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 Abstract 

The use of two-dimensional (2D) liquid crystals made of carbon nanorods has become 

increasingly popular in electronic, optical, and energy applications due to their unique 

properties. However, the orientational ordering of such liquid crystals remains poorly 

understood. Here, we explore the orientational ordering aspects of two-dimensional (2D) liquid 

crystals made of nanorods, such as carbon nanorods, using the hard needle model, in 

which Onsager's theory is used to explore the impact of polydispersity on nematic ordering. 

Our results show that polydispersity plays a crucial role in stabilizing the nematic phase over 

the isotropic phase, albeit at the expense of weaker orientational ordering. Longer rods, in 

particular, contribute to the stabilization of the nematic phase, whereas shorter rods result in 

weaker nematic ordering. To achieve a highly ordered 2D nematic phase, the polydispersity of 

the nanorods must be reduced. 

Introduction 

Carbon nanotubes (CNTs) have exceptional physical and mechanical properties, 

outperforming all current materials in terms of high stiffness, strength, conformability, and a 

wide length-to-diameter ratio [1-3]. They have wide uses in electronic devices such as 

transistors and fuel cells, as well as in environmental and biotechnological domains because of 

their stunning structure, great strength, and higher thermal and electrical conductivity than 

diamond [4-7]. These characteristics can also be fine-tuned by altering the diameters, wall 

structures, chiralities, and lengths of CNTs. The exceptional mechanical properties of CNTs, 

paired with their low density, are expected to open up several new avenues for the development 

of new material systems [8-9]. 

The main challenge in fully utilizing the distinct properties of individual nanotubes for 

a variety of applications is to produce macroscopically ordered nanotube assemblies [10]. 



Experimental studies demonstrate that very short and very long CNTs as well as low-

concentration suspensions do not produce long-range orientational alignment [11]. This 

limitation can be overcome by inserting them into a nematic liquid crystal host, where the 

mesogenic molecules have strong self-organizing abilities [12-14]. The other possible way is 

to collect them at the liquid-liquid interface, where the excluded volume interactions and the 

applied flow enhance the orientational ordering of the CNTs. In such a way a two-dimensional 

(2D) nematic liquid crystal can be constructed with the CNTs [15, 16]. Recent experiments 

have found that applying an electric field to a mixture of CNTs and liquid crystals (LC) can 

increase their orientational order parameters [17]. Moreover, liquid anhydrous sulfuric acid 

exhibits a partially ordered structure when SWNTs are present [18]. These results suggest that 

the process of CNT alignment is highly dependent on CNT length distribution. To address this 

issue, Wen et al. conducted a length-controlling experiment using three system-based 

technologies. Their results suggest that controlling CNTs length and distribution can 

significantly improve the alignment of arrays [19]. 

Several theoretical papers investigated the phase behavior and structural properties of 

carbon nanotubes (CNTs) in conjunction with LC [20, 21]. These studies explored various 

factors, such as the length-to-diameter ratio, composition, concentration, and electric field 

strength on the phase properties of LC and CNTs [22-25]. The effects of CNTs on the stability 

of antiferroelectric liquid crystals were also studied [26]. Additionally, the percolation of thin 

colloidal nanoparticles in liquid dispersions in the presence of external orienting fields has been 

studied [27]. It was found that unusual re-entrance phenomena and percolation occur only in a 

small region of the phase diagram [27]. Regarding the electric properties of the ordered phases 

of nanorods, Monte Carlo simulations were used to examine the influence of nanorod length 

distribution and concentration on the percolation threshold [28, 29]. Moreover, several 

composites were studied using theory and simulation to understand the role of nanotube length 

distributions on electrical conductivity [30-32]. 

It is now well understood that the orientational ordering of anisotropic biological or 

synthetic nanoparticles is mainly governed by hard body excluded volume interactions [33]. 

However, in most cases, the suspension of synthetic nanoparticles suffers from polydispersity 

in length, diameter, or both. To include the effect of polydispersity in simulation and theoretical 

studies, it is widely accepted to use continuous distribution functions for the length and 

diameter of anisotropic nanoparticles. However, this extra parameter substantially complicates 

the modeling, and some simplifying assumptions are inevitable to get some information about 



the change in the orientational and positional ordering of nanoparticles due to polydispersity. 

