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We have examined the close-packed structure and ordering properties of hard ellipses between two
parallel hard walls by using geometrical conjectures and Monte Carlo simulations. Starting from
closely packed hard disk structures, we discover two competing densest packings of ellipses with
the stretching of hard disks into different directions. We find that parallel and tilted close-packed
structures alternate with widening pore width up to the two-dimensional bulk limit, where both
structures produce the same close packing value (η = π/

√
12). Our results highlight that the densest

packing does not depend on the aspect ratio of the ellipse. This universal behavior is confirmed for
three different aspect ratios (κ =2, 3, and 4) using replica exchange Monte Carlo simulation. Our
simulation results show that even the global phase diagram is universal, where layering transitions
between parallel structures and tilted-parallel structural changes are present.

I. INTRODUCTION

Systems of hard particles are known to show rich phase
diagrams [1–8], despite the fact that their components
lack any attractive interaction. Indeed, this kind of sys-
tem is usually referred to as athermal, since temperature
plays no role in their equilibrium structure. In such sys-
tems, particle shape, the presence of confinement, and
the geometry of the confining walls importantly affect the
phase behavior [3, 5, 9–20]. They most frequently occur
at nano and mesoscale levels but can also appear in the
macroscopic world. In the first case, temperature fluctua-
tions drive the systems to equilibrium. In the second one,
one must externally inject energy in the way of tapping
movements [21–23] or container twists [24] to make the
system travel through configurational space.

By quasi-statically increasing the pressure of this kind
of system while keeping equilibrium, it is possible to
approach the maximal packing fraction [25]. Thus, at
infinite pressure, the thermodynamics of hard particles
converge to a geometrical problem, i. e. the packing of par-
ticles. As early as 1611, Kepler proposed his famous con-
jecture stating that, in the three-dimensional Euclidean
space, the maximal attainable packing fraction of spheres
corresponds to a degenerate family of structures where
the face-centered cubic and the hexagonal close packing
arrangements are among them. These structures yield
the packing fraction π/

√
18. Thus, it can be safely said

that packing is an ancient problem. In addition, pack-
ing plays a crucial role in several practical applications
spanning different time-space scales. These include atom-
istic scales, such as the study of solids [26], liquids [27],
and glasses [28], and macroscopic scales, such as the de-
sign of satellite modules and space stations [29], passing

∗ godriozo@azc.uam.mx

through intermediate scales, such as the macromolecule
domain [30], the colloidal domain [31, 32], and the micron-
size domain [33].

Ellipses are two-dimensional geometrical shapes, very
relevant in astronomy and physics. They describe the
trajectories of celestial bodies and are the most simple
shapes when composing two harmonic movements with
the same frequency in orthonormal directions. This last
fact is related to elliptically polarized light. They are
usually seen as the generalization of the circle since they
can be mathematically expressed in a very similar way,
and the circle shape is regained by setting equal the
lengths of their main axes. The intersection of a cone or
a cylinder with a tilted plane produces an ellipse. Also,
the curve encloses a couple of focal points in such a way
that the sum of the two distances from them to any
point of the ellipse is constant. Systems composed of
hard ellipses were studied in both bulk [1, 6, 34] and
confinement [19, 35–37].

This work deals with these three concepts, namely,
phase diagrams of hard particles, packing, and ellipses.
We propose some candidate structures to yield the maxi-
mal packing fraction of ellipses confined by parallel walls,
as explained in the following section. The obtained
maximal packing fraction does not depend on the el-
lipse’s anisotropy. To confirm that the conjectured struc-
tures produ´ce the maximal packing fraction, we perform
replica-exchange Monte Carlo (REMC) simulations of
confined hard ellipses with several aspect ratios and con-
fining distances. In this regard, section II is devoted to the
maximal packing fraction, while section III presents the
details of the simulations. In section IV, we present the
outcomes from these simulations, which not only confirm
our proposed configurations as those yielding the maxi-
mal packing fraction but also allows us to build the phase
diagram of confined ellipses. The phase diagram turns
out to be independent of the particle’s shape anisotropy.
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FIG. 1. Schematic representation of the transformations
applied to different circle configurations. The transformation
applied in panels a) and d) involve rotations and scalings, as
shown in detail in panel e). In these cases, the transformation
matrix corresponds to T (κ, θ) = O(θ∗)−1S(κ)O(θ), where O−1

