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Abstract. The effect of out-of-plane freedom is examined on the stability of two-
dimensional (2D) nematic order of hard non-spherical particles using the second
virial density-functional theory. The particles are allowed to move and rotate
freely in the plane of confining walls and can move between the two parallel
walls. The wall-to-wall distance (H) is varied between the strictly 2D and the
two-layer forming cases, i.e. σ < H < 2σ, where σ is the particle’s shortest
length. As expected, we observe that more and more particles are required for
the formation of 2D nematics with increasing H when the rod-like particles are
hard ellipsoids. Surprisingly, we found that the opposite tendency is observed in
the case of hard cylinders, i.e. fewer and fewer particles are needed to stabilise the
nematic order with increasing H. This paradox can be understood by projecting
the three-dimensional system into a two-dimensional mixture of particles having
position-dependent aspect ratios and molecular areas. However, the complex
phase behaviour found for plate-like cylindrical particles with increasing H cannot
be explained in terms of the same simple geometrical arguments.
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1. Introduction

The lack of long-range positional and orientational order makes the two-dimensional
(2D) systems peculiarly interesting from the academic point of view [1]. The observed
short and quasi-long range orders are due to the fact that the long-wavelength
fluctuations destroy the long-range orientational and positional order with the
dimensional restriction. Despite the presence of these strong fluctuations, 2D systems
can exhibit a very rich phase behaviour, structural changes, Kosterlitz-Thouless (KT)
continuous transitions, and first-order phase transitions [2, 3, 4, 5]. For example, the
freezing of hard disks is accompanied by a partially ordered hexatic phase [6], that
of hard squares by a tetratic phase [7], and a solid-solid transition occurs between
orientationally disordered and ordered solid structures [8]. Even two intermediate
mesophases can be sandwiched between the isotropic fluid and solid phases of bulk
superdisks, whose shape is between the disk and the square [9]. However, the richness
of phases can be enhanced by introducing out-of-plane fluctuations by making the
system quasi-two-dimensional (q2D) [10, 11, 12, 13, 14, 15]. The orientational and
positional alignment is particularly important in nanodevice applications such as the
nanowire arrays and nanotransistors, where the aim is to fabricate very dense and
ordered monolayers with nanotubes and nanowires [16, 17, 18, 19, 20].

The main features of the 2D nematic phase (nematics) are the short range
positional order, the lack of long-range orientational order, and the algebraically
decaying orientational correlations [15]. Although the possibility of true long-range
orientation order cannot be excluded in 2D hard body systems, as the lack of long-
range order is proved rigorously only for pair potentials where the orientational and
the positional freedom can be decoupled [21], it is quite unlikely to observe long-range
nematic order in strictly 2D systems. This situation is common in the nematic phase
of active matter [22, 23], even though there are some indications of long-range nematic
order in the suspensions of swimming filamentous bacteria in very thin layers [24].

The nematic-isotropic transition is proved to be continuous through a KT
disclination unbinding mechanism with decreasing density for several shapes [10,
25, 26]. The widely used density functional theories predict a second-order phase
transition and long-range nematic order [15]. In addition to this, these mean-field
theories exaggerate the stability of the nematic order in density. Apart from these
failures, the simulation and theoretical studies are in good agreement for the equation
of state and the shape dependence of the nematic order [27].

The experimental setup of strictly 2D systems is still a big challenge. The
possible ways to restrict the orientational and positional freedoms of the particles
in two dimensions are the followings: 1) confinement into nano-size slit-like pores,
2) adsorption at smooth surfaces, and 3) confinement at air-liquid interfaces [28, 29,
30, 31, 32, 33, 34, 35, 36, 37, 38]. With these techniques, it is possible to create
q2D systems where the out-of-plane positional and orientational freedoms are not
completely vanished. By using non-spherical colloidal particles, 2D nematic phases are
found in several experimental studies, and the order of isotropic-nematic (IN) phase
transitions is continuous or first-order [28, 36, 37]. To get closer to the experimental
setup and to understand the differences between the experimental and theoretical
results, it is worth studying q2D systems where the effects of out-of-plane fluctuations
are considered. Simulations show that the two-step melting scenario of the hard-sphere
monolayer is not affected by the out-of-plane fluctuations when the perpendicular
particle motion is within half the sphere’s diameter [39]. They also show that the



Enhanced two-dimensional nematic order in slit-like pores 3

2D IN transition of hard spherocylinders preserve the KT type nature of strictly 2D
hard body systems when slightly increasing the pore size [40]. It was also observed
that the 2D transition density increases with the thickness of the pore for both
flexible and rigid rods, i.e. widening the pore destabilises the nematic phase [40, 41].
Indeed, there are several simulations and theoretical works devoted to studying the
capillary nematisation, the smectic order, the layering transitions, the surface ordering
transitions, and the surface-induced biaxiality for different shapes and anisotropies in
slit-like geometries [42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55]. Nonetheless, a
stability analysis of the 2D nematic phase in the presence of out-of-plane fluctuations
is still missing for several molecular shapes and sizes.

This work aims to fill this gap for cylinders and ellipsoids. It is generally accepted
that the number of particles needed for stabilizing the nematic phase must increase
with the widening of the pore as the available room for the particles increases [40, 41].
Here we show that this expectation is valid for hard ellipsoids, where the out-of-
plane freedom weakens the orientational coupling between the freely moving particles.
Surprisingly, the rod-like (prolate) hard cylinders exhibit the opposite behaviour as the
orientational coupling becomes stronger with a gradual increment of the out-of-plane
positional freedom. Thus, it turns out that fewer and fewer particles are needed for the
stabilization of nematic order. This unexpected result is also found in the case of plate-
like (oblate) cylinders. We produce these results by placing rod-like particles between
two parallel flat walls, where the extremely small wall-to-wall distance enforces the
particles to align parallel to the surface of the walls (planar order). In the case of
plate-like cylinders, the same type of order, which is often called edge-on, can be
achieved between two parallel walls when an extra external electric field is applied
in the direction of the surface’s normal to overcome the entropy-driven face-on order
effect of the walls. With this technique, it was possible to set up a q2D fluid of plate-
like particles and study the 2D isotropic–nematic transition of hard rectangles, since
the interacting cross-sections of the plates have this shape [56]. We use the second
virial density functional theory to locate the IN transition and to measure the extent
of the nematic order as a function of the pore width for a given 2D density.

