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Abstract 

 

The structure, morphology of ammonium metatungstate (AMT), (NH4)6[H2W12O40]∙4H2O and 

its thermal decomposition in air and nitrogen atmospheres were investigated by SEM, FTIR, 

XRD and TG/DTA-MS. The cell parameters of the AMT sample were determined and refined 

with a full profile fit. The thermal decomposition of AMT involved several steps in inert 

atmosphere: (i) release of crystal water between 25-200 °C resulting in dehydrated AMT; (ii) 

formation of an amorphous phase between 200-380 °C, (iii) from which hexagonal WO3 

formed between 380-500 °C, (iv) which then transformed into the more stable m-WO3 

between 500-600 °C. As a difference in air, the as-formed NH3 ignited with an exothermic 

heat effect, and nitrous oxides formed as combustion products. The thermal behavior of AMT 

was similar to ammonium paratungstate (APT), (NH4)10[H2W12O42]∙4H2O, the only main 

difference being the lack of dry NH3 evolution between 170-240 °C in the case of AMT. 

 

Introduction 
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Ammonium tungstates are important members of isopolytungstates. They have three forms, 

i.e. ammonium paratungstate (APT), (NH4)10[H2W12O42]∙xH2O (X=4,7,10); ammonium 

metatungstate (AMT), (NH4)6[H2W12O40]∙nH2O (n=1-22); and ammonium orthotungstate 

(AT), (NH4)2WO4 [1]. One of their major applications is that tungsten oxides, metal 

tungstates, tungsten carbides or tungsten metal can be prepared from them, all of which are 

significant for various industries. Tungsten oxides can be used as catalysts [2-5], 

photocatalysts [6-10], gas sensors [11-18], chromogenic materials [19-21]; metal tungstates 

can be used among others as catalysts [22], pigments [23,24]; tungsten carbides are the hard 

components in cutting, drilling, tools [25-27] and they are also used as catalysts [28,29]; while 

tungsten metal is a key element in lighting industry [1,30-34]. 

The industrial preparation of tungsten oxides, tungsten carbides and tungsten metal is mostly 

based on thermal decomposition (oxidation or reduction) of ammonium tungstates. Among 

ammonium tungstates, only the thermal behavior of APT was studied in detail in the past 

decades, which is mostly explained by that APT with is well defined preparation route and 

structure is the starting material of tungsten manufacture [1,32,33]. In contrast, to the best of 

our knowledge, the thermal decomposition of AMT and AT has not been investigated in 

detail. This is unexpected, especially in the case of AMT, as it is the most water soluble 

ammonium tungstate, and AMT is widely used to prepare various tungsten oxide 

nanostructures by annealing [35,36].  

In the case of AMT, not only its thermal decomposition sequence, but also is structure and 

composition are not straightforward. According to Christian and Wittingham [37] as well as 

Fait et al [38], depending on its crystal water content AMT can have three different cubic unit 

cells, however, only of them, the AMT∙22H2O has an XRD reference card (PDF 00-039-

0168). There exists a fourth, anorthic AMT structure (PDF 04-012-6600) as well. In addition, 

commercial AMT can be obtained with different CAS numbers (e.g. 12333-11-8, 402568-09-

6, 12028-48-7), to which different compositions are assigned, i.e. (NH4)6[H2W12O40]∙nH2O or 

(NH4)6[W12O39]∙yH2O. 

In the presents study, we aimed to get more information on the structure of AMT and intended 

to characterize its thermal decomposition. In addition, we compared the structure and thermal 

behavior of the commercially available AMT products. To achieve these, we studied the 

structure and morphology of the AMT materials and compared their thermal decomposition 

by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), 
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powder X-ray diffraction (XRD) and thermal analysis (TG/DTA-MS) in inert (N2) and in 

oxidizing (air) atmospheres. 

 

Experimental 

 

Two ammonium metatungstate samples were obtained from Sigma-Aldrich with compositions 

of (NH4)6[H2W12O40]∙nH2O (CAS: 12333-11-8) and (NH4)6[W12O39]∙yH2O (CAS 402568-09-

6), and they were named AMT1 and AMT2, respectively. 

SEM images were obtained by a JEOL JSM-5500LV scanning electron microscope. 

Powder XRD patterns were recorded on a PANalytical X’pert Pro MPD X-ray diffractometer 

using Cu K radiation.  