The most common approximations are to consider the polydispersity as a perturbation [34], 

restrict the orientational freedom of the particles [35-38], use the trial function method for the 

orientational distribution function [39-41], place the particles into a lattice [42] and use the 

moment free energy method [43-45]. These studies revealed the complex effect of 

polydispersity on the stability of mesophases and the ordering behavior of nanorods. One of 

the important results in length polydisperse hard rod systems is that the long rods accumulate 

mainly in the orientationally ordered phases, while the short ones accumulate in the isotropic 

one, but the isotropic-nematic transition density is weakly affected [34, 37]. In addition, the 

smectic and crystalline phases are suppressed, while the columnar order becomes stable [41]. 

It is also pointed out that polydispersity can stabilize the biaxial nematic phase [38].  

The motivation of our theoretical study is the recent observation of the highly ordered 

2D nematic phase of CNTs on a liquid-liquid interface, where the length-to-diameter ratio of 

CNTs is on the order of hundreds [15, 19]. For example, the average length of the nanorods is 

500 nm, while the average diameter is only 1.5 nm in the experiment of Jinkins et al. [15]. 

Although the interaction between CNT particles is very complex due to the presence of 

anisotropic dispersive interactions, flexibility, and polydispersity, we try to understand the role 

of excluded volume interactions and the length of polydispersity on the stability of the 2D 

nematic phase using a hard needle model, where the needles are confined to a plane in both 

orientation and position. We assume that the needles are polydisperse in length and they are 

allowed to move and rotate freely on the plane without overlapping each other.  We use the 

well-known Onsager theory of hard anisotropic particles [33]. To solve the resulting integral 

equation for the orientational distribution of the polydisperse needle system, we develop an 

optimized mixture approach for the continuous length distribution, which can be handled easily 

and converges to the continuum system using only a few mixture components. Our method can 

be applied to arbitrary length distributions, i.e., it can have a high peak or a long tail. We show 

that the isotropic-nematic bifurcation density is inversely proportional to the polydispersity 

index; the nematic phase becomes more stable but the nematic order weakens. 

 

Theory 



We examine the orientational ordering properties of the thermalized suspension of 

nanorods, which are free to rotate on a flat surface. To a first approximation, the suspension of 

nanorods is modeled as a hard needle of finite length and zero diameters, while the effects of 

flexibility and other interactions are neglected. As the colloidal nanorod suspensions are 

usually polydisperse in length, we take into account the effect of polydispersity using 

continuous length distributions. Applying the extension of the Onsager theory [33, 34], we 

determine the isotropic-nematic (IN) transition density and the ordering properties of the 

nematic phase.  Note that the needles do not have volume, i.e., the packing fraction of the 

system is always zero. Therefore, only the isotropic and nematic phases are present in this 

system, as the perfectly ordered nematic phase of the needles behaves like the ideal gas. We 

present the theory for both monodisperse and polydisperse cases in the next subsections. We 

also present an optimized mixture method to solve the integral equation of the polydisperse 

case.  

 

a) Monodisperse fluid 

On the level of Onsager theory, the free energy (F) of monodisperse fluid of hard 

particles on a flat surface (xy plane) is a functional of the orientational distribution function (f): 
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where  
1

Bk T
   is the inverse temperature, A is the surface area,  AN /  is the two-

dimensional (2D) number density,  N is the number of particles, and is the orientation angle 

of the main axis of the particle with respect to the x-axis. In Eq. (1) it is assumed that the particle 

has up-down symmetry, which reduces the integration in angle   to   0 . The excluded 

area between two particles (Aexc) depends on the shape and the orientations of the particles 

(and). The functional minimization of the free energy functional (Eq, (1)) with respect to 

f provides a self-consistent equation for the equilibrium orientational distribution function 

(ODF). One can get that  
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Note that the normalization condition of ODF, which is given by   1

0




 fd , is taken into 

account in the derivation of this equation. One trivial solution of Eq. (2) is the isotropic 

distribution with f=1/, while the other is nematic. The nematic ODF has a peak at =0 and , 

while it has a minimum at =/2. The degree of nematic ordering can be measured with the 

help of the orientational order parameter, which is defined by    



fdS 
0

2cos . This 

parameter is exactly zero in the isotropic phase, while it tends to one as the orientation order 

increases.  