2. Models and theory

We examine the stability of 2D nematic order of monodisperse hard cylinders and
that of hard ellipsoids in very narrow slit-like pores, where the distance between the
two parallel flat walls (H) is increased gradually up to the limit at which the system
abruptly loses its q2D character. To satisfy the q2D fluid condition, the range of
the pore width is restricted to D ≤ H ≤ 2D in the case of hard cylinders with
lengths L and diameters D (see Fig. 1), while the confined hard ellipsoids with σ‖
major and σ⊥ minor lengths fulfill σ⊥ ≤ H ≤ 2σ⊥. At the lower limit (H = D for
cylinders and H = σ⊥ for ellipsoids) the confined system turns into the strict 2D case
of hard rectangles and hard ellipses, respectively. The out-of-plane translational and
orientational freedom can be switched on continuously by increasing H. By doing so,
we increase the available room for all particles and the system is expected to disorder
for a fixed number of particles.

Entropic forces push the particles against the walls’ surfaces and they form
two interacting fluid layers. These two layers are coupled, i.e. they cannot move
independently from each other for D ≤ H ≤ 2D (or σ⊥ ≤ H ≤ 2σ⊥). For H = 2D,
the cylinders of the lower (upper) layer interact as hard needles with the cylinders of
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Figure 1. Hard cylinders with lengths L and diameters D located between two
parallel flat planes. The particles are allowed to move freely between the walls, but
they are restricted orientationally as they can rotate freely only in the x–y plane
(planar order). The width of the pore is chosen to maintain the q2D character of
the pore, i.e. D ≤ H ≤ 2D.

the upper (lower) layer, while in the corresponding case, H = 2σ⊥, ellipsoids interact
as point particles with those in the other layer. We find it convenient to use the 2D
number density as a control parameter, which is defined as ρ2D = N/A, where N
is the total number of particles and A is the surface area of the walls. We consider
the following two possible scenarios: 1) the case of strong adsorbing walls and 2)
the case of weak adsorbing ones. In the first case, the particles are attached to the
surfaces of the walls in such a way that 50% percent of them are at each side. In
this case, particles can move and rotate freely in the x–y plane, while the out-of-plane
orientational freedom is frozen. In the second case, we kept the assumption that
the particles prefer the planar arrangement for their orientations, but the particles
are allowed to move freely between the two confining walls. This case allows us to
examine the effect of out-of-plane positional freedom, while the effect of out-of-plane
orientational freedom is neglected due to the very narrow pore width. We return to
the effect of out-of-plane orientational freedom in the Discussion.

Next, we present the second virial density function theory of the confined particles
for the cases of strong and weak adsorption [15]. In this formalism, the grand potential
(Ω) is a functional of the local density (ρ) as follows

βΩ [ρ] =

∫
d1 ρ(1) (ln ρ(1)− 1)− 1

2

∫
d1 ρ(1)

∫
d2 ρ(2)fM(1, 2)

−
∫
d1 ρ(1) (βµ− βVext(1)) , (1)

where β = 1/kBT is the inverse temperature, 1 = (x1, y1, z1, ϕ1, θ1) is an abbreviation
for the position and orientation of a particle, where x, y, and z are the Cartesian
coordinates, ϕ is the azimuthal angle, and θ is the polar angle. Furthermore, ρ(1) is
the local density, fM(1, 2) is −1 (0) for two overlapping (non-overlapping) particles
having locations 1 and 2, respectively, µ is the chemical potential and Vext is the
external potential due to confinement. To determine the equilibrium grand potential
and the local density, the functional derivative of Eq.(1) with respect to ρ(1) must be
zero, i.e. δβΩ/δρ(1) = 0. We can show that the equilibrium density profile satisfies
the following equation,

ρ(1) = eβµ exp

(∫
d2fM(1, 2) ρ(2)

)
e−βVext(1) . (2)
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The solution of Eq.(2) must be substituted into Eq.(1) to get the equilibrium grand
potential of the confined system. The strong adsorption condition through the external
potential prescribes that z = ±(H − σ)/2 and θ = π/2. The first condition forces the
particles to be only on the lower and upper surfaces of the slit-like pore, while the
second one ensures that the orientations of the particles are in the x–y plane. Note
that σ corresponds to D and σ⊥ for cylinders and ellipsoids, respectively. We assume
that the pore is infinite in the x–y plane and that there is no in-plane positional order,
i.e. the local density is independent of the x and y coordinates as we are interested
only in the stability of 2D nematic order. Using these conditions we get from Eq.(2)
that

ρi(ϕ1) = eβµ exp

− 2∑
j=1

2π∫
0

dϕ2A
ij
ex (ϕ1 − ϕ2) ρj(ϕ2)

 , (3)

where i = 1 corresponds to z = −(H−σ)/2 and i = 2 to z = (H−σ)/2. It is also used
in the above derivation that the excluded area between two particles being in layers i
and j can be obtained from Aijex(ϕ1 − ϕ2) = −

∫
dx12 dy12fM(1, 2), where x12 and y12

are the coordinates of the center-to-center vector between the two particles (see the
details). Eq.(3) can be simplified by using the fact that the density distribution of the
lower and the upper layers must be the same for symmetry reasons, Aijex = Ajiex, i.e.
ρ1(ϕ) = ρ2(ϕ) = ρ(ϕ)/2. It is also worth using the normalization condition of the local
density,

∫
d1ρ(1) = N . In the case of strong confinement this condition simplifies as

follows:
∑2
i=1

∫ 2π

0
dϕ ρi(ϕ) =

∫ 2π

0
dϕ ρ(ϕ) = ρ2D, where ρ2D = N/A. It is also useful

to introduce the orientational distribution function, which is normalized as follows:
f(ϕ) := ρ(ϕ)/ρ2D and

∫ 2π

0
dϕ f(ϕ) = 1. After a straightforward calculation, Eq.(3)

can be rewritten in terms of f(ϕ) in the following form

f (ϕ) =

exp

(
−ρ2D2

2π∫
0

dϕ2 f (ϕ2)
(
A11

ex (ϕ − ϕ2) +A12
ex (ϕ − ϕ2)

))
2π∫
0

dϕ2 exp

(
−ρ2D2

2π∫
0

dϕ2 f (ϕ2) (A11
ex (ϕ − ϕ2) +A12

ex (ϕ − ϕ2))

) . (4)

The solution of this self-consistent equation provides the equilibrium orientational
distribution function. We solve numerically the integrals of this equation using
the trapezoidal quadrature and iteration to get f(ϕ). To measure the extent of
the nematic order it is useful to introduce the nematic order parameter as follows:
S =

∫ 2π

0
dϕ f(ϕ) cos (2ϕ), which is zero (non-zero) in the isotropic (nematic) phase.

