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Is spontaneous wave function collapse testable at all?
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Abstract. Mainstream literature on spontaneous wave function collapse never reflects on or
profit from the formal coincidence and conceptual relationship with standard collapse under
time-continuous quantum measurement (monitoring). I propose some easy lessons of standard
monitoring theory which would make spontaneous collapse models revise some of their claims.
In particular, the objective detection of spontaneous collapse remains impossible as long as the
correct identification of what corresponds to the signal in standard monitoring is missing from
spontaneous collapse models, the physical detectability of the “signal” is not stated explicitly
and, finally, the principles of physical detection are not revealed.

1. Introduction

Spontaneous wave function models [1, 2, 3, 4, 5], reviewed by [6, 7], dynamically violate
the superposition principle of quantum mechanics, assuming tiny spontaneous time-continuous
collapse of the wave function. For massive degrees of freedom spontaneous collapse gets amplified
and will result in classical behaviour in the objective way. The toolkit of standard quantum
measurements is no more requested, it is always replaced by spontaneous collapses. Since
collapse and classicality only appear at the level of the mathematical formalism, additional
considerations are used to identify which mathematical object of the given spontaneous collapse
model should represent the emerged classical entities.

I complain about mainstream literature on spontaneous collapse for it ignores the lessons
of standard collapse. Lessons of time-continuous measurement (monitoring) theory [8, 9] are
obligatory and instructive for spontaneous collapse, even if one would not implement them all.

The present analysis shows that in current spontaneous collapse models the proposed collapse
is illusory because it is not testable by objective detection. The sole testable effect is spontaneous
decoherence, i.e., the degradation of certain interference terms. Mathematical apparatus
of spontaneous collapse models is redundant: the stochastic Schrödinger equation (SSE) is
untestable. The master equation (ME), governing the density matrix, does encode all possible
objectively testable effects.

2. Continuous measurement and collapse in standard quantum mechanics

Considering the continuous measurement (monitoring) of the position q̂ of a quantized particle,
I published two Ito stochastic equations in 1988 [10, 11]. A plausible expression yields the
measurement outcome (also called signal) qt:

qtdt = 〈q̂〉tdt+
1

2
√
D
dWt, (1)
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where 〈q̂〉t = 〈ψt|q̂|ψt〉 is the expectation value of q̂ in the current quantum state ψt while Wt is
the standard Wiener process (cf.: white-noise). The power of the noise is inverse proportional
to the parameter D which, as we see below, controls the precision of monitoring. The evolution
of the state vector ψt under coordinate monitoring is governed by the SSE:

dψt = − i

h̄
Ĥψtdt−

D

2h̄2
(q̂ − 〈q̂〉t)2ψtdt+

√
D

h̄
(q̂ − 〈q̂〉t)ψtdWt. (2)

It causes dynamical collapse (localization) of the wave function which is the natural consequence
of position measurements. The theory of q-monitoring contains two equations: (1) and (2).

If the signal qt is not accessible or just not recorded, the SSE becomes redundant. It implies

the following ME for the ensemble average (density matrix) ρ̂t = 〈ψtψ
†
t
〉st of the stochastic ψt:

dρ̂t

dt
= − i

h̄
[Ĥ, ρ̂t]−

D

2h̄2
[q̂, [q̂, ρ̂t]]. (3)

This ME predicts decoherence only; it does not predict collapse.
It turned out soon that the above equations of continuous measurement (monitoring) do

follow from standard quantum theory of collapse if we interpret monitoring in terms of infinite
frequent repeated standard measurements. Quantum monitoring has since 1988 become a
precise discipline of standard quantum theory, an unavoidable model of modern experiments,
see monographs [8, 9].

3. Spontaneous collapse in modified quantum mechanics

When the above dynamical theory of real monitoring and standard collapse emerged, about
the same years, various dynamical models of hypothetical spontaneous collapse emerged (see
Sec. 1). My proposal [3] mimics as if hidden devices would be monitoring the whole Universe.
In the introductory model, hidden monitoring concerns all particle positions. More physical is
the gravity-related model, where hidden monitoring concerns the (non-relativistic) mass density

f̂(r) at each point r of the Universe. Full analogy with dynamical theory of real monitoring
(Sec. 2) is exploited by [12] in path integral formalism equivalent to Ito’s.