 In the case of hard needles with length l, the excluded area between two particles is analytic 

and given by: 

    2

1 2 1 2, sinexcA l     ,                                                      (3) 

where 1 and 2 are the orientation angles of particles 1 and 2, respectively. We solve Eq. (2) 

together with Eq. (3) numerically to determine the ordering properties of hard needles as a 

function of surface density ().  To get some insight into the orientational ordering properties 

of the hard needle fluid, the onset of nematic ordering can be determined analytically by 

performing a bifurcation analysis on Eq. (2). The bifurcation analysis of hard body fluids is 

well-known from the work of Kayser and Ravaché [46]. In the case of 2D hard needles, one 

can get that 
2/5.1 lIN   , where IN is the IN transition density. The isotropic distribution 

(f=1/) is the only solution of Eq. (2) for IN 0 , while both isotropic and nematic 

solutions exist for IN  . Interestingly, the nematic solution has lower free energy than the 

isotropic one, i.e. the nematic phase is the stable phase at higher densities.  The order of IN 

phase transition proved to be second order using the Onsager theory [46]. Note that the IN 



phase transition of 2D needle particles is even weaker and belongs to the class of Kosterlitz–

Thouless (KT) continuous transitions according to the Monte Carlo simulation study of Frenkel 

and Eppenga [47]. Apart from this deviation, the Onsager and other mean field theories provide 

an accurate description of the nematic order parameter and the equation of the state of several 

2D systems such as the needle, ellipse, and rectangle fluids [33, 48]. 

  b) Polydisperse fluid 

As the nanorods are generally polydisperse in length, we extend the monodisperse case 

to the polydisperse one in this subsection, where the polydispersity is considered to be 

continuous. We introduce the length-dependent density distribution  l , which is related to 

the 2D bulk density () via  




0

ldl . The length dependence of the density distribution 

modifies both the ideal gas and the excluded volume contributions of the free energy functional 

(see Eq. (1)), which makes the orientational distribution function also length dependent. The 

straightforward generalization of Eq. (1) for length polydisperse hard rods can be written as  
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where the excluded area between a hard needle with length and orientation  11,l  and a 

second one with  22 ,l  is simply given by: 

   1 2 1 2 1 2 1 2, , , sin .excA l l l l                                                               (5) 

A self-consistent equation for ODF of the hard needles with length l and orientation  can be 

obtained via functional minimization of Eq. (4) using Eq. (5) and the normalization condition 

for all lengths,   1,

0




 lfd . After straightforward calculations, one can get that  
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The input of this equation is the density distribution, which can be factorized as    lgl   , 

where  is the usual 2D bulk density and  lg  is the normalized length distribution function 

satisfying  




0

1lgdl . To solve Eq. (6) for the equilibrium ODF we set  and  lg . Therefore 

our working equation becomes 
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Again the trivial solution of this equation is the isotropic distribution, since    /1, lf  

satisfies Eq. (7) for any density and length distribution. The non-trivial solution of Eq. (7) is 

nematic, which can be obtained numerically using iteration and discretizing the integrals both 

in length and angle. Luckily, analytical results can be obtained for the onset of nematic ordering 

with the extension of the monodisperse bifurcation analysis [49]. After straightforward 

ca1ulation it can be shown that the density of the isotropic-nematic transition occurs exactly at  

