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aInstitute of Mechatronics Engineering and Research, University of Pannonia, 18/A Gasparich Márk St, H-8900
Zalaegerszeg, Hungary

bResearch Centre for Engineering Sciences, Mechatronics and Measurement Techniques Research Group, University of
Pannonia, 10 Egyetem St, H-8200 Veszprém, Hungary

Abstract

Idealized single-stranded linear chains of dielectric spheres in a dielectric medium can be used as a model
system for electric field-induced particle chaining in complex systems, such as electrorheological fluids. The
polarizability of the spheres in the chains and the interparticle (bonding) forces between them determine the
macroscopic (e.g. dielectric, rheological) behavior of the bulk. We have derived new analytical equations for
the bonding forces in a linear, bidisperse chain, where two components with different sizes form a periodic
structure. The force equations were obtained on the basis of local field strength at the particle sites by
taking into account the interactions beyond the nearest neighbors within the chain. The dependence of the
bonding force and the local field strength on the ratio of particle sizes was investigated. As an application
the dielectric permittivity of a bulk model system with bidisperse chains was calculated using the Clausius-
Mossotti equation.
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1. Introduction

Dielectric particles dispersed in a medium will
form chain like structures when exposed to an exter-
nal electric field, which is the result of interparticle
forces arising from the field-induced polarization of
the particles. The phenomenon of particle pattern
formation driven by electrostatic forces plays a cru-
cial role in a wide spectrum of application areas,
e.g. electrorheology [1], microfluidics [2], bottom-
up material synthesis [3], etc. Important techno-
logical applications are the use of electrorheologi-
cal fluids (ERFs, suspensions of micrometer sized
dielectric particles in a non-conducting liquid) for
power transmission [4], vibration damping [5], etc.
In these applications the controllable and reversible
change in viscosity caused by the particle chaining
is exploited.

Email addresses: mester.sandor@mk.uni-pannon.hu

(Sándor Mester), horvath.barnabas@mk.uni-pannon.hu
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The viscosity (and shear stress) of an acti-
vated ERF is directly connected to the mechani-
cal strength of the chain-like structures. It is de-
termined by the electrostatic forces between the
particles in the chains, which hold them together.
Therefore, the rheological behavior of an ERF can
be derived by direct calculations of the electrostatic
forces within the particle structures.

Starting from the treatment of isolated particles
as point dipoles in their centers [6] numerous at-
tempts have been made to theoretically describe the
ER effect by means of electrostatic interactions. Be-
yond the point dipole approximation Jones et al. [7]
investigated the role of higher order multipoles, and
calculated the interparticle force in monodisperse
(one-component) particle chains. Anderson [8] used
several analytical and numerical methods to include
the effect of all orders of multipoles and derived
the breaking strength of single chains and colum-
nar structures of aggregated monodisperse chains.

Mostly, monodisperse model systems are used for
simplicity, but in this work we examine the inter-
particle force in bidisperse (two-component) linear

Preprint submitted to Journal of Molecular Liquids November 25, 2022



chains, where spheres with two different diameters
are arranged periodically. Motivated by that many
ERFs contain two components with different sizes,
we focus on such bidisperse systems. We consider
the idealized case of linear bidisperse periodic chain
made of touching spheres in a dielectric medium
under an external electric field. Both the particles
and the background medium are considered non-
conductive, with different permittivities. Between
the particles within the chain only dipole-dipole in-
teraction are taken into account, all other interpar-
ticle forces are neglected. The system is presumed
to be quiescent, thus Brownian motion, and hydro-
dynamic effects are also omitted.
We use a simple microscopic method, where the

induced dipole moments of the spheres in the bidis-
perse chain are determined by the external field and
the field from all other induced dipoles. First, we
derive the induced dipole moments based on the lo-
cal field strength at the particle sites, and from that
an analytical equation for the field-induced force
between the particles is obtained. The magnitude
of the bonding force is examined at various parti-
cle size ratios. To demonstrate the application of
our method we calculate the change in permittiv-
ity caused by the presence of bidisperse chains in
a random dispersion of dielectric spheres using the
relationship between the polarizability of the com-
ponents and the dielectric permittivity of the bulk
system.