and O are clockwise and counterclockwise rotation matrixes,
respectively, S is the stretching matrix along the x direction,
and θ∗ = tan−1(κ tan θ).

The last section presents some concluding remarks.

II. MAXIMAL PACKING FRACTION

In this section, we explore candidate configurations for
the maximal packing fraction of monodisperse ellipses
confined by parallel planes. We restrict the possible con-
figurations to those having all ellipses with the same
orientation. The equation describing the perimeter of an
ellipse with their main axes placed along the x and y axes
is given by

x2

σ2
b

+ y2

σ2
s

= 1
4 , (1)

where σb and σs are the lengths of the big and small
diameters, i.e. the major and minor lengths of the ellipse,
respectively. By introducing the aspect ratio as κ =
σb/σs, forcing σs = 1, and rotating the ellipse an angle
θ counterclockwise around the axis perpendicular to the

xy-plane passing through its center (see Fig. 1 a)), the
equation takes the form

(x cos(θ)− y sin(θ))2

κ2 + (x sin(θ) + y cos(θ))2 = 1
4 . (2)

By forcing the derivative of function y(x) to zero, one can
get that the maximum value of y is given by

ym =
√
κ2 − (κ2 − 1) cos2(θ)

2 , (3)

at

xm = (κ2 − 1) sin(2θ)
8ym

. (4)

Besides, the length of the line segment of the x-axis
intersecting the ellipse, xl, can be obtained by setting
y(x) = 0. This leads to

xl = κ

4ym
. (5)

Thus, the packing fraction of a close-packed single layer
of parallel ellipses, all touching the two confining walls, is

η = πσbσs
4H2xl

= πκ

8Hxl
= π

4 , (6)

where H = 2ym ≤ κ is the distance between the confining
planes, see Fig. 1 a). Note that the result given by Eq. (6)
is independent of the angle θ and the aspect ratio, κ,
and so it is identical to the one corresponding to the
packing of a single layer of disks for H = 1. Indeed, a
combination of rotation and scaling in a single direction
is a type of affine transformation that preserves η [38]
(see panel a) of Fig. 1). Due to this reason, hard ellipses
fill the 2d space with the same packing fraction as that of
disks, contrasting with the 3d case where ellipsoids can
arrange in layers having different directions [39–42]. The
domain of Eq. (6) has the lower limit H = σs = 1 and
the higher limit H = σb = κ. These limits correspond
to the stretching of the layer of disks along the parallel
and perpendicular to the direction of the confining walls,
respectively.

Up to this point, it is clear that the maximal packing
fraction cannot be less than η = π/4. Nonetheless, we
can test other arrangements to explore higher possible
η values. We can, for instance, horizontally scale the
packing configuration given at the left of Fig. 1 b). As
mentioned, by doing so, the packing fraction is preserved,
allowing for an easy determination of η. It reads

ηp(H) = π(σs/2)2

H
√
σ2
s − (H − σs)2

= π

4H
√

2H −H2
, (7)

for 1 ≤ H ≤ 1 +
√

3/2 (recall that σs = 1). Here,
superscript p stands for parallel, since this horizontal
scaling produces ellipses with their main axes parallel
to the walls. Note that the condition H = 1 gives the
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FIG. 2. a) Packing fraction, η, as a function of the distance
between plates, H, for κ = 4. The dashed lines correspond to
ηp(H,n) given by Eq. (8), whereas the solid lines correspond
to ηt(H,n) given by Eq. (9). Lines corresponding to single,
double, triple, cuadruple, quintuple, and sextuple layers are
colored black, red, blue, green, violet, and cyan, respectively.
Panel b) replicates panel a) but it also includes the maximal
packing fraction, ηm(H) = max [ηt(H,n), ηp(H,n+1)], as a
black thick solid line. This panel holds for κ & 1.8393.