2/5.1 lIN   ,       (8) 

where  




0

22 lgldll . This shows that the widening (narrowing) length distribution 

decreases (increases) the transition density, i.e. the nematic phase becomes more stable with 

respect to the isotropic one in the polydisperse case.  To check the prediction of this analysis, 

we solve Eq. (7) numerically as a function of  for a given length distribution (g(l)) and we 

search for a nematic solution, which starts to bifurcate from the isotropic solution. In this 

process, the first step is the discretization of the length distribution. Instead of using 

equidistance grid size for l, we represent the continuum distribution as a n component mixture, 

where we make optimization for the number of components (n), the mole fraction xi and the 

average length of component i, where i=1,…,n.  We replace  l0  with maxmin lll  , 



where the minimal and maximal lengths can be varied to get a more reliable approximation of 

the continuum system.  The number of adjustable lengths between the minimum and maximum 

lengths is taken to be n-1. We can write a set of discretized lengths in order as follows: 

 0 min 1 max, ,...., ,...., .i nl l l l l l l    As only min0 ll   and maxlln   are fixed, we search for the 

optimal values of ,..., 21 ll  and 1nl  for a given g(l) distribution. To do this we define the mole 

fraction (xi) and the average length (
i

l ) of component i as follows: 
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We can see that these definitions guarantee the normalization condition and provide the right 

average length of the needles if our lmin and lmax lengths are chosen such that   0min lg  and 

  0max lg , because   1
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worth noting that we can calculate the mole fractions and the lengths of an n component needle 

mixture for a given set of   max11min,0 ,,..., lllllll nn     from Eqs. (9) and (10). To find 

the optimal values of   max11min,0 ,,..., lllllll nn    we determine the polydispersity 

index of the mixture and that of the continuum system, which is given by 
22 / llI p  . We 

can write this quantity in the discrete and continuous case as follows: 
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Note that we highlight the difference between the discrete and continuum polydispersity index 

by showing the  max11min,0 ,,..., lllllll nn    dependence in Eq. (11). It can be shown 



that Eq. (11) underestimates the polydispersity index of the continuum system (Eq. (12)). To 

get the best mixture representation of the system, we search for the maximum of Eq. (11) by 

varying the lengths. As  l0=lmin and ln=lmax are fixed, while l1, …, ln-1 are the free parameters, 

we get the following set of equations 
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Using Eqs. (9), (10), (11) and (13) we end up with a set of coupled equations for the discretized 

lengths: 
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where 1.... 1i n  . As we have n-1 unknown lengths and n-1 equations, the numerical solution 

of this set of equations provides 
1 1
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n
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 Using these optimal lengths, we can calculate the 

average lengths (
n

ll ,...,
1

) and mole fractions (x1,..,xn) of the n component mixture from 

Eqs. (9) and (10) . No doubt, Ip of the continuum system can be reproduced by the mixture 

representation if n→∞. In practice, we try to get back the actual polydispersity index as 

accurately as possible by finding the minimum value of n. 

In the n-component mixture representation, the equation of ODF can be obtained from 

Eq. (7) using the following correspondences: l ↔
i

l  and g ↔xi. Therefore the ODF of 

component i with length 
i

l  can be obtained from 
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where i=1,..,n. We have solved these n coupled and nonlinear equations numerically using 

trapezoid quadrature for the integrations and the iteration method. We measure the extent of 

orientational ordering of component i with the usual 2D nematic order parameter as follows 
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From this component order parameter, we get the global nematic order parameter by taking the 

average of Si, i.e. i

n
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iSxS 
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1

. Using the average length of the rods as a unit, which is given by 
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lgldll , the dimensionless length and density can be written as lll /  and 

2
l 

, respectively. In this unit, we get that 1l , 2 lI p , and pIN I/5.1  
. 

We use the log-normal (LN) and the Schultz-Flory (SF) distributions for the polydisperse 

needle system. The LN distribution function is given by 
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which satisfies the normalization condition and 1l . The SF distribution also satisfies these 

conditions and can be written as 

 
 

 




  le
l

lg 







1

,      (18) 

where 
1

1




pI
  and   is the Gamma function. Eqs. (17) and (18) represent peaked length 

distribution, where the peak is at a length between l*=0 and l*=∞. Moreover, these distribution 

functions are zero for very short and long rods, i.e.   00 g  and   0lg . Note that Ip 

cannot be larger than 2 using Eq. (18), because   00 g  for Ip>2. In the next section, we present 

our results in reduced units for these two length distributions. 