FTIR spectra were measured by an Excalibur Series FTS 3000 (Biorad) FTIR 

spectrophotometer in the range of 400-4000 cm
-1

 in KBr pellets.  

TG/DTA measurements were performed on an STD 2960 Simultaneous DTA/TGA (TA 

Instruments Inc.) thermal analyzer using a heating rate of 10 °C min
-1

 and Pt crucibles. The 

reactor was purged either with air or nitrogen atmospheres (130 ml min
-1

). Evolved gas 

analytical (EGA) curves were recorded by a Thermostar GSD 200 (Balzers Instruments) 

quadruple mass spectrometer (MS). A mass range between m/z = 1-64 was monitored through 

64 channels in Multiple Ion Detection Mode (MID) with a measuring time of 0.5 s channel
-1

. 

Further details of the TG/DTA-MS setup are described elsewhere [39,40].  

 

Results and discussion 

 

Characterization of AMT1 

 

According to SEM images (Fig. 1a), AMT1 consisted of ca. 5-50 m microspheres. Many 

such spheres were cracked, and the empty inner part of the spheres could be seen, showing 

that AMT1 was actually built up by hollow microspheres. In the voids of cracked larger 

spheres, even smaller spheres could be seen, which could get inside most probably after the 

cracking occurred. 

In the FTIR spectrum of AMT1 (Fig. 2a), the O-H deformation and stretching vibrations of 

water molecules in AMT were present around 1630 cm
-1

 and 3570 cm
-1

, while the N-H 

deformation and stretching vibrations of NH4
+
 ions were visible at 1400 cm

-1
 and 3135 cm

-1
. 

The peaks belonging to the metatungstate ion were observable mostly below 1000 cm
-1

, 
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which could be identified based on the FTIR data of pure polytungstates, AMT composites 

and WO3 [36,41-45], as the FTIR spectrum of AMT has not been published previously. 

Hence, bands at about 940 cm
-1

 (930, 955 cm
-1

) were assigned to W=O vibrations, while the 

peaks at 700-900 cm
-1 

(785, 882 cm
-1

) were explained by the W-O vibrations. 

The XRD spectrum of AMT1 does not resemble to any of the published XRD data about 

AMT [37,38] or the available XRD reference cards of AMT (PDF 00-039-0168 and 04-012-

6600). Thus, using Si internal standard we determined the cell parameters of our AMT 

sample, and refined them with full profile fit. The unit cell of the AMT sample was identified 

to be orthorhombic ( = = = 90°) with space group Pcca [Nr. 54]. The obtained values for 

the a, b, c cell parameters were 33.438, 17.425, 14.112 Å, respectively, the cell volume was 

calculated to be 8222.458 Å
3
, the value of Z was 8, and the calculated density was 4.863 g cm

-

3
. The formula of the AMT sample was determined as (NH4)6[H2W12O40]∙4H2O by TG data 

(see later). We present the indexed reflections of the AMT1 sample obtained after full profile 

fit in Table 1, so that they can be used later as a reference.  

 

Thermal decomposition of AMT1 in nitrogen 

 

The first decomposition step (Fig. 4) occurred between 25-200 °C, and it was accompanied by 

an endothermic heat effect. Here, the crystal water content of ammonium metatungstate 

evolved, as evidenced by the MS ion current curve of H2O. The water release happened in 

two overlapping processes (endothermic DTA peaks at 114 and 139 °C). These correspond 

altogether to the loss of 4 crystal water molecules (1.6 % and 0.8 % mass losses in the first 

and second processes, respectively, match the release of ca. 2.7 and 1.3 water molecules). 

Parallel to this, in the infrared spectrum the intensity of water peaks at 1630 cm
-1

 and 3570 

cm
-1

 were slightly decreased (Fig. 2a). The W-O bonds in the solid phase did not change 

according to infrared spectra. Though, based on this, most probably the metatungstate ion 

remained intact, the loss of crystal water changed the overall structure of AMT, as the XRD 

pattern contained much less reflections at 200 °C (Fig. 3a). We could not identify the exact 

crystal structure at 200 °C with XRD. 