single-layer arrangement with η = π/4. The other limit,
H = 1+

√
3/2, corresponds to the packing of two compact

layers of circles, see Fig. 1 d) left, and to a maximum
of ηp(H). For H > 1 +

√
3/2 the planes cannot touch

both layers of particles, and the packing fraction yields
ηp(H) = π/(2H). Note that ηp(H) does not depend on
κ.

Fig. 1 c) shows the scaling of a three-layer arrangement
of disks, which can also be done for n layers. For n ≥ 2,
this leads to a general expression for ηp(H,n) and this
type of arrangement. It reads

ηp(H,n)=
{

nπ

8H
√

1−( H−1
n−1 )2 for n+1−δn,2

2 ≤H≤Hn

nπ
4H for H > Hn,

(8)

where Hn = 1 +
√

3(n−1)/2. For H > Hn the con-
figuration is not compact. Note that Eq. (8) repro-
duces Eq. (7) for n = 2. The same happens with the
upper limit 1 +

√
3(n−1)/2 and the packing fraction

ηp(H,n) = nπ/(4H). Again, Eq. (8) does not depend on
κ.

Finally, it is also possible to scale the most dense-packed
arrangement for a given number of layers, n, in a non-
horizontal direction, as shown in Fig. 1 d). This allows us
to increase H from 1 +

√
3(n−1)/2 to (1 +

√
3(n−1)/2)κ

with a fixed η value by varying the scaling direction from
horizontal to vertical, leading to

ηt(H,n) = nπ

2(2 +
√

3(n−1))
, (9)

where the superscript t stands for tilted. Note that this
expression for ηt(H,n) is a monotonically increasing func-
tion of n. In fact, for n and H → ∞ this quantity
goes to π/

√
12, the maximum packing fraction of circles

and ellipses in a 2d Euclidean space. We speculate this
is the highest possible packing fraction for most of the
H domain, except for tiny regions where Eq. (8) yields
larger values. By taking these two possibilities into ac-
count, the maximal packing fraction, ηm(H), is simply
defined as the maximum value from Eqs. (8) and (9),
i. e. ηm(H) = max [ηt(H,n), ηp(H,n+1)].

The H∗n value at which the n-layer tilted structure
with a packing fraction given by ηt(H,n) is superseded
with the (n+1)-layer parallel structure corresponding to
ηp(H,n+1) is given by (see Fig. 2)

H∗n = 1
2 + v + 1

2

√
2
3 + n2

(
4
3 + v−1

)
+ w (10)

where

v =
√

1 + 2n2 − 3w
2
√

3
,

w = y

3 · 21/3z1/3 −
z1/3

3 · 21/3 ,

z = x+
√
x2 + y3,

y = −22/3 (n4 − 2n2 + 12a+ 1
)
,

x = 108a− 72a
(
1− n2)+ 2

(
1− n2)3

,

and

a =
[

(n+1)
4

(
2 +
√

3(n−1)
)]2

.

Expression (10) corresponds to the largest of the two
real roots resulting from a fourth-order polynomial in H
coming from the equation ηt(H,n) = ηp(H,n+ 1). Note
that y3 + x2 < 0 when n > 17, and so z turns into a
complex number. Nonetheless, w and H keep being real.
It can be proved that in the limit of large n Eq. (10)
asymptotically goes to

Hn+1 =
√

3
2 n+ 1, (11)

the point at which Eq. (8) reaches its maximum value for
the (n+1)-layer (see Fig. 2). This means that the range
at which ηp(H,n+1) is maximum, H∗n < H ≤ Hn+1, goes
to zero with increasing n.