 

Results 

We begin this section by presenting the differences between LN and SF distribution 

functions for the polydisperse hard needle system. Fig. 1 shows the length dependence of LN 

(see Eq. (17)) and that of SF (see Eq. (18)) distributions for different values of Ip. We can see 

that the distributions broaden with increasing Ip, because Ip =1 corresponds to the monodisperse 



limit. In both cases, the position of the maximum of the length distribution function (

ml ) moves 

to the direction of lower lengths with increasing Ip. It can be proved analytically that  

2/3/1 pm Il   and  pm Il  2  for LN and SF distributions, respectively. The difference 

between the two distributions is that the LN distribution is symmetric in log scale, while the 

SF is not. In addition, the decay of the SF distribution is slower on the left-hand side than that 

of the LN one, while the opposite trend can be seen on the right-hand side of the peak. In 

addition, the height of the LN distribution is larger than that of the SF distribution. 

Consequently, we choose 
7

min 10 l  for the minimal length (

minl ) in the mixture 

representation of SF length distribution, while 
3

min 10 l   is a good choice in the case of LN 

distribution for the studied values of Ip. The upper limit of the length (

maxl ) is chosen to be 

higher in LN than in SF distribution because the decay of LN is slower than that of SF. 

However, this depends on the value of Ip as the distribution functions become wider with 

increasing Ip. We found that 30max l  ( 10max l ) is enough high for LN (SF) distribution 

with 75.1pI . In practice, we decreased 

minl  and increased 


maxl  with increasing Ip for both 

distributions to get back the polydisperity index of the continuous distribution as accurately as 

possible in the mixture representation. The points 




11 ,..., nll  between 


minl  and 


maxl are the 

solutions of Eq. (14) using Eqs. (9) and (10) at a given value of n. In Fig. 2 we show the effect 

of discretization on the polydispersity index as a function of a number of components. We can 

see that the convergence of Ip to the required value is quite fast for both distributions. Therefore 

the optimized mixture representation is justified to study polydisperse systems because it 

provides the same average length and the polydispersity index as the continuous length 

distribution. The advantage of this method is that we must use only a few components (n) with  



 

Figure 1: The effect of varying polydispersity index (Ip) on the continuous length distribution 

function. The SF and LN length distributions are shown as a function of dimensionless length 

(l*). 

given lengths (
n

ll ,...,
1

) and mole fractions ( nxx ,...,1 ) to determine the phase behavior of 

polydisperse systems with continuous distribution. It can be seen in Fig. 2 that the minimal 

value of n depends on Ip, because more and more components are needed with increasing Ip. 

For example, we get Ip=1.25 with n=10 components, while n=20 is needed for Ip =1.75. The 

comparison of the results for LN and SF distributions shows that SF can be represented with 

fewer components than the LN one to reproduce the Ip value of the continuous distribution. As 

Eq. (15) is a set of n coupled non-linear equations for ODFs, we check the effect of n on the 

resulting global nematic order parameter (S). The solution of Eqs. (15) and (16) for the order 

parameter are shown for several values of n in Fig. 3.  As the polydispersity index of the 

optimized mixture is slightly lower than the true value of the continuous system (see Fig. 2), 

the onset of the nematic ordering must occur at higher densities because pIN I/5.1  
 is 

valid for both the mixture and the continuous system. This can be seen clearly in the binary 

mixture representation (n=2), where the optimized mixture has a significantly lower Ip value 

than the prescribed one. We can see the shift of the curve to the direction of right value of 

IN

, because Ip of the mixture converges with increasing n as shown in Fig. 2. Note that our 



numerical results are always consistent with pIN I/5.1  
 for the onset of nematic ordering 

if we use the Ip value of the optimization. In addition, with the optimized mixture 

representation, the nematic order parameter is underestimated at densities below 5 , while  

 

Figure 2: Polydispersity index of the optimized mixture as a function of the number of 

components. The square and circle symbols belong to the LN and SF distributions, 

respectively, while the horizontal line shows the required Ip values of the continuous 

distribution. 