2. Theory

2.1. Induced dipole moment and polarizability in a
linear chain

One-component chain

Consider a linear chain of NC uniformly sized
touching dielectric spheres of diameter σ and dielec-
tric permittivity ϵp immersed in a dielectric fluid of
permittivity ϵf , where ϵp > ϵf . Assume that there
is an external macroscopic electric field E0, which
is parallel with the chain. Due to the interaction
of induced dipoles at the site j an internal field
Eint,j appears. Therefore, at the site j the local
field Eloc,j is the sum of the external and the inter-
nal fields:

Eloc,j = E0 +Eint,j , (1)

where

Eint,j =

N∑
i=1,i̸=j

2pi

|i− j|3σ3
. (2)

In this equation pi is the dipole moment of the ith
particle induced by the corresponding local field:

pi = αEloc,i , (3)

where α is the polarizability of the single spheres,
given by

α =
ϵp − ϵf
ϵp + 2ϵf

(σ
2

)3

= αϵσ
3 , (4)

where αϵ = (ϵp − ϵf)/8(ϵp + 2ϵf).
In case of finite length chains Eqs. (1-4) can be

solved for all Eloc,j and the corresponding dipole
moments can be calculated from Eq. (3). For
isotropic spheres the dipole moments lying along
the direction of the external field, therefore Eqs. (1-
4) reduce to scalar equations. The magnitude of
the local field, and with that the induced dipole
moments can be different along a chain, for exam-
ple at the end of the chain the dipole moments are
lower than in the case of inner sites [7].

Considering an infinitely long monodisperse
chain (Figure 1(a)) the magnitudes of Eloc,i = Eloc

are the same in all sites (for all i) due to symmetry.
Denoting the particles according to Figure 1(a), on
the basis of Eqs. (1-3) for j = 0 we can write that

Eloc =E0 +

∞∑
i=−∞, i ̸=0

2αEloc

|i|3σ3

=E0 + 2

∞∑
i=1

2αEloc

i3σ3
.

(5)

After some algebra we obtain

Eloc =
1

1− 4αϵζ(3)
E0 , (6)

where ζ(3) =
∑∞

i=1 1/i
3 = 1.20205... is the Rie-

mann zeta function. Eq. (6) contains the contribu-
tions by all other dipoles to the local field at each
dipole site, therefore the magnitude of the induced
dipole moments of the particles in the chain is

p = αEloc = α
1

1− 4αϵζ(3)
E0 = αfE0 , (7)

where the factor f is the ratio of the local and ex-
ternal field strengths:

f =
Eloc

E0
=

1

1− 4αϵζ(3)
. (8)

Kim et al. introduced a similar dimensionless ”lo-
cal enhancement factor” in Ref. [9], which agrees
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Figure 1: Idealized geometry of infinite monodisperse (a) and bidisperse periodic (b) particle chains in a medium with permit-
tivity ϵf under an external parallel electric field E0. The dielectric spheres carry dipole moments (p in the monodisperse chain,
pA and pB in the bidisperse chain). The particle chain is held together by the bonding force F. For simplicity the force acting
at the center of every spheres is marked only at the 0th sphere (together with −F).

with Eq. (8) for linear particle clusters. For pos-
itive polarizability f > 1, which means that the
induced dipole moment of a sphere in an infinitely
long chain is higher than that of a single sphere’s.

Two-component periodic chain

In the next, we calculate the induced dipole mo-
ments of the particles in a bidisperse periodic chain
with the structure depicted in Figure 1(b). De-
note the polarizability of component A with αA,
and same for component B with αB. The diam-
eter of the corresponding spheres are σA and σB.
According to the symmetry of the system we can
distinguish only two different local fields Eloc,A and
Eloc,B. Starting the summation from the 0th A-

type particle for the local field Eloc,A we obtain that

Eloc,A =E0 +

∞∑
i=−∞, i ̸=0

2αiEloc,i

|i|3a3

=E0 + 2

∞∑
i=1

2αiEloc,i

i3a3

=E0 + 4α∗
BEloc,B

(
1

13
+

1

33
+

1

53
+ . . .

)
+ 4α∗

AEloc,A

(
1

23
+

1

43
+

1

63
+ . . .

)
=E0 +

7

2
α∗
Bζ(3)Eloc,B +

1

2
α∗
Aζ(3)Eloc,A ,

(9)

where the characteristic distance is a = (σA+σB)/2,
and the reduced polarizabilities are α∗

A = αA/a
3

and α∗
B = αB/a

3. A similar equation can be ob-
tained for Eloc,B if we start the summation from a
B-type particle. At the end, we obtain two coupled
linear equations for the local electric field strengths:

(2− α∗
Aζ(3))Eloc,A − 7α∗

Bζ(3)Eloc,B =2E0

−7α∗
Aζ(3)Eloc,A + (2− α∗

Bζ(3))Eloc,B =2E0 .