The Eqs. (8) and (9) defining ηp(H,n) and ηt(H,n),
respectively, are employed to build Fig. 2 for κ = 4 and
H < 6.0. In Fig. 2 a), the black solid line corresponds to
the packing fraction of a single layer of packed ellipses, π/4.
As mentioned, the domain of this line is 1 ≤ H ≤ 4. Cases
with n = 2, 3, 4, 5, and 6, are shown with red, blue, green,
violet, and cyan colors, respectively. Also, we use dashed
lines to represent data as obtained from Eq. (8) and solid
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ones for Eq. (9). The packing improves by increasing H
in such a way that the maximal packing fraction looks like
a monotonously increasing step function. These steps are
not discontinuous but follow Eq. (8) in H∗n < H ≤ Hn+1.
Only in these H domains, Eq. (8) produces larger values
than those given by the horizontal lines, Eq. (9). The
behavior of the maximal packing fraction is highlighted in
Fig. 2 b). There it turns clear how the H regions where
ηp(H,n+1) yields the maximal packing fraction shrink
with increasing n. Also, augmenting n makes the height
of the ηp(H,n) steps smaller.

Since Eqs. (8) and (9) are κ-independent, Fig. 2 a)
exhibits an unusual κ independence except for the H
domains of the horizontal lines. This has no impact on
Fig. 2 b) for all κ ≥ H∗1 ≈ 1.8393. For smaller κ, one
should be aware that the tilted and compact single-layer
cannot hold up to H = H∗1 , which would lead to a decrease
of η before the parallel two-layer arrangement takes the
leading packing fraction. In this work, we are restricting
to cases with κ ≥ 2, where ηm(H) is irrespective of κ.

III. SIMULATION DETAILS

We have performed REMC simulations that are par-
ticularly useful to sample from uneven free energy land-
scapes [43, 44] and are usual at high packing fractions.
For this purpose, the partition function of an extended
ensemble Qext is defined as the product of the partition
functions of Nr ensembles, Qext =

∏Nr

i Qi, where Qi is
the ensemble i. As done in previous works [25, 45–47], to
deal with systems of hard particles we employ an expan-
sion of the isobaric ensemble [48], i.e. Qi = Q(N,Px,i, T ).
Here, N , T , and Px,i are the number of particles, the tem-
perature, and the component applied along the channel
of the two-dimensional pressure tensor of the ensemble
i, respectively. That is, all Nr ensembles share the same
N and T , but each one has a different parallel pressure
component. We define Nr simulation cells each one placed
in a different ensemble. Thus, each NPxT ensemble is
sampled following a standard MC procedure by each sim-
ulation cell, but there are also swap trials between the
simulation boxes of ensembles with similar Px values.

We have approached the ellipse-ellipse distance of clos-
est approach as done in previous studies [6, 45, 49]. This
distance, defined for 3D spheroids, is in turn employed to
detect overlaps. It reads [50]

σ = σs√
1− 1

2ξ
[
A+ +A−

]
+
(
1− ξ)ξ′

[
A+A−

]γ , (12)

with

A± = (r̂ · ûi ± r̂ · ûj)2

1± ξûi · ûj
, (13)

ξ = σ2
b − σ2

s

σ2
b + σ2

s

, ξ′ =
(
σb − σs
σb + σs

)2
. (14)

As defined in the previous section, σb and σs are the
lengths of the major and minor axes of the spheroids,
respectively. Recall that we have forced σs = 1, so it
can be used as the unit of length, and we vary σb to
obtain different anisotropies, κ = σb/σs, such that κ ≥ 1.
Unit vectors ûi and ûj point along the smallest diameters
of spheroids i and j, respectively. The unit vector r̂
points along the line that joins the geometric centers
of particles i and j. The parameter γ was introduced
elsewhere [49] to further approach the exact Perram and
Wertheim numerical solution [51, 52]. Its values are given
in reference [49]. The average difference between the
analytical approach and the exact numerical solution is
always small [49]. To convert this general 3D expression
to the 2D case, we simply restrict the position of all
spheroids and unit vectors û to the xy-plane.

