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Abstract

Based on our earlier analytical results for the magnetization of magnetic fluids with respect to the magnetic
field strength, we propose an expansion method within the framework of mean spherical approximation
(MSA) to obtain the coefficients of different nonlinear terms. Through a Fourier expansion of the frequency-
dependent magnetic susceptibility the harmonic coefficients corresponding to the linear and nonlinear dy-
namic susceptibilities are calculated from the field expansion of magnetization. The frequency dependence
of the higher order susceptibilities is determined on the basis of the Debye relaxation of magnetic dipoles.
Our MSA based results are in line with the corresponding limiting case of the Debye-Weiss theory. We
mapped the range of applicability of the expansion method concerning the field strength and frequencies.
Our results show that under weak fields a 7th order expansion is sufficient to predict the magnitudes of the
susceptibility components up to the 4th harmonic relevant for magnetic fluids.

Keywords: magnetic fluid, nonlinear magnetic susceptibility, dynamic susceptibility, mean spherical
approximation

1. Introduction

One of the fundamental method to characterize
the magnetic behavior of complex magnetic systems
is to probe the dynamic (ac) susceptibility, which is
the differential response of the magnetization to a
perturbative oscillating magnetic field. In the weak
field limit the response is linear, and the undis-
turbed ground state of the magnetic system can be
probed without any significant changes induced in
the magnetic structure. However, in stronger ex-
ternal fields the magnetization is no longer a linear
function of the field strength, and in a sinusoidal
exciting field the ac susceptibility response will con-
tain higher order harmonics due to the nonlinearity.

The ac susceptibility (and its linear and nonlin-
ear components) is a very sensitive indicator for the
presence of various magnetic ordering, spontaneous
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magnetization [1], and phase transitions between
different magnetic states [2, 3], as it shows diver-
gence in the vicinity of the transition temperature
[4]. Moreover, the frequency dependence of the ac
susceptibility provides an insight into the relaxation
processes [5] in a collection of magnetic dipoles.

The relaxation processes, and the ac suscepti-
bility response of complex magnetic systems are
exploited in several practical applications. For
instance, the colloidal suspensions of single do-
main magnetic nanoparticles carrying permanent
dipole moments (magnetic fluids, ferrofluids) dissi-
pate power under an external alternating magnetic
field mainly through the relaxation processes. Such
systems are used as localized heat source in med-
ical hyperthermia treatments [6, 7]. Furthermore,
the harmonic susceptibility response of these sys-
tems provides the basis for three-dimensional visu-
alization in the novel biomedical application called
magnetic particle imaging (MPI) [8]. During typ-
ical applications the amplitude of the alternating
field is large enough to drive the system out of the
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region of linear response – or even into saturation
– so the characterization of the nonlinear contribu-
tion to the ac susceptibility is essential.

A great variety of theoretical approaches are
available to describe the ac susceptibility of an en-
semble of magnetic nanoparticles. The frequency
dependence of Weiss’s mean-field theory can be
understand by the application of the Debye the-
ory, when the magnetic dipoles are essentially non-
interacting [9]. Recently, Ivanov et al. [10] ex-
tended the modified mean field theory of interact-
ing dipoles to describe the frequency dependence
of magnetic susceptibility in Brownian relaxation
domain. Through the time-dependent distribution
function by the help of the Fokker-Planck-Brown
equation [11] the Fourier component of the mag-
netic susceptibility was also studied.

Starting from Wertheim mean spherical approxi-
mation (MSA) results [12] within the framework of
density functional theory (DFT) one of the present
authors have proposed an analytical equation for
the dc magnetization of monodisperse magnetic flu-
ids [13]. In their publication quantitative agree-
ment was found between DFT results and corre-
sponding canonical Monte Carlo (MC) simulation
data. Later this theoretical approach was extended
to the description of the magnetization of multi-
component systems [14]. As a natural expansion of
the multicomponent MSA magnetization to poly-
disperse systems, in [15] we proposed an equation
for the magnetization of polydisperse magnetic flu-
ids. Translated into the analogous electric language
on the basis of our theory an implicit analytical
equation for the electric field dependence of the po-
larization was obtained [16]. On the basis of the
third-order field strength expansion of polarization
we deduced a formula for the nonlinear dielectric
permittivity of dipolar fluids. Moreover, we com-
pared our theoretical findings with MC simulation
and experimental data, and reasonable agreements
were found.