However, the rest of the spontaneous collapse models and the mainstream works [6, 7] never
reflect on the mathematical coincidence and conceptual relationship with standard quantum
monitoring. Hence they do not profit from the lessons of standard quantummonitoring. Wearing
such blindfold against these lessons might be an innocent stance but it is not.

4. Continuous Spontaneous Localization

For concreteness, we consider the Continuous Spontaneous Localization (CSL) model [4, 5] which

is similar to the gravity-related model [3] in that it localizes the mass density f̂(r) instead of
particle positions. The definitive equation of CSL coincides with the trivial generalization of the
SSE (2) for f̂(r)—more precisely: for its coarse graining f̂σ(r)—in place of q̂ [13]:

dψt = − i

h̄
Ĥψtdt−

γ

2m2

0

∫
dr[f̂σ(r)− 〈f̂σ(r)〉t]2ψtdt+

√
γ

m0

∫
dr[f̂σ(r)− 〈f̂σ(r)〉t]ψtdWt(r) (4)

where σ = 10−5cm is the standard width of Gaussian course-graining, γ is a second CSL-specific
parameter and m0 is the atomic mass unit. The noise Wt(r) is a field of spatially uncorrelated
standard Wiener processes.

The definitive equation of CSL, when used to evolve the density matrix, yields the following
closed linear ME:

dρ̂t

dt
= − i

h̄
[Ĥ, ρ̂t]−

γ

2m2
0

∫
dr[f̂σ(r), [f̂σ(r), ρ̂t]]. (5)



There is a tendency to attribute physical status to the noise field Wt(r) but the mainstream
judgement admits that “at this stage this is only speculation. [...] one has [yet] to justify the
non-Hermitian coupling and the nonlinear character of the collapse equations” [7]. CSL is a
little perplexed by the missing interpretation of the noise.

Four helpful lessons of standard monitoring, relevant for CSL, follow.

4.1. Lesson I: Noise is measurement signal noise

Standard quantum mechanics offers the following unique interpretation for the CSL noise. CSL
corresponds to standard monitoring (1-3)—by hidden devices this time—of the mass density

f̂σ(r) at all locations r. The signal equation (1) would then read

S(r, t) = 〈f̂σ(r)〉t +
m0

2
√
γ
wt(r), (6)

were the Ito differentials dWt(r) have formally been replaced by wt(r)dt and wt(r) are
independent standard white-noises for all r. The natural interpretation of CSL noise Wt(r)

is obvious: it is signal noise where the signal S(r, t) is the classical outcome of monitoring f̂σ(r).
However, CSL turns blind eyes toward S(r, t) and its equation (6).

4.2. Lesson II: Signal is the only tangible variable

It is correctly felt in the literature [6, 7] that a complete CSL model should specify what unique
classical configurations the basic SSE (4) is to describe. The preferred choice [6] is that it is the
quantum average of (σ-smeared) mass density:

M(r, t) = 〈f̂σ(r)〉t = 〈ψt|f̂σ(r)|ψt〉. (7)

It is thought, in particular, that this mean-field “is accessible at the macrolevel” and “behaves
in a classical way” [6]. Unfortunately, this is not really so.

If we compare M(r, t) to the signal (6), we observe that the signal contains a noise term as
well:

S(r, t) = M(r, t) +
m0

2
√
γ
wt. (8)

The role of the noise term is crucial if we desire that the mass distribution in question be
common sense classical field. I proposed the term tangible for such variables (fields) because
they can be coupled at will to other fields, including that they can be used at will to control any
feed-back on the quantum system itself. This is why I talked about “Free Will Test” (FWT)
of tangibility [14]. Since the signal S(r, t) is nothing else just a sequence of standard quantum
measurement outcomes, it passes the FWT. Let us, for instance, modify the Hamiltonian by a
simple feed-back term:

Ĥ + g

∫
drf̂σ(r)S(r, t). (9)

Substituting (6) for S(r, t) and the above Hamiltonian for Ĥ in the SSE (4), we get a
modified SSE such that for ρ̂t the ME (5) does survive with modified Hamiltonian and modified
decoherence coefficient, resp.:

Ĥ ⇒ Ĥ + 1

2
g

∫
dr[f̂σ(r)]2,

γ

m2
0

⇒ γ

m2
0

+
g2

4h̄2
m2

0

γ
. (10)