To introduce confinement by two walls parallel to the
x-axis we make use of the maximum value of the ellipse
contour projected in the y-axis, ym. Its value is given by
Eq. (3). When the difference between the y plane position
(y = ±H/2) and the projection of the ellipse center on
y is lower than ym, the particle and the wall overlaps.
Then, we only applied periodic boundary conditions to
the x direction. This way, the y-axis is bounded by the
walls.

As usual, Verlet lists are employed to gain efficiency. For
ellipsoids, they are defined as described elsewhere [34, 53].
We set Nr = 128 ensembles (and replicas) with N = 100.
The code is implemented in Graphics Processing Units
(GPUs) in such a way that each replica is handled by a
single-core as described in detail elsewhere [25, 47]. Since
the number of cores of our GPUs is above 2000, we are run-
ning several cases with different pore widths, H, in a single
device. The swap stage is performed by the host once the
necessary information is gathered by the CPU. The swaps
are tried among replicas having similar pressures, βPx,i
and βPx,j with j = i+ 1 and β = (kBT )−1, with accep-
tance probability min{1, exp [(βPx,i − βPx,j)(Ai −Aj)]},
where Ai and Aj are the areas of replicas i and j (in
units of σ2

s), respectively. To yield a similar acceptance
probability for all pair of neighboring ensembles [54], we
impose a geometric progression with the replica index
for the values of βPx,i, expanding from βPxmin = 0.2 to
a maximum pressure of βPxmax = 100 (in units of σ−2

s ,
recall that we have set σs = 1).

We start the simulations from loose random config-
urations or our assumed close-packed configurations,
and run them until the system of replicas reaches a
steady-state. Once this condition is achieved, we per-
form several averages that include the packing fraction,
〈η〉 = Nπσ2

sκ〈A−1〉/4, and the dimensionless isothermal
compressibility, χ = (4/(πσ2

sκ))dη/d(βP ) = N(〈η2〉 −
〈η〉2)/〈η〉2, to determine the corresponding phase-like
boundaries.
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FIG. 3. a) Equation of state, given as βPx, and b) dimen-
sionless isothermal compressibility, χ, as a function of the area
fraction, η, for κ = 4 and H = 4.1. The thin red and the thick
black curves, which practically coincide with each other, corre-
spond to simulations started from loose random configurations
and the conjectured close-packed structure. The inset in b)
shows the normalized density profiles for the cases signaled by
the arrows. The snapshots at the top of the figure correspond
to the same cases shown by the inset and show a partial view
of the simulation cells. Colors of the arrows and frames match
the colors of the curves in the inset. Parallel and perpendicu-
lar to the walls ellipses are colored red and blue, respectively.
Intermediate tones are employed for midway orientations.

IV. SIMULATION RESULTS

A typical equation of state as obtained from REMC
is shown in Fig. 3 a). Panel b) of the same figure shows
the dimensionless isothermal compressibility, χ. Both
panels show the outcomes of compression and decompres-
sion runs by starting from random configurations and the
conjectured close-packed structures, respectively. These
curves perfectly agree with each other, i.e. under these
conditions the system of replicas is ergodic. We have in-
cluded three system snapshots taken from the ensembles
with the βPx and χ values signaled by the correspond-
ing arrows. In addition, these snapshots correspond to
the density profiles given in the insert. For the sake of
clarity, the colors of the snapshot frames, arrows, and den-
sity profiles match each other. With increasing pressure,
we observe a fluid three-layer arrangement (blue-frame
snapshot), which evolves to produce a four-layer parallel-
to-the-walls configuration (green-frame snapshot), which
ends into the tilted structure shown in Fig.1 d) (red-frame
snapshot), whose packing fraction is given by Eq. 9 with
H = 4.1 and κ = 4. The number of layers is captured by