Expanding along the line of our earlier works, the
objective here is to calculate the higher order terms
of magnetic field power expansion of magnetiza-
tion in case of magnetic fluids. Starting from these
results the frequency components of nonlinear dy-
namic susceptibility is predicted within the frame-
work of MSA using the well known Debye approx-
imation [17]. The numerical results will be com-
pared with the Langevin and Debye-Weiss (DW)
limiting cases.

2. Theory

In the following a monodisperse magnetic fluid is
described by the dipolar hard sphere fluid model,
where the particles are characterized by the diame-
ter σ, and magnetic dipole moment µ. The number
density of the macroscopic system is ρ = N/V with
the volume of the system V and number of dipolar
spheres N . A highly elongated cylindrical shaped
sample of magnetic fluid is considered to ensure the
absence of demagnetizing field.

2.1. Magnetization and susceptibility in the frame-
work of MSA

The dependence of the magnetization M of a
magnetic fluid on an external magnetic field H is
given by an implicit equation [13]:

M = µρL
(

µH

kBT
+ 3M

(1− q(−ξ))

µρ

)
, (1)

where L(x) = coth(x) − 1/x is the Langevin func-
tion, T is the thermodynamic temperature, kB is
the Boltzmann constant, and ξ is the implicit solu-
tion of the corresponding MSA equation

4πχL = q(2ξ)− q(−ξ) . (2)

In Eqs. (1) and (2) the function q(x) is the reduced
inverse compressibility function of hard spheres
within the Percus-Yevick approximation:

q(x) =
(1 + 2x)2

(1− x)4
. (3)

According to Eq. (1) the zero-field magnetic sus-
ceptibility of the system is

χ0 =
χL

q(−ξ)
, (4)

where χL = ρµ2/(3kBT ) is the Langevin suscepti-
bility.

2.1.1. Limiting cases

For q(−ξ) = 1 Eq. (1) gives the well known
Langevin magnetization

M = µρL
(

µH

kBT

)
, (5)

and the corresponding magnetic susceptibility is

χ0 = χL . (6)
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For q(−ξ) = 1 − (4π/3)χL Eq. (1) gives the mag-
netization in the mean field approximation

M = µρL
(

µ

kBT
(H + 4πM/3)

)
, (7)

and the corresponding magnetic susceptibility is

χ0 =
χL

1− 4πχL/3
. (8)

The other form of this equation is expressed for the
Langevin susceptibility:

χ0

4πχ0/3 + 1
= χL . (9)

In the literature both Eq. (8) and Eq. (9) are called
Debye-Weiss equation.

2.2. Field strength expansion of MSA magnetiza-
tion

In order to obtain the magnetic field strength
power expansion of implicit magnetization function
(see Eq. (1)) the method described in [16] can be
applied. The result of the 7th order expansion is:

M(H) =m0 +m1H +m2H
2 +m3H

3 +m4H
4+

m5H
5 +m6H

6 +m7H
7 + . . . .

(10)

Magnetic fluids show no spontaneous magnetiza-
tion, therefore the coefficient m0 is zero, and due
to symmetry reasons the coefficients of even or-
der terms also vanish. The magnitude of non-zero
terms is decreased with increasing order, and their
coefficients are:

m1 =
ρµ2

3kBT

1

q(−ξ)
, (11)

m3 = − ρµ4

45(kBT )3
1

q4(−ξ)
, (12)

m5 = − ρµ6

4725(kBT )5
11q(−ξ)− 21

q7(−ξ)
, (13)

m7 = − ρµ8

70875(kBT )7
19q2(−ξ)− 88q(−ξ) + 84

q10(−ξ)
.

(14)

2.3. Field-dependent static susceptibility

The definition of the field-dependent static mag-
netic susceptibility is

χ =
∂M

∂H
. (15)

Considering Eq. (10) we can write that

χ = m1 + 3m3H
2 + 5m5H

4 + 7m7H
6 + . . . , (16)

where in MSA m1 gives back Eq. (8) in zero-field
approximation. From m3 the first nonlinear term
can be obtained (see [16]).