(To reconstruct the derivation, works [12],[15] or [9] may be studied.) If, however, we complete
the SSE (4) by a feed-back controlled by M(r, t) instead of S(r, t):

Ĥ + g

∫
drf̂σ(r)M(r, t), (11)



then the modified SSE will no more allow for any closed linear evolution of ρ̂t. Any feed-back
control variable, different from the signal (or functional of it) will jeopardize the autonomous
linear equation for ρ̂t whose loss means loss of consitency [16, 17, 18, 19]. That makes the
feed-back (11) illegitimate, hence mean-field mass density M(r, t) is not tangible, it does not
behave in a “classical way”.

Of course the mean-field M(r, t) will approximate the signal S(r, t) if the noise on the right-
hand-side of (6) is averaged out. Therefore M(r, t) might approximate the predicted classical
configuration if we suitably impose a time-average on it.

4.3. Lesson III: Bell chooses tangible variables

The GRW jump model of spontaneous collapse [1], whose diffusive mass-proportional limit is
CSL, could also be identified as position monitoring of constituents by randomly fired standard
(though hidden) von Neumann detectors [20]. When in 1987 John Bell casts the GRW model
into its ultimate form, he also asks for the “mathematical counterparts in the theory to real
events at definite places and times in the real world” [2]. His choice is those space-time points,
later called flashes (cf., e.g. [21] and references therein), where GRW jumps are being centred.
These flashes correspond exactly what the said (hidden) von Neumann detectors would record
as measurement outcomes, hence flashes are perfect classical (tangible) entities, they pass the
FWT. Although Bell does not mention the resemblance of GRW to standard monitoring (by
hidden detectors) his intuition works perfectly. Subsequent works on CSL ignore the fact that
the signal (6) would be nothing else than the diffusive limit of flashes of a GRW-like jump model

(where random jumps localize on the field f̂σ(r) instead of positions). The contrary is believed:
mean-field matter density (7) “must be taken because it [CSL] does not work with flashes” [22].
I think CSL does work with flashes which are just the signal (6).

4.4. Lesson IV: SSE is empirically redundant

In standard theory of monitoring and collapse (Sec. 2) it is crucial for the empirical testability
of the state vector ψt under monitoring that the signal qt be accessible and recorded. If it is
not accessible for some technical reasons, or it is just not recorded, then the behaviour of the
state vector ψt is irrelevant because it is not testable/tested empirically. All possible testable
predictions are encoded in the average state, i.e., in the density matrix ρ̂t. In this case the SSE
(2) becomes redundant, the ME (3) yields all testable/tested effects which consist of decoherence,
as we already said.

The above lesson from standard monitoring, if applied to CSL, tells us the following. Since
CSL does not interpret the signal at all, it remains empirically unaccessible, it can of course not
be recorded either. Therefore the CSL stochastic wave function ψt is empirically irrelevant: all
testable predictions of CSL are encoded in the density matrix ρ̂t and its ME (5). These testable
predictions consist of decoherence. Spontaneous collapse is not testable at all, the SSE (4) is
physically redundant.

5. Closing remarks

It is obvious that my criticising the choice of mean density M(r, t) for classical predictions is
irrelevant as long as its detection is meant by subjective perception. That M(r, t) is not tangible
(fails FWT) becomes relevant only when the goal is objective detection, typically by coupling

M(r, t) to a device or elsewhere.
It is also obvious that spontaneous collapse models differ from standard quantum monitoring,

they may well differ in much more than “hiddennes” of the fictitious monitoring devices,
especially because we assume a lot of freedom in how we wish to interpret spontaneous collapse.
My work warns that such freedom may not be that much as believed.



The statements that the SSE is redundant, the ME is sufficient, spontaneous decoherence is
testable, spontaneous collapse is not, appeared already in 1989 [3]. These statements hold for all
models of spontaneous collapse. Detailed arguments were given for CSL, just for concreteness.
Independently of the power (even of validity) of my arguments, let me formulate the central
claim in the practical way. Apparently, any objective detection proposed so far turns out to
test decoherence effects fully calculable via the corresponding master equation. Therefore,
apparently, the promise of spontaneous collapse theories to objectify collapse does not fulfils
yet.
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[11] Diósi L 1988 Phys. Lett. 132A 233
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