
hand, pore charges are naturally modeled as point
charges sitting on atoms for explicit-water elec-
trolytes.

Using a continuous surface charge distribu-
tion can be a reasonable model for 1:1 elec-
trolytes, but it can have a serious effect if mul-
tivalent ions are present. In our previous pa-
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per [21], we showed that a selectivity inversion
found by the group of Zuzanna Siwy [26] can
be reproduced by using localized charges. The
experiment showed that a negatively charged
nanopore’s cation selectivity for a 1:1 electrolyte
(KCl) can be turned into anion selectivity if we
use a 3:1 electrolyte (cobalt(III) sepulchrate chlo-
ride, CoSepCl3). CaCl2 is in between.

The phenomenon was interpreted as a signa-
ture of charge inversion. [26] Multivalent ions cor-
relate strongly with the COO− groups and form
relatively long-lived complexes. This results in
an overcharging of the pore wall with multivalent
cations producing anion excess in the middle of
the pore. Also, the multivalent ions are tightly
bound to the localized charges, resulting in peaks
at the charges and depletion zones in the space
between them, see Fig. 9A of Ref. [21]. In that
paper we showed that this enhanced charge inver-
sion can be reproduced even in the implicit-water
framework where electrostatic forces are strongly
screened.

Because charge localization influences monova-
lent and divalent ions differently, it is reasonable
to assume that it has an effect on Ca2+ vs. K+

selectivity.
In the following, we use ∆x as the parameter

characterizing the “degree of localization”. Fig. 9
shows the conductances as functions of ∆x for
pure KCl (top), pure CaCl2 (middle), and a mix-
ture with η= 0.4 (bottom). As expected, the con-
ductance of K+ in pure KCl does not depend on
∆x. The conductance of Ca2+ in pure CaCl2, on
the other hand, exhibits a considerable decrease
when ∆x rises above 0.75 nm. These results are
not surprising and were already seen in Ref. [21].

In the case of the mixture, however, both K+

and Ca2+ conductances decrease with increas-
ing localization. The explanation of this can be
deduced from the axial concentration profiles of
Fig. 10. For ∆x= 0.2 nm, that practically corre-
sponds to the continuous charge distribution, we
observe the smooth concentration profiles (apart
from statistical noise, black curves) that we al-
ready saw in Figs. 5 and 7. If we increase ∆x
to 0.75 nm (red curves) or beyond (∆x= 1 nm,
blue curves), peaks appear at the z coordinates
that correspond to the rings where the localized
charges are placed (right panel of Fig. 3). This
is more apparent in the Ca2+ concentration pro-
file, while those of Cl− and K+ are moderately
influenced.

The peaks and the wells (depletion zones) be-
tween them are results of the strong correlation
between Ca2+ ions and the localized charges.
This can be characterized by the radial profiles
of Ca2+ shown in the inset of the bottom panel of

Figure 9: The effect of localized charge distribution on
the conduction properties for pure KCl (top panel) and
CaCl2 systems (middle panel), as well as for a mixture
with η=0.4 (bottom panel). Total and ionic conductances
are ploted as functions of ∆x. The system parameters are
H = 12 nm and U = 10 mV.

Fig. 10. At the z coordinate of a peak the Ca2+

concentration (filled blue symbols) is much higher
(note the log scale) than at the z coordinate of
a well (open blue symbols) in the localized case
(∆x= 1 nm). There is no such difference for the
non-localized case (∆x= 0.2 nm, black symbols).

If we increase ∆x even further (1 nm, blue
curves), dramatic changes can be seen. The Ca2+

concentration profiles exhibit high peaks and de-
pletion zones between them. The depletion zones
explain the large reduction of Ca2+ conductance
observed in Fig. 9.

From the point of view of selectivity, however, it
is important that the K+ concentration decreases
inside the pore as ∆x increases. The explana-
tion of this behavior is that Ca2+ ions overcharge
the localized charges and draw in Cl−, so these
charges cannot attract the K+ ions as efficiently
as for small ∆x values.