it is overestimated for higher densities. We can also see that the order parameter of the LN 

distribution is higher than that of the SF one for *>5. This is due to the fact that longer rods 

have a higher alignment ability than shorter ones, and the LN distribution contains more longer 

rods than the SF distribution does. As the shift between the curves is almost negligible using 

n=10 and n=20 components in Fig. 3 and the true value of Ip is recovered by the optimized 

mixture representation, we do not go beyond n=30 components even for very polydisperse 

cases to find the equilibrium orientation distribution function and the order parameters from 

Eqs. (15) and (16). The global nematic order parameter is shown as a function of 2D number 

density in Fig. 4 for both SF and LN length distributions. In accordance with pIN I/5.1  



, the IN transition occurs at lower densities with increasing Ip , while  5.1
IN  is recovered 

for the monodisperse case (Ip=1). Therefore, the increasing polydispersity stabilizes the  

 

Figure 3: The effect of a number of components on the global order parameter as a function 

of 2D density for PI =1.75. The solid curve indicates the results of LN length distribution, 

while the dashed curve represents the results coming from SF one.  

 

nematic phase with respect to the isotropic one. This does not mean, however, that 

polydispersity results in a stronger nematic ordering than what occurs in the monodisperse 

system. We can see that the isotropic and weakly nematic phases of the monodisperse system 

with S<0.6 become orientationally more ordered due to the aligning effect of longer rods if 

5/5.1   pI . Opposite to this, the strongly ordered nematic phase of the monodisperse 

system becomes less ordered with increasing Ip due to the disordering effect of the shorter rods. 

This can be seen clearly in Fig. 4 for 5 . Regarding the differences arising from the used 

distribution functions, we can see that the SF length distribution has a lower nematic order 



parameter at high densities because it contains more short components than the LN one. 

Moreover, the nematic ordering is slightly stronger in the vicinity of the IN transition for the 

SF distribution than for LN one. In general, we can say that the trends are the same in S- plane 

using SN and LN distributions. Therefore, we can conclude that higher nematic order can be 

realized in the monodisperse system than in the polydisperse one at high densities, while the 

onset of nematic ordering can be lowered in density with increasing polydispersity. The order 

of the IN phase transition turns out to be second-order for any possible value of Ip, which rules 

out the possibility of short needles accumulating in the isotropic phase and long needles in the  

 

Figure 4: The global nematic order parameter as a function of 2D number density. The solid 

curve indicates the results of LN length distribution, while the dashed curve represents the 

results coming from SF one. The monodisperse (Ip=1) and the polydisperse Ip>1 systems are 

shown together. 

 

nematic one. The length dependence of the nematic order parameter is presented for weakly 

nematic (*=4 and S≈0.4) and strongly nematic (*=8 and S≈0.7) cases in Fig. 5. We can see 

that very short rods (l*≈10-5…10-3) are weakly ordered, while the long ones (l*>5) are strongly 



ordered in both cases. This shows that the ordering behavior of short and long rods is very 

different in the nematic phase. This is due to the fact that the competition between orientational 

and packing entropies results in an ordering where the parallel alignment of long rods increases 

packing entropy, while poorly aligned short rods are responsible for the gain in orientation 

entropy. This is reasonable because the excluded area between two long needles can be very 

high in perpendicular orientations, while it is zero for parallel one (see eq. (5)). Moreover, the 

parallel ordering of very short needles do not produce much extra room for the particles, but 

decreases the orientational entropy substantially.  Therefore, the space available for particles 

can be better increased with long needles than with short ones, i.e. the long rods align strongly 

while the short ones weakly in the nematic phase. Although SF and LN distributions exhibit 

the same trends in Fig. 5, there is a slight difference between them.  The SF produces higher 

nematic order than the LN one in the weakly nematic phase, while the opposite trend can be 

seen in the strongly ordered nematic phase. This difference is due to the different features of 

these two length distributions. In the inset of Fig. 5, we present the result of the optimized 

mixture optimization for the lengths and mole fractions, which are the input of Eq. (15). It can 

be seen that we must use more short components in the case of SF distribution, while more 

longer needles are needed in the case of LN one. However, these changes do not change the 

results substantially. We can say that even if the optimized mixture representation is different 

for SF and LN distributions, the results are not very sensitive to the choice of the distribution 

function applied for the length polydispersity. Therefore, we expect similar trends in the 

nematic ordering for other type of length distributions, which are not discussed here.    