(10)
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The solution for the local field strengths are:

Eloc,A =
2 + 6α∗

Bζ(3)

2− (α∗
A + α∗

B)ζ(3)− 24α∗
Aα

∗
Bζ

2(3)
E0

Eloc,B =
2 + 6α∗

Aζ(3)

2− (α∗
A + α∗

B)ζ(3)− 24α∗
Aα

∗
Bζ

2(3)
E0 .

(11)

Of course if σA = σB = σ and αA = αB = α,
then Eq. (11) gives back the corresponding one-
component result (see Eq. (6)). The induced dipole
moments of the two types of spheres in an infinite
periodic chain are:

pA =αAEloc,A = αAfAE0

pB =αBEloc,B = αBfBE0 ,
(12)

while the local enhancement factors take the

fA =
2 + 6α∗

Bζ(3)

2− (α∗
A + α∗

B)ζ(3)− 24α∗
Aα

∗
Bζ

2(3)

fB =
2 + 6α∗

Aζ(3)

2− (α∗
A + α∗

B)ζ(3)− 24α∗
Aα

∗
Bζ

2(3)

(13)

form.
According to Eqs. (12) and (13) the polarizabil-

ity of the whole linear bidisperse chain can be cal-
culated as

αC =
1

2
(fAαA + fBαB) . (14)

2.2. Bonding forces in a periodic chain

The induced dipole moments of the spheres are in
the head-to-tail configuration, and forces are acting
between each sphere due to attractive dipole-dipole
interactions, which hold the linear particle chain
together. The force acting on the 0th sphere in an
infinite long chain (see Figure 1) is the sum of the
forces between the 0th and all other particles:

F = F01 + F02 + F03 + F04 + F05 + F06+ . . .

+ F13 + F14 + F15 + F16 + F17+ . . .

+ F25 + F26 + F27 + F28+ . . .

+ F37 + F38 + F39+ . . .

+ · · ·+ · · ·+ . . . .

(15)

The indices denote the positions of the two particles
between the corresponding force is acting. Instead
of the summation of the rows it is better to add the
columns as

F =F01 + (F02 + F13) + (F03 + F14 + F25)

+ (F04 + F15 + F26 + F37) + . . . ,
(16)

to ensure that every component is accounted for
only once. Using the force expression between two
dipoles for a monodisperse system we obtain that

F =−
∞∑
i=1

i
6p2

(iσ)4

=− 6p2

σ4

(
1 +

1

23
+

1

33
+ . . .

)
=− 6p2

σ4
ζ(3) ,

(17)

in agreement with Zhang and Widom [10] and An-
derson [8].

For a two-component periodic system different
products of dipole moments appear in the interac-
tion forces in Eq. (15), therefore we can write that

F = −6
pApB
a4

(
1 +

1

33
+

1

53
+

1

73
+ . . .

)
−6

p2A
a4

(
1

24
+ 2

1

44
+ 3

1

64
+ . . .

)
−6

p2B
a4

(
1

24
+ 2

1

44
+ 3

1

64
+ . . .

)
.

(18)

The series in the brackets can be expressed with the
Riemann zeta function as:

1

24
+ 2

1

44
+ 3

1

64
+ · · · =

=
1

24

(
1 +

1

23
+

1

33
+ . . .

)
=

ζ(3)

24

(19)

and

1 +
1

33
+

1

53
+

1

73
+ · · · =

= ζ(3)−
(

1

23
+

1

43
+

1

63
+ . . .

)
=

= ζ(3)− 1

23

(
1 +

1

23
+

1

33
+ . . .

)
=

7

8
ζ(3) ,

(20)

therefore the force F takes the following form:

F = − 6

(2a)4
(
p2A + 14pApB + p2B

)
ζ(3) . (21)

For the monodisperse case, when σA = σB = σ and
pA = pB = p Eq. (21) renders back to Eq. (17).