2.4. Time-dependent susceptibility

In the following we assume that the external mag-
netic field is an alternating field:

H(t) = H0 sin(ωt) , (17)

which oscillates along the long axis of the cylindri-
cal sample. H0 is the amplitude of the field, ω is the
angular frequency, and t is the time. The nonlin-
earity of the time-dependent susceptibility under a
sinusoidal field is conveniently characterized experi-
mentally by extracting the magnitude of the higher
order harmonics, thus we will use the following for-
malism. Substituting Eq. (17) into Eq. (16), and
collecting the corresponding terms according to the
formal Fourier series of χ:

χ(t) =χ0 + χ2ω cos(2ωt) + χ4ω cos(4ωt)+

χ6ω cos(6ωt) + . . . .
(18)

For the coefficients of the trigonometric functions
we obtain that

χ0 = m1 +
3

2
m3H

2
0 +

15

8
m5H

4
0 +

35

16
m7H

6
0 , (19)

χ2ω =
3

2
m3H

2
0 +

5

2
m5H

4
0 +

105

32
m7H

6
0 , (20)

χ4ω =
5

8
m5H

4
0 +

21

16
m7H

6
0 , (21)

χ6ω =
7

32
m7H

6
0 . (22)

As we can see, even the first coefficient χ0 con-
tains contribution from the higher order terms of
the power expansion of the magnetization function,
but the number of terms in χnω decreases with the
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harmonic number n. In Eqs. (19)-(22) the following
well known trigonometric relations are used:

sin2 x =
1− cos(2x)

2
,

sin4 x =
3− 4 cos(2x) + cos(4x)

8
,

sin6 x =
10− 15 cos(2x) + 6 cos(4x)− cos(6x)

32
.

(23)

2.4.1. Complex susceptibility, Debye approximation

To study the dynamic magnetic properties we in-
troduce the complex magnetic susceptibility. In-
stead of Eq. (17) we prescribe a complex exciting
magnetic field as:

H(t) = H0e
iωt , (24)

where i is the complex unit. In this case the mag-
netization response and the susceptibility are also
complex quantities. For the complex magnetic sus-
ceptibility the following sign convention is used:

χ̂ = χ′(ω)− iχ′′(ω) , (25)

where χ′ is the real and χ′′ is the imaginary part of
the magnetic susceptibility. In the classical Debye
approximation Eq. (9) can be obtained from the av-
erage component of dipole moment in the direction
of the magnetic field:

⟨µ cos θ⟩ ≃ µ2H

3kBT
, (26)

where the Boltzmann distribution function is used
for the approximate calculation of the angle aver-
age. Assuming an alternating external field (see
Eq. (24)) the approximate distribution function is
modified [17], and therefore the expression of the
average dipole moment in the direction of the ac
field is also altered:

⟨µ cos θ⟩ ≃ µ2H0

3kBT

1

(1 + iωτ)
, (27)

where τ is the microscopic relaxation time. We as-
sume that the relaxation of the magnetic dipoles
occurs only by the Brownian mechanism, where the
dipole moment rotates with the whole particle. Ac-
cording to [17] from the static equation of Debye-
Weiss (Eq. (8)) the dynamic (frequency-dependent
complex expression) can be obtained by the substi-
tution of:

µ2H

3kBT
→ µ2H0

3kBT

1

(1 + iωτ)
. (28)

In Debye-Weiss approximation, at zero field
strength for the complex susceptibility our theory
gives:

χ̂0

4πχ̂0/3 + 1
=

χL

(1 + iωτ)
, (29)

which is in harmony with Eq. (9). Considering the
real and imaginary parts we obtain the classical
Debye-Weiss expressions. We note that this mi-
croscopic relaxation time τ differs from the macro-
scopic relaxation time of Debye (see [17]). To obtain
the frequency dependence of the field-dependent
terms in complex χ̂, and χ̂nω (n = 2, 4, 6) coef-
ficients Eq. (28) is applied again. For simplicity, in
the following we summarize the complex m̂k (k =
1, 3, 5, 7) MSA terms to derive the complex MSA
χ̂0 and χ̂nω expressions by substituting them into
Eqs. (19)-(22):

m̂1 =
ρµ2

3kBT

1

q(−ξ)

1

(1 + iωτ)
, (30)

m̂3 = − ρµ4

45(kBT )3
1

q4(−ξ)

1

(1 + iωτ)2
, (31)

m̂5 = − ρµ6

4725(kBT )5
11q(−ξ)− 21

q7(−ξ)

1

(1 + iωτ)3
,

(32)

m̂7 =− ρµ8

70875(kBT )7
×

19q2(−ξ)− 88q(−ξ) + 84

q10(−ξ)

1

(1 + iωτ)4
.