 

 

Figure 5: Nematic order parameter of hard needles as a function of length in weakly and 

strongly ordered nematic phases: (a) *=4 and (b) *=8 for Ip=1.75. Square and circle symbols 

represent the results for LN and SF length distribution functions, respectively. The insets show 

the mole fractions of the optimized mixture representation as a function of the lengths of the 

mixture, where n=30 for both distributions. 

 

Conclusion 

We have examined the effect of length polydispersity on the stability of the 2D nematic 

phase of hard needles using the Onsager theory. The ODF of the polydisperse needles has been 

determined with the help of a mixture optimization method, where the continuous system is 

considered as a n component mixture. In this method, the lengths and mole fractions of the 

components are chosen such that the polydispersity index of the mixture is as close as possible 

to the polydispersity index of the system having continuous polydispersity. This method 

allowed us to transform the inconvenient self-consistent equation of ODF into a numerically 



tractable one. The advantage of the method is that it is enough to use only a few components 

to get reliable information about the effect of continuous distribution on the phase behavior of 

the polydisperse system. We found that there is no need to go beyond n=30 in the number of 

components even for very polydisperse cases to reproduce the properties of continuous 

distribution. In addition, the mixture optimization method can be extended easily for more 

complicated polydispersities depending on both diameter and length. This method can be 

particularly useful in future simulation studies, where the number of particles in the simulation 

box is finite. 

We have shown that the density of isotropic-nematic transition is inversely proportional 

to Ip, i.e., polydispersity favors nematic ordering. This exact result holds for both discrete and 

continuous polydisperse systems. Interestingly, other features of the distribution have no effect 

on the transition density. Therefore, the isotropic-nematic phase transition takes place at the 

same density at a given value of Ip for all distributions such as constant, one-peaked, two-

peaked, etc. length distributions. The shape of the distribution can, however, affect the degree 

of orientation ordering. It is found that both SF and LN distributions weaken the nematic 

ordering of the needles at high densities. We expect that this would also be the case for other 

distributions, as short rods always have more room to rotate than long ones. To get a different 

result, the order of the phase transition should change from second order to first one, where the 

short rods populate the isotropic phase, while the long ones are the nematic one. In this case, 

the nematic phase will be more ordered due to the absence of short rods responsible for the 

disorder. This really happens in the length polydisperse system of hard rectangles, where the 

polydispersity induces a first-order phase transition by a  gap between the coexisting isotropic 

and nematic phases [50]. 

The connection of our work to the experiment is that the orientational ordering of hard 

needles is quite similar to that of semiconducting CNTs, which form a very ordered 2D nematic 

phase [15, 19]. The most important results of these experiments can be summarized as follows. 

a) The alignment of the nanotubes can be improved with increasing density and decreasing 

temperature [15]. b) The narrow length distribution produces the strongest nematic alignment 

[19]. From these findings, the polydisperse hard needle model captures the density and length 

distribution effects on the nematic ordering. However, the effect of temperate is not included 

in this model, because hard needles are athermal and the resulting phase behavior is 

independent of temperature. With the inclusion of dispersive interactions into the needle model, 

the effect of the temperature can be also examined. However, we believe that flexibility plays 

also a significant role in the nematic ordering because the shape of the nanotubes is not a 

straight line even if their average length is about 500 times longer than their average diameter. 

Therefore, we can only approximate the true shape of nanotubes with straight needles. Our 

attempts to compare the results of the theory with those of experiments failed because the 

nematic ordering occurs at densities at least an order of magnitude higher in experiments than 

in theory. This discrepancy of the needle model can be explained with the flexibility because 

the flexibility works against the nematic ordering and postpones the nematic ordering towards 

higher densities. Therefore, the hard needle model can only qualitatively reproduce part of the 

experimental results. To get deeper insight into the phase behavior of the 2D nematic phase of 

carbon nanotubes, the polydisperse hard needle model needs to be complimented with 

dispersive interactions and flexibility.              
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