FIG. 4. a) Equation of state, given as βPx, and b) dimen-
sionless isothermal compressibility, χ, as a function of the
occupied area fraction, η, for H = 3.75. Black, red, and blue
lines correspond to κ = 2, 3, and 4. Vertical dotted lines
signal structural transitions. The filled gap between middle
dotted lines highlights a first-order-like layering transition.
Data correspond to simulations started from the conjectured
close-packed structure.

the normalized density profile, f(y) = η(y)/η, where y is
the distance perpendicular to the walls measured from
the center of the pore.

The monotonically increasing equation of state, βPx(η),
slowly grows at low η values and diverges when approach-
ing ηt(4.1, 4) ≈ 0.873. However, its derivative (or its
inverse, χ) is not a monotonic function of η. The overall
behavior of χ is decreasing, but it shows some relative
maxima. These maxima signal structural rearrangements
shown by the snapshots of Fig. 3. Note that for this
particular H value, the n+ 1-layer parallel configuration
(green-framed snapshot of Fig. 3) occurs in a relatively
small η domain. This occurs despite the fact that the
tilted configurations shrinks the orientational and posi-
tional configutation domains.

Given that ηm(H) is κ-independent, questioning up to
which point this independence translates to the phase
diagram and the equations of states naturally arises. To
answer the second part of this question we have compared
several βPx(η) curves as obtained for different κ values.
A typical example of this comparison is depicted in Fig. 4,
for H = 3.75. There it is observed how the three βPx(η)
curves are different, despite diverging at the same ηm(H)
value. The pressure needed to compress the system to
yield a particular η value decreases with increasing κ.
Nonetheless, the shapes of the βPx(η) curves are very
similar. All of them show marked plateaus in the region
0.73 . η . 0.79, and a soft undulation around η ≈ 0.83.
Indeed, their derivatives are very close to each other for
all η, as signaled by the corresponding χ(η) curves. These
functions show relative maximums at the βPx(η) plateaus
and at the βPx(η) undulations, which practically occur



6

at the same η. Thus, even though there is no collapse of
the βPx(η) curves to yield a muster one, the structural
changes are practically independent of κ.

When comparing Figs. 3 and 4, we can observe that
decreasing H leads to a shift of the compressibility peaks
to the right, which highlights the sharpening of the cor-
responding transitions. Note that the peak appearing at
larger densities corresponds to the change from a tilted
n-layer to a parallel n-layer structure, and the second and
larger one to the change from an n-layer to an (n − 1)-
layer configuration (n = 4 in this case). Additionally,
the density of the first transition approaches ηp(H,n) as
H goes to Hn (the vertex of the ηm(H) function after
the step-like increase), which is the expected behavior
since the closed packed structure turns parallel from the
tilted structure at H = Hn. Furthermore, the density
of the n-layer to an (n− 1)-layer turns into a gap when
reducing H. This gap also shifts to larger densities and
disappears at H = H∗n−1, which is also expected since
below H∗n−1 the parallel n-structure is replaced with the
tilted (n− 1)-structure at infinite pressure.

The tilted-parallel sructural change is weak because it
is accompanied only by an orientational rearrangement,
while the number of layers is not affected. In the case
of the layering structural change, the formation of a new
layer is very expensive as the translation freedom of the
particles has to be strongly reduced. At H = H∗n−1, this
would correspond to a formation of an f(y) with n Dirac-
delta peaks. This shows that H∗n−1 points are singular,
which renders the structural change to be critical.