To locate the density of the IN phase transition, we perform a bifurcation analysis
with cos(2ϕ) function in Eq.(4), which is described elsewhere [57]. For this purpose,
we employ the Fourier expansion of the excluded areas, which can be written as
Aijex =

∑∞
k=0A

ij,k
ex cos (2kϕ) , where the Fourier coefficients are given by

Aij,kex =
1

π (δk,0 + 1)

2π∫
0

dϕAijex (ϕ) cos (2 kϕ) . (5)

Here, δ is the Kronecker delta function. Eq.(4) can be rewritten as a self-consistent
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equation for the order parameter by integrating both sides with cos(2ϕ). We get

S =

2π∫
0

dϕ cos (2ϕ) exp

(
−ρ2D2

∞∑
k=0

(
A11,k

ex +A12,k
ex

)
Sk cos (2kϕ)

)
2π∫
0

dϕ2 exp

(
−ρ2D2

∞∑
k=0

(
A11,k

ex +A12,k
ex

)
Sk cos (2kϕ)

) , (6)

where Sk =
2π∫
0

dϕ f (ϕ) cos (2 k ϕ) is a generalised order parameter. Note that S0 = 1

and S1 corresponds to the standard nematic order parameter (S). In the vicinity
of the IN bifurcation point, the order parameters Sk with k ≥ 1 are close to zero,
therefore the approximation exp(−x) ≈ 1 − x can be applied to Eq.(6). Using this
first-order Taylor expansion result, we get S = ρ2D

4

(
A11,2

ex +A12,2
ex

)
S, which is valid

for S → 0. After rearranging this equation, we end up with the following expression
for the bifurcation density of the IN transition:

ρIN =
−4

A11,2
ex +A12,2

ex

. (7)

Note that ρIN corresponds to the IN transition density in the case of second-order phase
transitions, while it provides only an estimation for first-order phase transitions. We
present the results of Eqs. (4) and (7) in the Result section for ellipsoids and cylinders,
respectively.

For the weakly adsorbing case, the out-of-plane positional freedom is turned-on.
Here, the summation for the two positions is replaced by a definite integral for the z
variable in Eq. (3), i.e.

ρ (z1, ϕ1) = eβµ exp

− (H−σ)/2∫
−(H−σ)/2

dz2

2π∫
0

dϕ2Aex (|z1 − z2| , ϕ1 − ϕ2) ρ (z2, ϕ2)

 , (8)

where the local density (ρ(z1, ϕ1)) is now position and orientational dependent and
Aex (|z1 − z2| , ϕ1 − ϕ2) is the excluded area between two particles in that case, when
they are |z1 − z2| apart along the z-axis and they have orientations ϕ1 and ϕ2. In order
to use ρ2D = N/A as an input of Eq. (8), we resort to the normalization condition of
the local density,

∫ (H−σ)/2

−(H−σ)/2
dz
∫ 2π

0
dϕ ρ(z, ϕ) = ρ2D. After integrating out both sides

of Eq. (8) with z1 and ϕ1, we get an expression for eβµ, which helps us to express the
local density as a function of ρ2D as follows

ρ (z1, ϕ1) =

ρ2D exp

(
−

(H−σ)/2∫
−(H−σ)/2

dz2

2π∫
0

dϕ2Aex (|z1−z2|, ϕ1−ϕ2) ρ (z2, ϕ2)

)
(H−σ)/2∫
−(H−σ)/2

dz1

2π∫
0

dϕ1 exp

(
−

(H−σ)/2∫
−(H−σ)/2

dz2

2π∫
0

dϕ2Aex (|z1−z2|, ϕ1−ϕ2) ρ (z2, ϕ2)

) , (9)
We solve Eq. (9) numerically using the trapezoidal quadrature for both variables (z
and ϕ) and iteration to determine the equilibrium density distribution at a given ρ2D.
To solve Eq.(9) we also need the expression of the excluded area, which is presented in
the Appendix for ellipsoids and cylinders. In addition, we calculate the global nematic
order parameter (S), the local density (ρ(z)), and the nematic order parameter (S(z))
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profile from the equilibrium ρ(z, ϕ). These quantities are given by

ρ (z) =

2π∫
0

dϕ ρ (z, ϕ) , (10)

S(z) =
1

ρ(z)

2π∫
0

dϕ ρ(z, ϕ) cos(2ϕ) , (11)

and

S =
1

ρ2D

(H−σ)/2∫
−(H−σ)/2

dz ρ(z)S(z) . (12)

To locate the isotropic–nematic bifurcation density (ρIN) we start the iterative
solution of Eq. (9) with a nematic trial function for ρ(z, ϕ) at such a high ρ2D to
guarantee the phase to be nematic (S > 0). Then, we gradually decrease ρ2D and
solve iteratively Eq. (9), while searching for the first ρ2D value having S = 0. The
collection of these densities as a function of H are ρIN(H) for our confined system.
We present our results for ρIN, ρ(z), S and S(z) in the next section, where the unit
of the length is σ, i.e. H∗ = H/σ and z∗ = z/σ. We make the 2D number density
dimensionless by ρ∗ = ρ2D min(L2, D2) for cylinders and ρ∗ = ρ2D min(σ2

‖, σ
2
⊥) for

ellipsoids. As we consider oblate and prolate shapes, this definition is useful since it
forces both shapes to have the same ρ∗IN in the limit H∗ = 1.

3. Results

3.1. Strongly adsorbing case

We start this section by showing the phase behaviour found for strong adsorption on
the walls, where half of the particles are adsorbed tightly to one surface and the other
half to the other. Thus, in this case, the particles form two fluid layers without out-
of-plane orientational freedom, and no particles are placed in the interstitial region.
The distance between the two flat surfaces is limited to maintain the q2D feature of
the pore, i.e. the layers interact with each other. Therefore, we can see the two-layer
fluid as a 2D non-additive binary mixture of anisotropic particles, where the in-layer
interactions would be like ones, whereas the out-of-plane interactions would be unlike
ones. In other words, in Eq. (4) the contribution of like interactions would be given
by A11

ex, while that of unlike ones would correspond to A12
ex. This analogy highlights

the fact that we can envisage a 2D-like behaviour even when the system has two
well-defined layers.