In the second decomposition step (250-380°C) in an endothermic reaction most NH4
+
 ions 

were removed from the structure, and thus NH3 and H2O were released (Fig. 4). Accordingly, 

in the infrared spectrum the intensity of water peaks at 1630 cm
-1

 and 3570 cm
-1

 and of NH4
+
 

peaks at 1400 cm
-1

 and 3135 cm
-1

 greatly decreased. The vibrations in the W-O bond region 

below 1000 cm
-1

 altered significantly (Fig. 2). At 380 °C the XRD pattern shows an 
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amorphous phase (Fig. 3). This is explained by that when the NH4
+
 ions were removed, the 

structure of AMT collapsed, and the metatungstate ions, which had been separated previously 

by NH4
+
 ions, got connected. Consequently, the WO6 octahedra building up the metatungstate 

ions changed their position and orientation, and this lead to the formation of an intermediate 

amorphous phase.  

In the third decomposition step (380-500 °C) H2O and NH3 were released (Fig. 4). In the 

infrared spectrum the peaks of water at 1630 cm
-1

 and 3570 cm
-1

 and of NH4
+
 at 1400 cm

-1
 

and 3135 cm
-1

 almost completely disappeared (Fig. 2). In this step hexagonal (h-) WO3 (PDF 

33-1387) crystallized from the amorphous phase, accompanied by an exothermic heat effect 

with a maximum at 421 °C on the DTA curve (Fig. 4). 

In the fourth step (500-600 °C) only a small mass loss occurred and tiny amount of water 

evolved. When the water evolution ended, the metastable h-WO3 transformed in an 

exothermic reaction (DTA peak at 548 °C) into the stable monoclinic (m-) modification of 

WO3 (PDF 89-4476) [46].  

The final mass of the decomposition residue (92.0 mass%) matched well the theoretical value 

(91.9 mass%) for decomposing (NH4)6[H2W12O40]∙4H2O into WO3, thus TG data confirmed 

the composition of AMT1. 

 

Thermal decomposition of AMT1 in air 

 

In the first decomposition step, there was no difference between the thermal behavior of AMT 

in air and inert atmospheres (Figs. 5-7). The oxidizing effect of air made a difference only 

above 250 °C, when the as-released NH3 started to burn into nitrous oxides, catalyzed by the 

Pt crucible and/or the as-formed tungsten oxide structure. Among the combustion products of 

NH3, the formation of N2O is favored below 400 °C, while NO forms rather above this 

temperature [47]. This is clearly shown by the intensity changes in the MS curves of the two 

gases in the second and third decomposition steps. The combustion of NH3 is an exothermic 

reaction, and the generated heat made the DTA peak turn into slightly exothermic (365 °C) at 

the end of the second decomposition step. In the third decomposition step the exothermic heat 

effects of the h-WO3/m-WO3 transformation (419 °C) and of the NH3 ignition (441 °C) were 

added, and thus the DTA peak between 400-450 °C was much sharper in air than in nitrogen. 

In air there were no significant differences in the FTIR patterns, compared to nitrogen. In 

contrast, the XRD pattern recorded in air at 200 °C differed significantly and contained more 

reflections than in inert atmosphere. Another change in air was that at 500 °C the sample 
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already contained considerable amount of m-WO3 besides h-WO3. As a result, the exothermic 

DTA peak above 500 °C was much smaller. 

 

Comparison of the morphology, structure and thermal behavior of AMT1 and AMT2 

 

AMT1 and AMT2 differed in their morphology. While AMT1 was built up by 5-50 m 

hollow microspheres, AMT2 consisted of 2-10 m particles, and most of them were 

aggregated into larger, 10-100 m blocks.  

In contrast to the different morphologies, both FTIR spectra and the XRD patterns of AMT1 

and AMT2 were identical. In the FTIR spectra the positions and intensities of the W-O, O-H 

and N-H bands were the same for both AMT1 and AMT2. Similarly, the 2 values and 

relative intensities of the XRD reflections were also identical in the case of the two AMT 

materials, and AMT2 had the same unit cell as AMT1.  

The TG/DTA curves of AMT2 (Fig. 8) were not just similar to AMT1, but basically identical 

with it. The residual masses for AMT1 and AMT2 in the first, second and third decomposition 

steps were almost the same, i.e. 97.6 and 97.6 %; 93.5 and 93.4 %; 92.0 and 91.9 %, 

respectively.  