3. Numerical results and discussion

3.1. Applicability of the model

Our method for the calculation of the bonding
forces can be applied only if the chain has a periodic
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structure. But beside the -A-B-A- type chains con-
sidered here, it is valid for other periodic chains too,
such as -A-A-B-B-A-A-, etc. In real bidisperse sys-
tems the chains are mostly periodic at low σB/σA,
but if the size ratio is large, then longer chains
of smaller particles (A) will be included between
the larger particles, forming a -B-(A)n-B- structure,
where n ≫ 1.
For the present calculations it is assumed that

the particle structure is linear. Such structures are
dominant in real systems, but clusters with more
complex topology can be also present. For exam-
ple, particles with permanent dipole moments can
form rings, and in bidisperse systems arcs of smaller
particles also appear along the local field lines of the
larger particles, as it was shown by Prokopieva et al.
[11]. In strongly bidisperse (σB/σA ≫ 1) systems
with induced dipole moments it is expected that
most of the smaller particles will gather in the gaps
of larger particles (where the local field strength is
large), and form nearly linear structures, but some
of the smaller particles will aggregate around the
local field lines of the larger particles.
In the following we show a few results for the

application of our analytical equations obtained
for the bonding forces and the polarizability of a
linear bidisperse chain. For the calculations we
used a reference system with the following param-
eters. The size of the A-type spheres was fixed
at σA = 10−6 m, while the size of the B-type
spheres was determined by the σB/σA ratio. The
two types of spheres had the same dielectric per-
mittivity ϵA = ϵB = 4.0, therefore (αϵ)A and (αϵ)B
are the same, and it is denoted by αϵ. The permit-
tivity of the background medium was ϵf = 2.7. The
external electric field strength was E0 = 105 Vm−1.
When two-component chains were present, those
were periodic with an -A-B-A- structure.

3.2. Local field strength and bonding force

First, let us examine how the local field strength
and the bonding forces change in a bidisperse chain
with the σB/σA size ratio of the components. Fig-
ure 2 shows the local enhancement factors fA and
fB, which give the ratio of the local field strength
to the external field strength at the site of A- and
B-type particles, respectively. The corresponding
Eloc,A and Eloc,B are calculated on the basis of
Eq. (11), while the polarizabilities of single spheres
by Eq. (4). The point where the two curves inter-
sect (at σB/σA = 1) shows the field ratio in an in-
finitely long one-component chain. It is higher than

AB

ABAB
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� 0
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� 0
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Figure 2: The enhancement factors (ratio of the local and
external field strengths) within a bidisperse chain at the sites
of A- and B-type particles as a function of the size ratio of
the particles. The horizontal lines are the asymptotes of fA
and fB, when σB/σA → ∞.

one, and of course is in agreement with the value
obtained from Eq. (8). The results show that in a
bidisperse chain the local field strength is larger at
the sites of the smaller particles than at the larger
particles. If the quality of the particles is different
(ϵA ̸= ϵB), then this difference can be more sig-
nificant. In the limit of σB/σA → ∞ both local
enhancement factors approach asymptotic values,
which can be calculated as follows. For the reduced
polarizabilities of the particles we can write that

α∗
A =αϵ

(
2σA

σA + σB

)
α∗
B =αϵ

(
2σB

σA + σB

)
,

(22)

and the limiting values are

lim
σB/σA→∞

α∗
A =0

lim
σB/σA→∞

α∗
B =8αϵ .

(23)

Based on that, the limits of fA and fB are

f∞
A =

1 + 24αϵζ(3)

1− 4αϵζ(3)
(24)

and

f∞
B =

1

1− 4αϵζ(3)
. (25)

It is obvious that due to symmetry reasons these
limiting values are equivalent with the correspond-
ing limits if σB/σA → 0: f∞

A = f0
B and f∞

B = f0
A.
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Figure 3: The bonding force between the spheres (normal-
ized by the force in a monodisperse A-type chain) grows
quadratically if the diameter of the larger B-type particles is
increased. The force in a bidisperse chain is smaller than in
the corresponding monodisperse chain.

Eq. (25) is equivalent with the enhancement fac-
tor of a one-component chain (Eq. (8)). Therefore,
fB at σB/σA = 1 has the same value as f∞

B (and
f0
A), since all of these cases correspond to a one-
component chain.