Fig. 4 also shows a very wide and smooth hump of χ(η)
(not a maximum) at arround η = 0.52, as pointed out by
the straight dashed line inserted in panel b). This hump is
linked to a gradual change from the (n− 1)-layer towards
a more disordered structure that resembles an isotropic
fluid. However, the structure is not completely isotropic,
given that the presence of the confining walls always
produces local orientation [36]. The hump also behaves
like the other two transitions. That is, it strengthens and
shifts towards larger densities by decreasing H. Indeed,
it turns into the (n − 1)-layer–(n − 2)-layer structural
transition at sufficiently low H values. In turn, the n-
layer–(n− 1)-layer strong transition occurring at larger
densities smooths and shifts towards lower densities by
increasing H. Eventually, the hump of χ(η) completely
disappears at large enough H values.

The shifts of the χ(η) peaks with H define the phase-
like boundaries of the diagram shown in Fig. 5. In this
chart, we include data from κ = 2, 3, and 4. As can be
seen, the data corresponding to different κ values tend
to group to define a single emerging picture. In general,
the number of layers, n, increases with increasing H, and
the sequence (n− 1)-parallel, n-parallel, n-tilted repeats
for each step of ηm(H). In addition, close and at the
right of the lower-density vertice of each ηm(H) step,
[H∗n−1,ηm(H∗n−1)], there appears a coexistence-like behav-
ior, indistinguishable from a genuine first-order transition.
By approaching H∗n−1 with H > H∗n−1 we get differ-

InaccessibleInaccessible
regionregion

single-layersingle-layer
parallelparallel

single-single-
layerlayer
tiltedtilted

2-layer2-layer
parallelparallel

2-layer2-layer
tiltedtilted

3-layer3-layer
parallelparallel

3-layer3-layer
tiltedtilted

4-layer4-layer
parallelparallel

4-layer4-layer
tiltedtilted

FIG. 5. Map of observed phased. The black solid line sepa-
rates the accessible from the inaccessible region. Red and blue
symbols correspond to the phase-like boundaries as obtained
from compressing and decompressing runs, respectively. Cir-
cles, squares, and triangles correspond to κ = 2, 3 and 4. The
dashed black lines are guides to the eye. The colored regions
signal the coexistence of phases.

ent βPx curves for loose random and close-packed initial
conditions, pointing out the non-ergodic nature of the
system. Very close to H∗n−1, the REMC is unable to
produce the parallel n-layer from random configurations,
whereas pressure must be considerably dropped to yield
the (n− 1)-layer from the parallel n-layer configuration.
In these cases, neither the obtained curves correspond to
equilibrium, nor the hysteresis cycle around the coexis-
tence can be broken. Fig. 5 only shows decompression
data close to H∗n−1. We plotted the expected behavior of
the coexistence regions as guides to the eye. These lines
depart from the data around H∗n−1. However, this behav-
ior is not observed for the parallel to tilted rearrangement
when approaching the upper vertice of the ηm(H) step.

With increasing H, the n-layer parallel arrangement
smoothly gains orientational and positional freedom, al-
lowing the particles to keep an average parallel direction
while increasing the size of their orientational and posi-
tional fluctuations. Conversely, the tilted n-layer increases
its tilted angle, which conserves a high packing fraction
and avoids increasing orientational fluctuations. As noted,
the pattern repeats for different values of n. However, it
seems that the size of the coexistence region increases with
n, which makes it impossible to produce a correspondence
of states for different values of n, as done elsewhere [46].
We guess that the size of the coexistence should increase
and reach a plateau for a sufficiently large value of n.
At that point, one may attempt to yield a unified and
approximate phase diagram independent of n.

The behavior of our system resembles the one found
for quasi-one-dimensional confined hard squares. This
system shows a strong structural transition from a tilted
to a parallel to the walls arrangement of squares [46].
Here, βP (η) shows a large plateau, practically a true
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η discontinuity. As for confined ellipses, the transition
strengthens with decreasing H, turning critical when H
approaches a value at which ηm(H) shows a kink. For
squares Px diverges at this point, with critical exponents
belonging to the universality class of the one-dimensional
Ising model [16, 17]. Given the similarities, we believe
the same happens for the confined ellipse system at the
set of points [H∗n,ηm(H∗n)].