The final mass of the decomposition residue (91.9 mass%) matched the theoretical value (91.9 

mass%) for decomposing (NH4)6[H2W12O40]∙4H2O into WO3, and not that of 

(NH4)6[W12O39]∙4H2O (92.4 mass%). Therefore, TG/DTA data also supported that AMT2 

was identical with AMT1, and its composition was not (NH4)6[W12O39]∙4H2O, as provided by 

its manufacturer, but (NH4)6[H2W12O40]∙4H2O. 

 

Comparison of the thermal behavior of AMT and APT 

 

Previously AMT [1,33,38,47-52] or a structure close to AMT [38] was said to be a 

decomposition product of APT at 240 °C. Based on these, it was unknown whether the 

decomposition of AMT would be the same as the decomposition of APT above 240 °C, or it 

would differ significantly.  

The decomposition of APT includes several steps [1,33,38,47-52]. In inert atmosphere until 

ca. 170 °C APT loses its crystal water content in an endothermic reaction. Then in the second 

decomposition step between ca. 170-240 °C, dry NH3 is released, accompanied by an 

endothermic heat effect. It was at this point, that previously AMT was reported to form, while 
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recently it was shown that the intermediate decomposition product of APT here is an 

ammonium hydrogen paratungstate with the ideal composition of (NH4)6H4[H2W12O42], from 

which AMT can be produced by digesting the intermediate by hot water [38]. Then between 

240-370 °C both NH3 and H2O are released, and an amorphous phase forms in an 

endothermic reaction. Between 370-450 °C from this phase hexagonal ammonium tungsten 

bronze (HATB), (NH4)0.33-xWO3-y or h-WO3 forms. It is noted that there is no sharp division 

line between h-WO3 and HATB. The difference between these two phases is caused mostly 

by the more oxidized state of tungsten atoms in h-WO3 and also by the lower occupancy of 

the hexagonal channels in the case of h-WO3 [53,54]. Between 500-600 °C the as-formed 

HATB/h-WO3 then transforms in an exothermic reaction to the more stable monoclinic 

tungsten oxide. In air, the decomposition sequence of APT is quite similar. In the oxidizing 

atmosphere, as a difference the as-released NH3 starts to burn above 250-300 °C, changing the 

DTA peaks into exothermic. The exothermic formation of m-WO3 takes place at 50 °C lower 

temperature in air than in inert atmosphere. 

Our results have shown that below 170-200 °C, similarly APT, AMT lost its crystal water 

content. A clear difference was that while between 170-240 °C dry NH3 is released from 

APT, no dry NH3 evolution was observed in the case of AMT in this temperature region. The 

collapse of the starting crystal structure and the formation of an amorphous phase between 

250-380 °C were similar in the case of the two materials. The exothermic crystallization of 

HATB/h-WO3 and its exothermic transformation into m-WO3 at elevated temperatures was 

also similar.  

To conclude, the thermal decompositions of APT and AMT are similar; the main difference is 

that the release of dry NH3 between 170-240 °C does not take place in the case of AMT. 

 

Conclusions 

 

We have studied the structure, morphology and thermal decomposition of two commercially 

available ammonium metatungstate (AMT1 and AMT2) materials by SEM, FTIR, XRD and 

TG/DTA-MS. The need for our research was that there had been no previous studies on the 

thermal behavior of AMT. 

The cell parameters of the AMT1 sample were determined, and its XRD reflections were 

indexed after full profile fit. It was found, that the XRD patterns and FTIR spectra of both 

AMT materials, which had different CAS numbers, were basically the same. The samples 

only differed in their morphology.  
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The thermal decomposition of AMT involved several steps in inert atmosphere: (i) release of 

crystal water to get dehydrated AMT between 25-200 °C; (ii) formation of an amorphous 

phase between 200-380 °C, from which (iii) hexagonal WO3 formed between 380-500 °C, 

which then transformed into the more stable m-WO3 between 500-600 °C. As a difference 

compared to inert atmosphere, in air the as-formed NH3 ignited with an exothermic heat 

effect. 

Similar to their XRD patterns and FTIR spectra, the two AMT materials had identical thermal 

decomposition courses as well. Thermal data confirmed that both AMT1 and AM2 had the 

formula (NH4)6[H2W12O40]∙4H2O. 