Fig. 2 presents our results for prolate (rod-like) and oblate (plate-like) shapes,
where the H dependence of ρIN is shown for hard ellipsoids and hard cylinders.
In the H∗ = 1 limit, we get the strictly 2D system of hard ellipses and that of
rectangles, since particles can interact only through their central cross-sections. In
the H∗ = 2 limit, the two-layer fluid of ellipsoids corresponds to a 2D equimolar
mixture of ellipses of equal size and shape, where the unlike interactions take place
between point particles. In addition, the two-layer fluid of cylinders could be seen as
an equimolar mixture of rectangles of equal size and shape with needle-needle unlike
interactions. We observe that the IN phase transition is always second-order on the
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Figure 2. Isotropic–nematic phase transition of prolate (κ > 1) and oblate
(κ < 1) particles in the ρ∗–H∗ plane for strong planar adsorption. Phases are
nematic above the curves and isotropic below them. The results are obtained from
Eq. (7) for cylindrical and ellipsoidal shapes. The curves for oblate and prolate
ellipsoids coincide with each other.

level of the theory, which should be a KT-type continuous phase transition according
to simulation studies [11, 25, 40]. As we mentioned earlier, this feature of 2D phase
transitions cannot be captured by the present mean-field theory [15].

Starting with the ellipsoids, we can see that the widening pore destabilises the
nematic order by shifting the IN transition in the direction of larger densities (see
the dashed curves of Fig. 2). This is the expected behaviour, since it indicates that
more ellipsoids are required to induce the nematic order as the pore becomes more
spacious with increasing H. In the limit of H∗ = 2, we observe that one must double
the number of particles (and ρ2D) to get the nematic phase since the fluid layers of
the two walls completely decouples from each other. This additive behaviour can be
easily understood in terms of the 2D mixture analog, with the emerging of point-
point unlike interactions explaining their decoupling. As the number of the ellipsoidal
particles is N/2 at both walls, the number of ellipsoids must be duplicated to regain
a stable nematic phase. We can also see in Fig. 2 that the IN curves of prolate and
oblate ellipsoids are identical provided that a very strong external edge-on aligning
field is applied for oblate ellipsoids to maintain the same out-of-plane orientation.
This perfect agreement is due to a couple of facts. On the one hand, there is an
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Figure 3. The global nematic order parameter S as a function of H∗ for confined
ellipsoids and cylinders in the case of strong planar adsorption. The 2D density is
fixed for all shape anisotropies as follows: ρ∗ = 0.3 for k = 5 and κ = 1/5, while
ρ∗ = 0.06 for κ = 10 and κ = 1/10. The results are obtained from Eq. (6). The
curves of oblate ellipsoids coincide with those of prolate ellipsoids.

oblate-prolate symmetry for the excluded area (or volume), which results in the same
IN transition packing fractions for oblate and prolate ellipsoids even for the three-
dimensional bulk case [58, 59, 60, 61]. On the other hand, we have always used the
particles’ shortest length as the unit of distance. It is also visible that the stronger
shape anisotropy, which corresponds to increasing κ for prolate and decreasing κ for
oblate shapes, stabilises the nematic order. In the κ → ∞ (thin prolate) and κ → 0
(needle oblate) limits, ρIN vanishes in accordance with MC simulation results of 2D
hard ellipses [11].

The orientational order of hard cylinders is strikingly different from that of
ellipsoids as ρIN decreases monotonically with the widening of the pore for prolate
shapes (κ > 1). This is also true for oblate cylinders (κ < 1), whenH is below a certain
κ dependent value of H. However, for oblates the nematic phase is always destabilised
in the vicinity of H∗ = 2. The decreasing ρIN means that fewer particles are needed
in the pore for the stabilization of the nematic, despite that more room is available
with increasing H. In the case of κ = 5, Fig. 2 shows that the required amount of
particles to form the nematic order is about 20% less for the widest pore (H∗ = 2)
with respect to the narrowest one (H∗ = 1). When comparing this percentage with
the case of κ = 10 (right panel of Fig. 2), it turns out that it goes down. Indeed,
the decrease in the number of cylinders falls to 10% for κ = 10. This suggests that
the stabilization effect of increasing H on the nematic phase weakens with increasing
κ. The different behaviour of ellipsoids and cylinders can be clearly seen for the
nematic order parameter curves as a function of H at a fixed surface coverage (ρ2D )
(see Fig. 3). Recall that the two interacting layers move away from each other with
increasing H. In the case of ellipsoids, increasing H results in a lowering nematic order
parameter, while the opposite is found in the case of prolate cylinders. The striking
difference between the two shapes is that S is almost doubled for the cylinders, while
for the ellipsoids it abruptly vanishes at H∗ < 2. The oblate cylinders depict a curious
behaviour as their S follows the trend of prolate cylinders for low H∗ (H∗ / 1.5) and
that of ellipsoids for high values of H (1.5 / H∗ ≤ 2). As mentioned, the monotonic
decreasing trend of S with H for hard ellipsoids at a fixed number of particles is the
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Figure 4. The tendency of the effective 2D IN transition density ρIN,eff

of ellipsoids and cylinders as a function of H∗ for the case of strong planar
adsorption. The ρIN,eff is an empirical result from mapping the two adsorbed
layers into an effective one (see the text for the details) and ρ0 is just a
normalization constant.

expected behaviour, while the increasing S(H) trend of cylinders seems illogical at a
first glance.