V. CONCLUSIONS

Given that the arrangement of ellipses in the 2d-
Euclidean space yielding the maximal packing density
is produced by scaling the triangular lattice of disks in
any direction, we speculate that a similar scaling should
lead to the maximal packing of ellipses confined by parallel
walls. We have observed that the scaling in the parallel to
the walls direction and a tilted scaling competes and alter-
nates to yield the optimal structure with increasing H, the
confining distance. The optimal packing density, ηm(H),
resembles an ever-increasing staircase function, where the
heights of the steps monotonously decrease with H. How-
ever, unlike a true staircase function, the steps are not
discontinuous but follow the function ηp(H), the maximal
packing for the parallel to the walls scaling. Hence, the
parallel close-packing occurs only in small H ranges, and
the tilted close-packed configuration rules over a large H
domain. In addition, ηm(H) asymptotically approaches
the optimal packing fraction of unconfined ellipses in the
2d-Euclidean space, i.e. ηm(H →∞) = π/

√
12. It should

be stressed that the obtained ηm(H) is κ independent for
κ & 1.8393.

We have performed REMC simulations with a threefold
aim: a) to observe whether simulations support or not
the conjectured optimal close-packed configurations; b) to
determine whether or not the κ-independence of ηm(H)
holds for the complete phase-diagram; c) to provide the
full phase diagram of confined ellipses for κ & 1.8393. We
found that simulations support the conjectured optimal
close-packed arrangement in all studied cases. The inde-
pendence of the phase-diagram with κ was also reasonably
confirmed, although the equation of states depends on
κ. In general, three different arrangements appear. An
(n − 1)-layer parallel arrangement, an n-layer parallel
arrangement, and an n-layer tilted configuration, with
increasing pressure. In particular, the transit involving
the change in the number of layers strengthens when
H approaches H∗n−1 from above. This points to a first-
order-like layering transition as H goes to H∗n−1, where
the formation of an additional layer is extremely hard
due to the lack of translational freedom in the normal
direction to the walls. This happens even though van
Hove’s theorem [55, 56] rules out the existence of genuine
thermodynamic transitions. Nonetheless, given the simi-
larity found between the outcomes for confined ellipses
and squares [16, 17, 46], we believe [H∗n,ηm(H∗n)] to be
critical points.
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[49] F. de J. Guevara-Rodŕıguez and G. Odriozola, J. Chem.
Phys. 135, 084508 (2011).

[50] G. Rickayzen, Mol. Phys. 95, 393 (1998).
[51] J. W. Perram, M. S. Wertheim, J. L. Lebowitz, and G. O.

Williams, Chem. Phys. Lett. 105, 277 (1984).
[52] J. W. Perram and M. S. Wertheim, J. Comput. Phys. 58,

409 (1985).
[53] A. Donev, S. Torquato, and F. H. Stillinger, J. Comput.

Phys. 202, 737 (2005).
[54] N. Rathore, M. Chopra, and J. J. de Pablo, J. Comp.

Phys. 122, 024111 (2005).
[55] L. van Hove, Physica 16, 137 (1950).
[56] J. Cuesta and A. Sanchez, J. Stat. Phys. 115, 869 (2004),

FisEs 2002 Meeting, Tarragona, SPAIN, 2002.

http://dx.doi.org/10.1073/pnas.1720139115
http://dx.doi.org/10.1007/s11276-018-1890-1
http://dx.doi.org/10.1007/s11276-018-1890-1
http://dx.doi.org/http://dx.doi.org/10.1016/0031-8914(50)90072-3
http://dx.doi.org/{10.1023/B:JOSS.0000022373.63640.4e}

	Anisotropy-independent packing of confined hard ellipses
	Abstract
	Introduction
	Maximal packing fraction
	Simulation details
	Simulation results
	Conclusions
	Acknowledgments
	References