(33)

The coefficients χ̂nω (n = 2, 4, 6) are the non-
linear susceptibilities and correspond to the ampli-
tudes of the nth harmonic. In the zero-field limit,
where the response is linear the higher order sus-
ceptibilities vanish, and only the coefficient χ̂0 is
present, which corresponds to the linear ac suscep-
tibility. In case of typical magnetic fluids the am-
plitudes of the n ≥ 6 harmonics are so small that
their accurate detection by experimental methods
is difficult, so usually those are neglected. There-
fore, we will consider the harmonic susceptibilities
only up to n = 4. It is worth to mention, that if
a symmetry breaking dc bias field is superimposed
on the ac field, then the odd harmonics will appear
besides the even ones.
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3. Numerical results and discussion

In the following we use reduced quantities: ρ∗ =
ρσ3 is the reduced density, µ∗ = µ/

√
σ3kBT is the

reduced dipole moment, and H∗ = H0

√
σ3/(kBT )

is the reduced magnetic field strength. The numer-
ical results were calculated for a reference system
with ρ∗ = 0.1, and µ∗ = 1, so 4πχL ≈ 0.415. The
reduced parameters were chosen to represent a typ-
ical dilute magnetic fluid containing spherical mag-
netite particles with a magnetic core diameter of
σ ≈ 10 nm in a carrier liquid. The field amplitude,
and frequency dependence of the linear susceptibil-
ity χ̂0, and the higher order nonlinear susceptibili-
ties (χ̂2ω and χ̂4ω) were calculated. The results are
presented as the complex functions, and the spec-
tra of the real and imaginary parts of the quantities
χ̂0 = χ′

0 − iχ′′
0 and χ̂nω = χ′

nω − iχ′′
nω (n = 2, 4).

First, we compare the prediction of the current
expansion based MSA theory under weak fields with
the corresponding Langevin and Debye-Weiss ap-
proximations as limiting cases. As it is shown in
Figure 1 all of the three considered theories give
qualitatively similar results at H∗ = 0.1. However,
as the MSA and DW data show, the interparticle
interactions increase the linear – and especially the
nonlinear – susceptibilities compared to the non-
interacting magnetic dipoles of the Langevin the-
ory. The difference becomes larger with the order
of the harmonics n in case of the real and the imag-
inary part as well. The predictions of the MSA and
DW theories for the effect of interactions on the
magnitude of χ̂2ω and χ̂4ω are close to each other;
the agreement is reasonable in weak fields. The
DW theory slightly overestimates both nonlinear
susceptibilities compared to the MSA results. The
difference between these two theories widens as the
order of the susceptibility is increased. It is known
that the DW theory gives accurate results, but it
predicts that the linear and nonlinear susceptibili-
ties diverge at 4πχL = 3 [9]. In case of the chosen
system χL remains well below the point of diver-
gence, thus the comparison with the DW theory is
reasonable.
The frequency-dependent complex function of χ̂0,

χ̂2ω, and χ̂4ω together with the projected spectra of
the real and imaginary parts are shown in Figure 2.
The following features can be pointed out. The lin-
ear susceptibility χ̂0 is well described by the Debye
relaxation, and displays a relaxation peak of χ′′

0 at
ωτ = 1. A slower relaxation of the higher order
susceptibilities is observed as the global extrema
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Figure 1: Spectra of the linear χ̂0 (a), and the higher or-
der nonlinear χ̂2ω (b) and χ̂4ω (c) susceptibilities accord-
ing to the MSA theory in comparison with the correspond-
ing Langevin and Debye-Weiss approximations under a weak
field of H∗ = 0.1 (ρ∗ = 0.1, µ∗ = 1).
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Figure 2: 3D representation of the complex functions of χ̂0 (a), χ̂2ω (b), and χ̂4ω (b) in the frequency range of ωτ = 10−3−103

under weak fields (H∗ = 0.1). The linear component shows the classical Debye relaxation at ωτ = 1 (marked by the solid line
on the real and imaginary planes), while the relaxation of the higher order susceptibilities is shifted toward lower frequencies.

of the imaginary parts occur at ωτ < 1 frequen-
cies. The shift of relaxation into the lower frequen-
cies increases with the order of the harmonics, and
simultaneously the spectra of the imaginary part
becomes asymmetric with a broadened lower fre-
quency side. The real part of χ̂2ω and χ̂4ω exhibit
a local extremum near ωτ = 1. The results are in
qualitative agreement with the spectra derived by
Kuznetsov and Pshenichnikov [18] for the first three
components of the nonlinear susceptibilities by a
theoretical approach based on the Fokker-Planck
equation.