A possible explanation for the unusual ordering behaviour with increasing H of
hard cylinders can be given by using the following simple arguments. It is a well-known
fact that the increasing shape anisotropy enhances the nematic order. In the seminal
paper of Lars Onsager, it is shown that the packing fraction of the IN transition
of 3D objects in bulk vanishes for κ → ∞ [62]. The same tendency is confirmed
for the nematisation of hard ellipses and hard discorectangles (stadiums) using MC
simulations [11, 25]. In the case of hard needles of length L, which can be seen as the
κ→∞ limit of hard rectangles, it is observed that ρINL

2 ≈ 7 [10]. This suggests that
the IN packing fraction of rectangles behaves as ηIN = ρINa ≈ 7/κ, where a = LD is
the area of the rectangle. From this equation, we can see that ρIN is proportional to
κ−1a−1, i.e. increasing the shape anisotropy (κ) and particle’s area (a) lowers ρIN. In
the slit-like pore, there are competing in-plane and out-of-plane interaction areas and
shape anisotropies, which results in a very sensitive ordering behaviour. To explain the
observed ρIN trend with H, we make use of an empirical extension of ρIN ∼ κ−1a−1,
given that our system is analogous to an equimolar non-additive binary mixture, where
the like interactions correspond to that of in-plane particles and the unlike interactions
to that of inter-plane ones. For this purpose, we simply replace κ and a with their
corresponding effective values, which are defined as κeff := (κin−plane+κout−of−plane)/2
and aeff := (ain−plane + aout−of−plane)/2. Here, we consider the in-plane and out-of-
plane cross-sections of the bodies in parallel orientations. Using the average values of
the interacting cross-sections we employ ρIN,eff ∼ κ−1

eff a
−1
eff to explain the shape and

pore width dependence of ρIN.
One can easily show that ρIN,eff does not depend on H for a rectangular prism

with lateral faces parallel and perpendicular to the walls. In this case, the in-plane
and the out-of-plane cross-sections are always the same rectangles. Therefore, the
adsorbed prisms in the pore behave exactly as the 2D fluid of hard rectangles,
and Figs. 2 and 3 would depict horizontal lines. The case of parallel prisms is
in high contrast with the cases of ellipsoids and cylinders. Fig. 4 depicts the H
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dependence of ρIN,eff for ellipsoids and cylinders (parallel prisms would also show a
horizontal line here). We can see that ρIN,eff increases for ellipsoids because κeff is
independent of H as κin−plane = κout−of−plane = σ‖/σ⊥, while aeff decreases with H as
ain−plane = (π/4)σ‖σ⊥ and aout−of−plane = (π/4)σ‖σ⊥[1− (H−σ⊥)2/σ2

⊥]. This shows
that the ellipsoids participate with decreasing interaction area (aeff) in the formation
of the nematic phase, as a consequence of weakening layer-layer coupling (decreasing
aout−of−plane).

The situation is quite different in the case of prolate cylinders, because the out-
of-plane aspect ratio diverges at H∗ = 2, while the out-of-plane interaction area
goes to zero as follows: κout−of−plane = L/

√
D2 − (H −D)2 and aout−of−plane =

L
√
D2 − (H −D)2. As the in-plane aspect ratio and interaction area are given

by κin−plane = κ = L/D and ain−plane = LD, respectively, ρIN,eff decreases
with increasing H∗. Therefore, the stronger anisotropic interactions (increasing
κout−of−plane) between the neighboring layers are responsible for the enhancement
of the nematic order. In the H∗ = 2 limit, the needle–needle interactions take place
between the two adsorbed fluid layers, which renders the IN transition density to be
zero. Note that triangular prisms also show the same effect when they are adsorbed
to the wall with their sides. In this case, the effective width of the particles linearly
goes to zero (the needle limit), and therefore, the enhancement of the nematic order
should be even more pronounced than for cylinders.

Conversely to the prolate cylinders, the IN density behaviour of oblate cylinders
cannot be explained with the help of the above arguments. Namely, the fact that the
nematic order is strengthened with the widening of the pore up to a certain value
of H (H∗ ≈ 1.4 − 1.5), and then is replaced by a strong destabilization effect up
to H∗ = 2 (see κ = 1/5 and 1/10 cases in Figs. 2 and 3) cannot be explained by
the simplified argument based on κeff and aeff . The effective density is now given by
ρIN,eff ≈ κeff/aeff , because κ < 1 for oblate shapes. The cross-section areas of the
particles decrease monotonically with increasing H since the slices of the cylinders
move away from the largest central rectangular slice. As aeff decreases with H, the
effective aspect ratio must compensate the destabilization effect of aeff to stabilise the
nematic order. This can be achieved with decreasing κeff , which would correspond to
a more anisotropic rectangular shape. However, we get that κeff increases by widening
the pore up to H = D +

√
D2 − L2, where the shape of the cylinder’s slice changes

from oblate to prolate (κout−of−plane = 1). This shows that the stabilization of the
nematic phase with increasing H for oblate cylinders cannot be explained in terms of
the shape anisotropy and the cross-section area of effective 2D objects, as we always
get that ρIN,eff increases with H (see Fig. 4). The fact that the nematic phase is less
stable with increasing H for D+

√
D2 − L2 < H < 2D does also contradict the above

arguments because the out-of-plane cross-sections of the oblate cylinders become more
needle-like as H → 2D, which should stabilise the nematic phase. Here, our simple
explanation fails since it does not take into account that the contact points of two
cylinders attached to different walls do not lie on a plane at a given H. Therefore,
it is not possible to approximate the bilayer of oblate cylinders with a non-additive
equimolar mixture of hard rectangles. It is curious how the 3D character of the group
of points arising from the contact of two cylinders attached to different walls plays a
key role for oblate shapes but not for prolate ones.
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Figure 5. Isotropic–nematic phase transition of prolate (κ > 1) and oblate
(κ < 1) particles in the ρ∗–H∗ plane in the case of weak planar adsorption. The
phase is nematic above the curves and isotropic below them. Results are obtained
from Eq. (9) for cylindrical and ellipsoidal particles. Oblate and prolate ellipsoids
yield the same curves.

3.2. Weakly adsorbing case

We observe similar trends in the orientational ordering properties for the weakly
adsorbing case, where the particles can move freely between the confining walls. As
in the previous case, the nematic phase is destabilised for ellipsoidal shapes, while it
is stabilised for the cylindrical ones by increasing the pore width. Fig. 5 shows that
the out-of-plane positional freedom weakens the destabilization (stabilization) effect
of the walls for ellipsoids (cylinders). For oblate cylinders, the drop of ρIN goes below
10% with κ = 5 when doubling H∗ from 1 to 2, which should be compared with the
drop of more than 20% occurring for the strong adsorption. In the case of ellipsoids
with κ = 5, the increment of ρIN is about 23% at H∗ = 2, which was 100% in the
strongly adsorbing case. These weakening stabilization and destabilization tendencies
are due to the fact that the particles are distributed continuously between the two
walls, and thus the average out-of-plane distance between the particles decreases,
resulting in a continuous distribution of interacting areas and shape anisotropies. For
ellipsoids, the average interacting area increases, while the average aspect ratio of the
interacting areas keeps constant. Therefore, the increasing interaction areas causes the
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Figure 6. The global nematic order parameter as a function of the pore width
for confined ellipsoids and cylinders in the case of weak planar adsorption. The
2D density is fixed for all shape anisotropies as follows: ρ∗ = 0.3 for κ = 5 and
κ = 1/5, while ρ∗ = 0.06 for κ = 10 and κ = 1/10. The curves are the results of
Eq. (12). Oblate and prolate ellipsoids yield the same curves.