As a consequence, the total conductance de-
creases with increasing ∆x because both Ca2+

and K+ conductances decrease (Fig. 9). The
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Figure 10: Axial concentration profiles of Cl− (top), K+

(middle panel), and Ca2+ (bottom panel) for three differ-
ent pore grid widths, ∆x, for CaCl2 mole fraction η= 0.4.
The system parameters areH=12 nm and U=10 mV. The
∆x= 1 case corresponds to the “true” experimental case.
The inset in the bottom panel shows radial concentration
profiles for Ca2+ at z coordinates that correspond to a
peak and a well. Black and blue colors refer to ∆x= 0.2
and 1 nm, respectively.

Ca2+ conductance decreases because Ca2+ ions
are tightly bound to the localized charges. The
K+ conductance decreases because there is less
K+ ions in the pore.

The concentration of the Cl− ions increases
with increasing ∆x (Fig. 10), but this increase
and the associated increase in Cl− conductance
(Fig. 9) is not substantial.

Fig. 11 shows the conductances as functions of
lg(η) for different values of ∆x. Increasing ∆x
has an effect on all of the individual species’ ionic
conductances which together define the total.

Interestingly, Ca2+ and Cl− conductances are
correlated. This is shown by the fact that the sum
of their conductances is the same for different ∆x
values (see the inset in the bottom-left panel). As
Ca2+ conductance decreases with increasing ∆x,
Cl− conductance increases. This corresponds to a
shift from cation selectivity towards anion selec-
tivity already studied in Ref. [21]. Ca2+ ions are

bound to the localized charges at large ∆x val-
ues and overcharge them. Consequently, the pore
wall becomes virtually positively charged, which
explains the anion leakage.

Since the sum of the conductances of Ca2+ and
Cl− are the same for different ∆x values, it is
the K+ conductance (top-left panel) that deter-
mines the anomalous behavior of the total con-
ductance (top-right panel). As ∆x increases, the
overcharged pore wall does not attract the K+

ions so strongly, so a decrease in K+ concentra-
tions, and, thus, a decrease in K+ conductance
can be observed.

AMFE is characterized by the nonlinear η de-
pendence of the total conductance that, in turn,
characterizes Ca2+ vs. K+ selectivity. This se-
lectivity can be quantified either by the η value
at which the total conductance starts declining,
or the minimum of the curve. In either case,
the ∆x= 1 nm localization produces too strong
Ca2+ vs. K+ selectivity. This is because the pore
charges are placed on the pore wall, so they are in
a distance of an ion radius from the ion centers.
Consequently, the interaction between the ions
and the localized pore charges is overestimated.
Other models for pore charges will be considered
in later studies.

3.5. Effect of choosing the anion diffusion coeffi-
cient in the pore

TheDpore
Cl−

/Dbulk
Cl−

ratio was fixed to that of Ca2+

so far because we wanted focus on K+ vs. Ca2+

and wanted minimize Cl− leakage. Fitting it to
Dpore

K+ /Dbulk
K+ , however, does not make much dif-

ference as seen from Table 2. The ratios are in
the same ballpark no matter which procedure we
choose.

Two conclusions for the fitted diffusion coeffi-
cients can be drawn from Table 2. (1) The fit-
ted Dpore

K+ /Dbulk
K+ ratios are the same independent

of the value of ∆x. This is because there is no
charge inversion in pure KCl, so the pore is K+

selective over Cl−. The nature of modeling the
pore charge, therefore, does not influence the K+

diffusion coefficient.
(2) The Dpore

Ca2+
/Dbulk

Ca2+
ratio increases as ∆x in-

creases even above Dpore
K+ /Dbulk

K+ . This is because
larger ∆x produces stronger charge inversion and
deeper depletion zones for Ca2+ (see blue line in
the bottom panel of Fig. 10). In the NP equa-
tion, the flux is obtained as a product of Di(r)
and a term that depends on local concentration
(ci(r)∇µi(r)). These two terms are highly inde-
pendent of each other. The second term is re-
duced by the depletion zones so Di(r) must be
increased to reproduce the experimental conduc-
tance.
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Figure 11: Total conductivity (top-right panel) and conductivities of ions (other panels) as functions of the mole fraction
of Ca2+ for three different ∆x values. The voltage is U = 10 mV, while the pore length is H = 12 nm. The inset in the
bottom-left panel shows the sum of the Ca2+ and Cl− conductivities. Brown arrows show the direction in which ∆x
increases.