3.1. Field strength dependence

Let us now examine the effect of increasing mag-
netic field strength on the linear and nonlinear sus-
ceptibilities. The magnetic field strength depen-
dence of the spectra of χ̂0, χ̂2ω, and χ̂4ω according
to the expansion based MSA theory is shown in
Figure 3. The reduced magnetic field strength was
increased up to H∗ = 2. A limitation of the current
theory can be seen at larger field strengths: above
H∗ = 1.6 unphysical features begin to appear in the
spectra of χ′

0 and χ′′
0 in the form of local maxima.

This is due to the truncated nature of the expansion
series of the magnetization function (Eq. 10). The
limitation can be overcome by continuing the cur-
rent expansion beyond the 7th order, which would
incorporate further terms into Eqs. (19)-(21) of the
susceptibilities, and enhance their convergence.

The spectra of χ̂0, χ̂2ω, and χ̂4ω around the re-
laxation in the field strength range below H∗ ≤ 1,
where our MSA theory gives reliable results is
shown in Figure 4. In case of χ̂0, both real and
imaginary parts become smaller as H∗ is increased.

Simultaneously, the relaxation peak of χ′′
0 shifts to-

wards higher frequencies in agreement with other
theoretical [19, 20] and experimental results [21].
On the other hand, the magnitude of the real and
imaginary parts of the nonlinear susceptibilities in-
crease significantly with the increase of H∗. This
behavior results from the enlarged nonlinearity in
the magnetization of the system as it is driven to-
wards saturation by the increasing field strength.
The relaxation of higher order components behaves
similarly to the case of χ̂0: the peak of χ′′

2ω shifts
slightly, while the peak of χ′′

4ω to a grater extent
into the higher frequency region with larger H∗.

To emphasize the relative contribution of the lin-
ear and higher order susceptibilities the magnetic
field dependence of their absolute values is shown
in Figure 5. In the zero-field limit of H∗ → 0
|χ̂0| approaches the initial dynamic susceptibility,
while both higher order susceptibilities vanish. As
H∗ grows the component |χ̂0| decreases, while |χ̂2ω|
and |χ̂4ω| show an increasing trend according to a
power law in the investigated range of H∗. Some of
our preliminary experimental data for the magnetic
field dependence of the magnitude of χ̂2ω and χ̂4ω in
magnetic fluids show the same behavior [22]. Simi-
lar findings were described in [18], but they showed
that within the Fokker-Planck approach the power
law increase in weak fields turns into a hyperbolic
decrease at large field strength, when the magne-
tization approaches saturation. The field strength
range required to reach the vicinity of saturation is
not accessible by the current (7th order) expansion
of the MSA approach, as it was mentioned earlier.

If we consider the magnitude of the nonlinear sus-
ceptibilities, it is clear that the overall nonlinear
contribution is dominated by the magnitude of the
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Figure 3: The effect of increasing magnetic field strength (up to H∗ = 2) on the spectra of the real and imaginary parts of χ̂0

(a, b), χ̂2ω (c, d), and χ̂4ω (e, f) susceptibilities according to the present MSA theory (ρ∗ = 0.1, µ∗ = 1).
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Figure 4: With increasing magnetic field strength (in the
range of H∗ = 0.1 − 1.0, marked by the arrows) χ′

0 and χ′′
0

(a) decreases, while the contribution of the nonlinear compo-
nents χ̂2ω (b), and χ̂4ω (c) become larger. Simultaneously,
the relaxation peaks shift towards higher frequencies.

second harmonics. The χ̂4ω component is an or-
der of magnitude smaller than χ̂2ω, which is in line
with the predictions of other theories [23]. Within
the framework of the MSA theory the nonlinearity
is the result of the normal saturation of the magne-
tization only, thus the real part of χ̂2ω has a neg-
ative sign (see Figure 4), and with that the over-
all nonlinear contribution is also negative. This is
in agreement with experimental data for magnetic
fluids in weak fields [24, 25]. Nonlinear susceptibil-
ity with a positive sign was obtained by Wang and
Huang [23] using a perturbation expansion method.
They attributed the positive effect to the anoma-
lous saturation, which stems from the shifting of
equilibrium between the structures with different
dipole moments (single particles and different sized
particle chains). Structural changes as large, that
the anomalous saturation overcomes the negative
effect of the normal saturation can be expected only
at large field strength. However, the present MSA
theory can not describe the anomalous saturation,
and the nonlinear contribution will remain negative
even under a strong field. We note that the positive
contribution of the anomalous saturation could be
described within the framework of MSA, if the po-
larizabilities of the dipolar spheres is included, but
such an attempt has not been made yet.