The bonding force F between the particles in the
bidisperse chain is shown in Figure 3 for different
σB/σA, which is calculated according to Eq. (21),
while the induced dipole moments of the parti-
cles are obtained from Eq. (12). For comparison
the force in a monodisperse chain with increasing
particle size is also presented. The magnitude of
F is given relative to the force acting in a one-
component A-type chain (FA), where σA = 10−6 m.
The increasing force in the one-component case
shows that a chain of larger particles is stronger
bonded than a linear chain composed of smaller
particles. This is understandable because of the
larger induced dipole moment of the larger parti-
cles. The force acting in a bidisperse chain is also
increasing with σB/σA, but remains smaller than in
the corresponding monodisperse chain. This can be
viewed as the inclusion of smaller particles makes
the chains weaker. If σB/σA approaches infinity,
then

lim
σB/σA→∞

F

(σB/σA)2
= −6(f∞

B αϵζ(3)σA)
2 . (26)

Therefore, the growth of F with the particle size
ratio is quadratic, and asymptotically F → ∞ as

Table 1: The contribution of the non-nearest neighbors to
the bonding force F in an infinite particle chain at various
particle size ratios.

σB/σA (F − F01)/F

1 0.168
2 0.373
3 0.636
4 0.796
5 0.880
10 0.982
50 0.999

a function of σ2
B (when σA is fixed), which can be

seen in Figure 3.
As Eq. (15) shows, the bonding force in an infi-

nite chain is the sum of the force between the near-
est neighbors (F01) and the long range contribution
of all other particles in the chain (F − F01). The
magnitude of the long range component depends on
the ratio of the particle sizes as it is shown in Ta-
ble 1. In a monodisperse chain the bonding force
comes largely from the interaction between the ad-
jacent particles; the long range contribution is only
16.8%. By increasing the size of the B-type parti-
cles the contribution of the non-nearest neighbors
is increasing, and above σB/σA ∼ 10 it becomes
orders of magnitudes larger than F01.

We note, that the present method for the field-
induced force calculations can be applied to the
analogous magnetic case too (chains of magnetiz-
able particles, i.e. magnetorheological fluids) by
translating the equations to the magnetic language.
Moreover, the model is also applicable when the
particles have permanent dipole moments, like in
a colloidal dispersion of magnetic nanoparticles,
i.e. ferrofluids. For monodisperse systems we
can compare the bonding force in a chain of field-
induced dipoles with the case when the particles
have permanent dipole moments. Prokopieva and
co-workers [12] obtained an analytical equation for
the total energy of a ferroparticle chain of N beads
with m permanent dipole moments as

UN = −2
m2

d3
Nζ(3) , (27)

where d is the diameter of the magnetic core. In
case of N → ∞ the one-particle energy is

U = lim
N→∞

UN

N
= −2

m2

d3
ζ(3) . (28)
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From this equation the force acting on a permanent
dipole in an infinite chain can be obtained as the
negative distance (diameter) derivative of U :

F = −∂U

∂d
= −6

m2

d4
ζ(3) , (29)

which is in agreement with our Eq. (17). We con-
clude, that the single particle force in a permanent
dipole chain is equal with the corresponding force
in a polarized chain if the dipole moments are the
same.

3.3. Effective permittivity

If we know the polarizabilities of the constituents
in a multi-component system, where single particles
and linear particle chains are also present we can
calculate the effective dielectric permittivity of the
bulk. Let us consider a bidisperse case when the
system is the mixture of three components in a vol-
ume V : single A-type particles in a number of NA

(component A), single B-type particles in a number
of NB (component B) and single-stranded periodic
bidisperse chains as component C (the total num-
ber of particles in the chains is NC). According the
Clausius-Mossotti equation the effective permittiv-
ity (ϵ) of the bulk system is

ϵ− ϵf
ϵ+ 2ϵf

=
4π

3
(ρAαA + ρBαB + ρCαC) , (30)

where ρn = Nn/V is the number density and αn is
the polarizability of component n. The polarizabil-
ities of the single particles and the chains can be
calculated with Eqs. (4) and (14), respectively. We
assume that in equilibrium the particles are either
single or part of a periodic bidisperse chain, thus the
total number of particles is NA + NB + NC = N .
If the concentrations of the components are given
by xn = Nn/N number fractions, then because the
system is composed of equal number of A and B
particles (which is true for the bidisperse periodic
chains too) the concentration of the single particles
is xA = xB = (1 − xC)/2. By substituting the re-
duced quantities ρ∗ = ρa3 and α∗

n Eq. (30) takes
the form

ϵ− ϵf
ϵ+ 2ϵf

=
4π

3
ρ∗

(
1− xC

2
(α∗

A + α∗
B) + xCα

∗
C

)
.