Figure 12 shows these effects in terms of AMFE
curves. Charge inversion so strong for ∆x = 1
nm that we obtain similar Cl− and Ca2+ conduc-
tances for the η= 1 endpoint (pure CaCl2). This

Figure 12: Total conductivity and conductivities of ions as
functions of the mole fraction of Ca2+ for ∆x= 1 nm for
the cases of fitting Dpore

Cl−
/Dbulk

Cl−
either to Dpore

Ca2+
/Dbulk

Ca2+
,

or to Dpore

K+ /DK+ . The voltage is U = 10 mV, while the
pore length is H = 12 nm.

result is in agreement with the measurements of
He et al. [26] and other experimental works. [42–
44] He at el. pointed out that cation selectivity
is lost for CaCl2 and anion selectivity is obtained
for trivalent cations (CoSepCl3).

Figure 12 shows that the choice of Cl− diffusion
coefficient does not influence the final result for
the total conductance because it does not influ-
ence the behavior of either GK+ , or GCa2+ +GCl− .
It determines, however, how Ca2+ and Cl− share
the GCa2+ +GCl− conductance.

4. Summary

In this work, we developed a nanopore model
that was able to reproduce the anomalous experi-
mental behavior of the conductance vs. Ca2+ mole
fraction curve. Because the experimental PET
nanopore is long, it was not a surprise that using
large pore length and small voltage is advanta-
geous because the axial effects of the access re-
gions at the entrances of the pore are minimized.

This work steps beyond the model of Gillespie
et al. [10] (1) by using a non-equilibrium simula-
tion method (NP+LEMC) to estimate the ionic
currents and (2) by using localized charges on the
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Table 2: Diffusion constants for simulations when Dpore

Cl−
/Dbulk

Cl−
is bound either to Dpore

Ca2+
/Dbulk

Ca2+
, or to Dpore

K+ /Dbulk
K+ for

∆x= 0.923 nm and ∆x= 1 nm. The units of diffusion constants are m2/s.

Dpore
Cl−

/Dbulk
Cl−

is bound to Dpore
Ca2+

/Dbulk
Ca2+

Dpore
Cl−

/Dbulk
Cl−

is bound to Dpore
K+ /Dbulk

K+

∆x= 0.923 nm ∆x= 1 nm ∆x= 0.923 nm ∆x= 1 nm

Dbulk
K+ /10−9 1.96

Dpore
K+ /10−9 0.0197 0.0195 0.0195 0.0197

Dpore
K+ /Dbulk

K+ 0.01 0.01 0.01 0.01

Dbulk
Ca2+

/10−9 0.792

Dpore
Ca2+

/10−9 0.00711 0.0101 0.00697 0.0118

Dpore
Ca2+

/Dbulk
Ca2+

0.00898 0.0128 0.0088 0.0149

Dbulk
Cl−

/10−9 2.032

Dpore
Cl−

/10−9 0.0182 0.0259 0.0203 0.0204

Dpore
Cl−

/Dbulk
Cl−

0.00898 0.0128 0.01 0.01

pore wall. Using localized charges was a decisive
step in better reproducing the experimental data,
because charge inversion is enhanced by the local-
ized charges and K+ ions have a disadvantage in
the K+ vs. Ca2+ competition at the overcharged
pore wall.
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[24] C. Sögaard, K. Kolman, M. Christensson, A. B.
Otyakmaz, Z. Abbas, Hofmeister effects in the gelling
of silica nanoparticles in mixed salt solutions, Colloids
Surf. A: Physicochem. Eng. Asp. 611 (2021) 125872.

[25] D. Boda, in: R. A. Wheeler (Ed.), Ann. Rep. Comp.
Chem., volume 10, Elsevier, 2014, pp. 127–163.

[26] Y. He, D. Gillespie, D. Boda, I. Vlassiouk, R. S.
Eisenberg, Z. S. Siwy, Tuning transport properties of
nanofluidic devices with local charge inversion, JACS
131 (2009) 5194–5202.
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