weakening destabilization of the nematic order. In the case of cylinders, the aspect
ratio is responsible for the weakening stabilization of the nematic phase because the
cross-sections of the interaction areas become less anisotropic. The same weakening
tendencies happen in the case of oblate cylinders as the average out-of-plane distances
between the particles decreases and the interactions between cylinders are closer to
the interactions of 2D system of hard rectangles. It is also clear that the out-of-plane
effects get even weaker with increasing the shape anisotropy of the particles because
the effective shape anisotropy can change less with the spreading of the particles
between the walls.

These findings manifest in the behaviour of the nematic order parameter (Eq. 12),
which is shown in Fig. 6. We can see that the change of S is smoother here than in
the case of strong adsorption. The nematic phase of ellipsoids survives in the whole
range of H, the growth of the nematic order weakens with H for prolate cylinders,
and the destabilization of the nematic order occurs at higher H for oblate cylinders.
The accompanying local density, Eq. (10) and local order parameter, Eq. (11) show
some interesting features for prolate particles. Fig. 7 shows that both ρ(z) curves
(ellipsoids and cylinders) depict U-shaped profiles peaking at the walls and having
a minimum at the pore center. These density profiles indicate that the particles
accumulate at the walls despite the positional freedom in the pore. This entropic
adsorption is more intense for ellipsoids than for cylinders. However, the orientational
order of ellipsoids and cylinders exhibit qualitative differences. Cylinders are more
ordered at the walls than in the middle of the pore, contrasting with the behaviour of
ellipsoids. This different behaviour can be understood in terms of the interacting areas
and anisotropies. The ellipsoids at the middle of the pore must interact with those
at both sides having the same aspect ratio and relatively large interaction area. This
contrasts with the absorbed ellipsoids since they have small interaction area with the
ellipsoids adsorbed at the other wall. Therefore, ellipsoids in the middle of the pore feel
a denser environment than those adsorbed, explaining the S peak at the middle. The
case of cylinders is different because the interaction area decreases while the interaction
anisotropy increases with distance. For example, for H∗ = 2, two cylinders staying at
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Figure 7. Local density (ρ∗(z∗)) and nematic order parameter profiles (S(z∗))
of hard cylinders and ellipsoids for H∗ = 2, which are shown with blue and red
curves, respectively. The average 2D density and the aspect ratio of the particles
are fixed to ρ∗ = 0.3 and κ = 5. The curves are the results of Eqs. (10) and (11).

the opposite walls interact as two hard needles. Therefore, the stronger orientational
correlation is responsible for the higher nematic order at the walls. Although the
cylinders in the middle plane of the pore feel a denser environment, the interaction
areas are less anisotropic and the extent of the nematic order is smaller.

Our results show that the phase behaviour of strictly 2D anisotropic systems
cannot be reproduced accurately in real experiments when the magnitude of positional
fluctuations are at least in the order of the short length of the particles and the particles
are weakly or moderately anisotropic. Note that out-of-plane fluctuations are always
present in monolayers for different experimental confinements, such as slit-like pores,
adsorbing solid surfaces, and liquid interfaces. Therefore, the experimental results for
the orientational order and for the order of IN phase transitions of confined mesogenic
particles should be considered with some reservations as strict 2D results. It may
happen that the first-order nature of IN transitions observed for some experimental
2D setups [28, 36] is partially due to the presence of out-of-plane orientational and
positional fluctuations. To have negligible out-of-plane fluctuation effects on the
nematic order, the particles must be very elongated or very thin in q2D experiments.
Note that as we go beyond the H = 2σ limit, the coupling between the fluid layers
of the walls is lost and the number of particles must be increased to induce nematic
order even for the cylindrical shape. This means that the nematic phase stabilization
effect of the out-of-plane fluctuations is present only for H ≤ 2σ, and for particles
having a cross-section anisotropy that increases as moving out from their geometrical
center.

4. Conclusions

We have shown that the general belief that the 2D nematic order is always destabilised
by adding out-of-plane degrees of freedom to the anisotropic particles is simply not
true for both rod-like and plate-like cylinders (see Fig. 8). By placing rod-like hard
cylinders into a slit-like pore, we observed enhanced nematic order by increasing the
wall-to-wall distance for a fixed 2D number density. The strongest ordering effect with
increasing H is found for the strong adsorption case, where the particles are attached
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Figure 8. The effect of pore width on the nematic order for the cases of cylinders
(right) and ellipsoids (left). All the snapshots and the curves correspond to the
same 2D density ρ∗ = 0.28 and aspect ratio κ = 5. The pore width is σ on
the upper snapshots and 2σ on the lower ones. The system of ellipsoids becomes
disordered with increasing pore width, as expected. Surprisingly, cylinders show
the opposite behaviour.

to the surface of the walls. Surprisingly, the nematic order parameter can be doubled
by doubling H at a given 2D density. If the out-of-plane positional freedom is turned
on while keeping the planar alignment, the nematic order with increasing H gets
weaker. We expect that the incorporation of out-of-plane orientational freedom would
have additional weakening effects on the nematic order of hard cylinders. Nonetheless,
we do not expect a qualitative change of the trend as the slit-like pore is extremely
narrow, and accessible polar angles are very limited even for a particle standing at
the middle of the pore. In addition, the contribution of accessible polar angles can be
reduced by increasing the shape anisotropy of rod-like cylinders. Moreover, other solid
shapes such as triangular prisms may exhibit even more intensively this phenomenon.

The outcomes of the present density functional theory were compared
elsewhere with Monte Carlo simulation results for confined freely rotating hard
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spherocylinders [63]. They agree qualitatively and predict that the stability of the
nematic order is practically independent of H in the presence of both out-of-plane
positional and orientational degrees of freedom in the q2D regime. Therefore, hard
spherocylinders and square prisms can be considered as intermediate cases between
the nematic stabilizing and destabilizing shapes. We found that ellipsoids are a typical
destabilizing shape for the nematic order with increasing H. In brief, anisotropic 3D
objects can be classified as stabilisers, neutral and destabilisers of the nematic order
with increasing the pore width.