(31)
In a monodisperse system Eq. (30) is reduced for

two components, and the concentration of the par-
ticles is 1− xC. A similar equation was used previ-
ously to describe the time evolution of the permit-
tivity of ERFs during chain formation [13].
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∆
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Figure 4: The change of dielectric permittivity of a bulk
system as a function of the concentration of chains relative to
the permittivity of the isotropic system (ϵA = ϵB, σB/σA =
2). Chain formation increases the permittivity in cases of
both types of monodisperse and bidisperse systems too, but
with different magnitude.

The effective permittivity is calculated relative
to the permittivity of the isotropic system (∆ϵ =
ϵ− ϵiso), where only randomly dispersed individual
particles are present (xC = 0). By increasing xC we
approach the structure where all particles are part
of a chain (xC = 1). The value of ∆ϵ is calculated
for the cases of the two monodisperse structures
(only A- or B-type particles are present), and for
a bidisperse case when the concentrations of com-
ponents A and B are equal. The B-type particles
are larger than the A-type, and the ratio of the
diameters is σB/σA = 2 in all cases. The total con-
centration of the particles is 5% by volume, which
corresponds to a dilute dispersion.

Figure 4 shows that the chain formation increases
the permittivity of the bulk, which is in agreement
with other experimental [14, 15] and theoretical [16]
results. Since f > 1 the polarizability (thus the
induced dipole moment) of a particle in a chain
is larger compared to the polarizability of a single
particle. Therefore, as the concentration of entities
with larger dipole moments (chains) is increased the
effective permittivity increases linearly. The magni-
tude of the induced dipole moment is proportional
to the cube of the particles’ radius (see Eqs. (3)
and (4)), so ∆ϵ is significantly larger in case of the
monodisperse system containing larger B-type par-
ticles than in case of monodisperse A-type parti-
cles. The permittivity increment of the bidisperse
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system is between the ∆ϵ of the B-type and A-type
monodisperse case.

4. Conclusions

In the present work bidisperse dielectric spheres
aligned by an external electric field into linear peri-
odic chain have been studied. The main results are
the following.

� We have derived new analytical equations for
the induced dipole moments and polarizabil-
ities of dielectric spheres in a periodic chain.
According these equations the polarizability
of a sphere in a one-component chain is also
given, which agrees with previous results of
Kim et al. [9].

� Using the expressions for the local field
strength at the sites of the spheres analyt-
ical equations were obtained for the electric
field-induced bonding forces in two-component
chains. The equations render back to the force
expressions in Refs.[10] and [8] for monodis-
perse chains.

� We have presented calculations for the de-
pendence of the field-induced force in a two-
component chain on the size ratio of the
spheres. The results showed that the bidis-
perse chain becomes stronger as the size of the
larger component is increasing, but it is weaker
than the corresponding monodisperse chain.

� As an application of the microscopic model
the dielectric permittivity of a bulk bidisperse
system have been calculated, which contains
smaller and larger single particles and bidis-
perse periodic chains. The effective permittiv-
ity of the bidisperse system is linearly propor-
tional with the concentration of the chains, and
lies between the permittivity of the two corre-
sponding monodisperse systems.

The method used here is applicable not just for lin-
ear chains, but for bidisperse periodic clusters with
higher dimensions too, such as periodic monolayers
and cubic lattices. The latter could be used as a
model for the columnar structures in an ERF un-
der higher electric field strength, where aggregates
of multiple linear chains are present. Furthermore,
as it was pointed out, the calculation method can
be applied for bidisperse periodic chains made of

magnetizable particles under a magnetic field (mag-
netorheological fluids) by translating the equations
to the analogous magnetic language.

We believe that the analytic expressions derived
here could be useful to predict the dielectric and
rheological properties of bidisperse ERFs.
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[15] B. Horváth, I. Szalai, Structure of electrorhe-
ological fluids: A dielectric study of chain
formation, Phys. Rev. E. 86 (2012) 061403.
https://doi.org/10.1103/PhysRevE.86.061403

[16] D. Fertig, D. Boda, I. Szalai, Induced permittivity in-
crement of electrorheological fluids in an applied electric
field in association with chain formation: A Brownian dy-
namics simulation study, Phys. Rev. E. 103 (2021) 062608.
https://doi.org/10.1103/PhysRevE.103.062608

9