3.2. Convergence of the expanded MSA model

As Eqs. (19)-(21) show the linear and nonlin-
ear susceptibilities are composed of a sum of terms
containing the coefficients mn+1, which stem from
the power expansion of the magnetization function.
This is a frequently used formalism, and in the do-
main of weak fields it is generally assumed that χnω

is determined mostly by the first component of its
series [26]. So, if H0 is small, then χ0 contains only
the linear static susceptibility m1, χ2ω is propor-
tional to m3, and χ4ω is connected mainly to m5.
In the following, we will examine the limits of this
assumption within the MSA theory.

In Figure 6 the calculated spectra of χ̂0, χ̂2ω, and
χ̂4ω are shown, when these are gradually approxi-
mated by their expanding series up to the term con-
taining m̂7. The spectra are given forH∗ = 0.1, and
at a larger, H∗ = 1 field strength. At H∗ = 0.1 the
contributions of the higher order terms in the lin-
ear and nonlinear susceptibilities are so small, that
even the first term gives an excellent approxima-
tion. This is confirmed by the overlapping curves
in Figures 6a-c. At larger field strength the situa-
tion changes, because the relative contributions of
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Figure 5: Magnetic field strength dependence of the magnitude of the first three susceptibility component (χ̂0, χ̂2ω , and χ̂4ω)
at different frequencies in the weak field range (ρ∗ = 0.1, µ∗ = 1).

the higher order terms increase rapidly with H∗,
and even with the harmonic number n. In this case
considering only the first term becomes an inade-
quate approximation (see Figures 6d-f). The con-
vergence is satisfactory for the first three suscep-
tibility components (especially in the case of χ̂0),
but deteriorates with increasing n, as the number
of terms in the series of the higher order suscepti-
bilities decreases. E.g. χ̂4ω has only two terms, and
using just the first one will cause large error. The
number of terms in the higher order susceptibilities,
and with that the accuracy of the convergence can
be increased by continuing the power expansion of
the magnetization function beyond the 7th order,
as it was pointed out earlier.

4. Conclusions

We have given a theoretical description of the
nonlinear dynamic susceptibility response of inter-
acting magnetic dipoles within the framework of
MSA theory. A power expansion based approach
was used to calculate the frequency and magnetic
field strength dependence of the linear and higher
order harmonic susceptibilities. From the obtained
results the following conclusions have been drawn:

� An advantage of the current theoretical ap-
proach with the expansion based treatment of
the ac susceptibility is that simple, analytical
equations can be derived for the linear and
nonlinear components, which directly corre-
spond to the experimentally detectable mag-
nitude of the higher harmonic susceptibilities.

� The predictions of MSA for the frequency de-
pendence of the first three ac susceptibility
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Figure 6: Approximation of the linear and nonlinear suscep-
tibilities by the sum of increasing number of terms (Tmk , k =
1, 3, 5, 7) in their expanding series (Eqs. (19)-(21)) under a
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components agree reasonably with the well
tested Debye-Weiss limiting case under weak
fields, however the difference between the two
theories increases with the order of the har-
monics. We found qualitative agreement for
the spectra of χ̂0, χ̂2ω, and χ̂4ω with the results
in Ref. [18] derived from the more complicated
solution of the Fokker-Planck equation.

� We calculated the spectra of the susceptibility
components in a range of field strengths, and
found that due to the truncated nature of the
series expansion of the magnetization function
used in the present theory, the MSA predicts
unphysical features in the spectra above H∗ >
1.6.

� In weak fields the 7th order expansion applied
here is sufficient to determine the susceptibil-
ity component up to the 4th harmonic with ac-
ceptable accuracy. With longer power expan-
sion the applicable field strength range can be
expanded, and the accuracy of the higher order
susceptibilities would be improved further.

� We tested the convergence of the series of
the first three susceptibility components, which
was satisfactory even in case of χ̂4ω. Our re-
sults showed that the generally accepted ap-
proximation of χ̂0 and higher susceptibilities
just by the first term is justified only under
weak fields (H∗ ∼ 0.1) for the considered di-
lute magnetic fluids.

In future works we will try to extend the applica-
bility of the expansion based MSA method to cover
the domain of strong fields near saturation, and ex-
tend the theory to include the case, when a dc bias
field is also applied. We also plan to test the pre-
dictions of the theory for the dynamic susceptibility
response of magnetic fluids against simulations, and
experimental results.
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