Our geometrical rationalization of the phenomenon by using the interacting slices
of the particles works well for prolate ellipsoid and cylindrical shapes. However, it
fails for prolate spherocylinders because it predicts the stabilization of the nematic
order with H as the interaction slices of the particles become more anisotropic with
increasing the out-of-plane distance. Therefore, our empirical formula ρIN,eff ∼
κ−1

eff a
−1
eff cannot be applied safely even for prolate shapes. Oblate shapes are more

complicated, as both stabilization and destabilization trends are observed in very
narrow pores for a given shape. In this case, the majority of the contact points tend
to lie farther away from a z = const. plane, and the effective shape of the cylinder
cannot be well approximated by a simple rectangle. Instead, the sides of the rectangles
depend on the relative positions of the cylinders and this effect turns more important
as κ decreases (see the Appendix).

To detect experimentally the out-of-plane fluctuation enduced enhanced nematic
ordering, we believe that the granular system of vertically vibrated granular cylinders
can be an ideal playground. Along this line, the vertically vibrated granular cylinders
in circular cavity exhibits orientationally ordered phases with defect structures [64].
To avoid the destabilisation effect of the boundary, we thank that the cylinders should
be placed into rectangular cavity, where the symmetry of the nematic phase matches
with that of the boundary.

We believe that our functional theory predictions for oblate shapes can be checked
experimentally by inserting plate-like particles into a narrow slit-like pore, while
applying an external field to force the plates to have an edge-on orientation. In
this direction, a q2D rectangular system has been already set up experimentally by
ordering plate-like cylinders into the edge-on direction by applying an external electric
field [56], where the particles settle in the bottom of the cell and form isotropic and
nematic phases.

An interesting collateral result of our work is the excluded area between two
identical hard ellipsoids or cylinders. This quantity is required for computing the
excluded volume (and second virial coefficient) through definite integration in the z
coordinate. In turn, the excluded volume is a key parameter for the location of the IN
transition density of 3D systems [15]. It is also useful for testing the overlap routines
of hard body systems, which must be implemented in Monte Carlo simulations [65].
As the excluded volume for both ellipsoids and cylinders has been already reported
using different geometrical methods [58, 62], we could check the correctness of our
method, which turned out to exactly reproduce the published results [58, 62]. The
overlap check is time-consuming for both hard cylinders and ellipsoids, and so new
overlap detection algorithms are constantly being developed [66, 67, 68, 69, 70, 71].
To ensure the reliability of these overlap routines, it is useful to calculate the excluded
volume with the combined use of overlap routines and MC integration methods as it
was done for hard cylinders elsewhere [65]. Our excluded areas make it possible to
perform deeper tests for the overlap detection algorithms.
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Finally, we would like to provide some outlook into the applications of the
orientationally ordered monolayers. To construct complex nanostructures, it is very
important to increase the surface density, the size of the nematic mono-domain, and
the orientational order on a substrate [20]. For the case of single-walled carbon
nanotubes, one possible solution is to shorten the nanorods, because the carbon
nanotubes are very long and wavy [72]. Another option is the patterning of the
substrate surface with stripese, which works very efficiently for increasing the density
and the nematic order of gold nanowires [73]. In this regard, our work suggests another
possible way to enhance the nematic order, i.e. by allowing the particles to slightly
move apart from the plane of the substrate, or to slightly increase the width of the
confining interface. To observe this enhancement of the nematic behaviour the shape
anisotropy of the cross-section area of the particles must increase as moving away from
its geometrical center, as it is the case for cylinders.
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Appendix A. Excluded area of hard cylinders and ellipsoids

In his seminal paper [62], Onsager presented an exact computation for the mutual
excluded volume of two hard cylinders. However, in our case, the system is not
invariant under the translation along the z-axis, and therefore, we need the excluded
area of the objects to apply the Onsager’s second virial theory. This fact is explained
in detail in the description of the theory given in Section 2. The excluded area, Aex,
is the area of the xy-plane figure enclosed by the curve which is drawn by the center
of a particle while it moves around another fixed one in contact with it, for a parallel
configuration, at a given z, and with a fixed orientation (for cylinders see the blue
curve of Fig. A1). The contact vector σ joins the center of both particles in contact
and points from the fixed one towards the other. In addition, φ is the azimuthal angle
of σ. Thus, σ(φ) is a natural parametrization of the curve which encloses the excluded
area. We find that

Aex =
1

2

∫ 2π

0

ez

(
σ × dσ

dφ

)
dφ , (A.1)

certainly depends on the difference between the z coordinates of the particles,
z12 = z2 − z1, and on the relative orientation of the particles, ϕ12 = ϕ2 − ϕ1. As
it can be seen, only σxy, the x–y component of σ, contributes to the integral, i.e. σ
can be replaced by σxy in the above formula. In the following we assume that z2 ≥ z1,
in the opposite case one can change the label of the particles.

Appendix A.1. Cylinders

In practice, it is difficult to handle σxy as a function of φ. While particle 2 moves
around 1 (the fixed one), and φ runs from 0 to 2π, the contact point describes a
3D trajectory (see the red curve in Fig. A1.) We denote the z coordinate of this
contact point by ζ, which is a function of φ. In our computation, we use the fact



Enhanced two-dimensional nematic order in slit-like pores 18

(a)

(b)

Figure A1. A cylinder moves around a fixed one while they are in contact.
The difference between their z coordinates, z12 = z2 − z1 and between their
orientations, ϕ12 = ϕ2 − ϕ1 are constants (for simplicity, we have set z1 = 0 in
the figure). The yellow rectangles denote the section of the cylinders defined by
the z = ζ plane containing the contact point. The projections along the z-axis
of these rectangles into the z = z12 plain gives the blue rectangles of the panel
(b), their centers are connected by the x–y projection of the contact vector, σxy ,
indicated by the green arrow. The blue curve denotes the border of the excluded
area which is a plane figure. Despite this, the red curve, which is the path of the
contact point drawn as the particle moves around the other one, is clearly a 3D
curve. The figure related to the R < z12 < 2R case, the 0 < z12 < R case is
slightly different (R is the radius of the cylinder). A multimedia version of this
figure, which shows the whole path of the moving cylinder, is accessible online in
the HTML document.

that σxy can be more easily expressed in terms of ζ than of φ. Therefore, we use ζ
for the parametrization of the σxy curve instead of φ, and we change the integration
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variable of Eq. (A.1) accordingly. With this trick, we can avoid some mathematical
complications and yield manageable expressions for Aex. The only problem is that the
ζ(φ) function is not invertible everywhere, but this issue can be overcome.

In the following, we use the radius of the cylinders (R = D/2) besides its length
(L). By cutting both cylinders by the z = ζ plain, we obtain two rectangles in contact
(let us avoid the degenerated case in which one of them is a line segment). These are
the yellow rectangles shown in Fig. A1. Furthermore, in Fig. 1(b) their projections
into the z = z12 plane are shown in blue color. It is easy to see that these rectangles
have a side of length L another side with length di(ζ) = 2

√
R2 − (ζ − zi)2, where

i = 1, 2 is the particle index. Certainly, the second rectangle is rotated ϕ12 with
respect to the first one.

For cylinders, the φ ∈ [0, 2π] interval can be split conveniently into several parts.
There are subintervals where ζ is a constant while φ (and thus σ) changes. These
are the cases when the edge of the base (which is a circle) of the moving cylinder
slips on the cylindrical surface of the fixed one. In these cases, the tangent line to the
base is contained by the tangent plane of the cylindrical surface passing through the
contact point. At a given z12 and ϕ12, this condition determines the z coordinate of
the contact point via the equation(

R

z12 − ζ

)2

− 1 =

[(
R

ζ

)2

− 1

]
cos2 ϕ12 . (A.2)

This equation has a unique solution in the [0, R] interval, we denote it by ζ0. The
other cases occur when the z coordinate of the contact point is a constant while φ is
changing. This occurs when the roles of the cylinders are interchanged and the base
of the fixed cylinder slips on the cylindrical surface of the moving one. In these cases,
ζ = z12− ζ0. It is clear that for all cases the vertex of the yellow rectangle of Fig. 1(b)
touches the side of the other one and the σ(φ) curve is a straight line. Therefore, we
compute this part of the integral in Eq. (A.1) using the original σ(φ) parametrization
of the border of the excluded area.

Furthermore, there are also subintervals where ζ is a piecewise strictly monotonic
(therefore invertible) function of φ (see the arc parts of the red curve of Fig. A1).
In these cases, the vertices of the two rectangles touch each other. Therefore, the
x–y projection of the contact vector, σxy can be easily expressed in terms of ϕ12

and the sides of the rectangles, L and di(ζ). By changing the integration variable to
ζ, the integral given by Eq. (A.1) can be performed. A lengthy but straightforward
calculation yields the following final result,

Aex(z12, ϕ12) =



L
(
L sinϕ12 + 4

√
R2 − ζ2

0 + 4
√
R2 − (z12 − ζ0)2 cosϕ12

)
+ 4 sinϕ12

∫ z12
0

ζ
√

R2−(z12−ζ)2
R2−ζ2 dζ + 4R

√
R2 − z12

2 sinϕ12

if z12 ≤ R

L
(
L sinϕ12 + 4

√
R2 − ζ2

0 + 4
√
R2 − (z12 − ζ0)2 cosϕ12

)
+ 4 sinϕ12

∫ R
z12−R ζ

√
R2−(z12−ζ)2

R2−ζ2 dζ

if R ≤ z12 ≤ 2R

(A.3)

where 0 ≤ ζ0 ≤ R is the solution of Eq. (A.2).
Note that the total length of the subintervals where ζ(φ) = ζ0 is a constant

decreases with decreasing κ. Therefore, the contact points, on average, tend to lie
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farther away from the z = ζ0 plane, i.e. the red curves shown in Fig. A1 get farther
away from a plane figure. That is the reason why the approximation proposed in
Section 3.1 fails for the oblate case.

By integrating Eq. (A.3) respect to z from −2R to 2R one finally obtains the
excluded volume. The result coincides exactly with the Onsager’s result, which
confirms the correctness of our procedure. Indeed, since our method is independent
of his derivation, we can also claim that our outcomes are proof of the correctness of
Onsager’s result (his results are debated in [65] based on MC integration methods).
We think our results are also useful for testing overlap detection algorithms.

Appendix A.2. Ellipsoids

Here, we present the results for the general case of triaxial ellipsoids with principal
semi-axes a, b, and c. Note that in the main text we study only the spheroids, where
a = σ‖/2 and b = c = σ⊥/2.

The method is similar to that described for cylinders, nevertheless, there are some
differences. Ellipsoids are convex bodies with smooth surfaces, therefore at the contact
point, they always present a well-defined common tangent plane. In other words, the
normal vectors of the surfaces of the contacting ellipsoids are antiparallel with respect
to the other. This leads to an equation useful for determining ζ, the z coordinate of
the contact point via the quartic equation

(ζ − z12)2(c2 − ζ2) = ζ2[c2 − (ζ − z12)2]×[(
cosα cosϕ12 −

a

b
sinα sinϕ12

)2

+

(
b

a
cosα sinϕ12 + sinα cosϕ12

)2
]
. (A.4)

This equation has a unique solution in the [0, c] interval.
By cutting the two ellipsoids with the z = ζ plain we get two contacting ellipses

of different sizes (for the degenerated cases they are points), where the second one is
rotated by ϕ12 respect to the reference one. The x–y projection of the contact vector
of the ellipsoids, σxy, points from the center of the reference ellipse to the center of
the other. Unfortunately, the determination of this vector is not as easy as in the case
of rectangles, but it can be straightforwardly solved [74, 75]. In this case, there is no
gain on changing the variable integral of Eq. (A.1). The final result can be written as
follows,

Aex(z12, ϕ12) =

∫ 2π

0

dφ
1

2

(
1

(ζ − z12)2
− 1

c2

)
×[

abz12
2 +

(
a

b
− b

a

)(
a2 − b2

)
sin2(ϕ12)(z12 − ζ)ζ+(

a
b −

b
a

) (
a2 − b2

)
ζ3
(
c2 − (ζ − z12)2

)2
4c2(ζ − z12) (c2 − 3ζ2 − z12

2 + 3ζz12)
×((

a

b
+
b

a

)
sin2(ϕ12) sin(2φ)− sin(2ϕ12) cos(2φ)

)2
]

(A.5)

where 0 ≤ ζ(z12, ϕ12, φ) ≤ c is the solution of Eq. (A.2).
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