The thermal behavior of AMT resembled to the widely studied APT. The main difference 

between them was the lack of dry NH3 evolution between 170-240 °C in the case of AMT. 
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Tables 

 

Table 1. Powder XRD data of ammonium metatungstate hydrate, (NH4)6[H2W12O40] 4H2O 

obtained after full profile fit (LOI(c) = 7.86; Orthorhombic; S.G.= Pcca [54]; a0 = 33.438 Å, 

b0 =17.425 Å, c0 =14.112 Å; MAC=128.89 (CuKα); Dx = 4.863 g cm
-3

; Z = 8; V = 8222.46 Å
 

3
; Internal standard: Si) 

Nr. d/ Å 2/ ° Rel. Int./ 

% 

h k l  Nr. d/ A° 2 / ° Rel. Int./ 

 % 

h k l 

1 10.420 8.485 4.2 1 1 1 

 

51 3.322 26.841 5.0 9 2 1 

2 9.170 9.645 100.0 2 1 1 

 

52 3.303 26.999 13.1 3 1 4 

3 8.712 10.153 14.6 0 2 0 

 

53 3.242 27.513 4.5 5 4 2 

4 8.359 10.583 10.8 4 0 0 

 

54 3.237 27.552 1.0 3 5 1 

5 7.817 11.319 0.6 3 1 1 

 

55 3.230 27.613 4.0 9 1 2 

6 7.537 11.742 0.7 4 1 0 

 

56 3.209 27.799 5.0 2 2 4 

7 7.238 12.229 0.3 1 2 1 

 

57 3.195 27.923 19.0 4 1 4 

8 6.777 13.064 0.7 2 2 1 

 

58 3.182 28.045 14.0 1 4 3 

9 6.648 13.318 0.2 4 1 1 

 

59 3.138 28.442 12.3 7 4 1 

10 6.501 13.622 1.0 2 0 2 

 

60 3.120 28.607 6.0 5 0 4 

11 6.173 14.349 0.5 3 2 1 

 

61 3.111 28.695 3.0 1 5 2 

12 6.091 14.543 2.0 2 1 2 

 

62 3.086 28.930 4.0 6 4 2 

13 6.032 14.686 3.4 4 2 0 

 

63 3.072 29.064 5.5 3 4 3 

14 5.710 15.520 3.5 5 1 1 

 

64 3.057 29.217 12.4 6 3 3 

15 5.641 15.711 3.7 3 1 2 

 

65 3.048 29.301 5.0 10 2 1 

16 5.547 15.979 2.7 4 2 1 

 

66 3.019 29.590 2.0 5 5 1 

17 5.487 16.155 6.6 2 3 0 

 

67 2.977 30.015 2.0 10 1 2 

18 5.392 16.440 17.5 4 0 2 

 

68 2.938 30.428 2.8 5 2 4 

19 5.303 16.718 4.2 1 3 1 

 

69 2.928 30.526 3.4 7 4 2 

20 5.210 17.018 2.2 2 2 2 

 

70 2.911 30.717 3.2 3 3 4 

21 5.114 17.342 22.5 2 3 1 

 

71 2.839 31.517 18.8 10 3 1 

22 4.968 17.853 27.3 6 1 1 

 

72 2.831 31.606 8.0 5 5 2 
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23 4.920 18.029 2.1 3 2 2 

 

73 2.813 31.817 7.6 11 2 1 

24 4.854 18.278 1.9 5 0 2 

 

74 2.804 31.914 3.0 2 6 1 

25 4.770 18.602 0.4 4 3 0 

 

75 2.792 32.061 3.5 11 0 2 

26 4.585 19.360 15.6 4 2 2 

 

76 2.761 32.428 13.5 7 5 1 

27 4.500 19.728 1.6 1 1 3 

 

77 2.757 32.481 5.0 11 1 2 

28 4.445 19.977 9.6 1 3 2 

 

78 2.725 32.862 1.5 6 5 2 

29 4.383 20.263 15.4 2 1 3 

 

79 2.706 33.111 2.4 2 4 4 

30 4.356 20.387 8.3 0 4 0 

 

80 2.696 33.232 2.0 8 0 4 

31 4.206 21.125 5.4 3 1 3 

 

81 2.686 33.364 4.2 0 6 2 

32 4.188 21.216 11.0 5 3 1 

 

82 2.681 33.428 3.0 10 3 2 

33 4.131 21.514 0.8 1 4 1 

 

83 2.664 33.639 2.9 8 1 4 

34 4.064 21.868 6.3 8 1 0 

 

84 2.655 33.757 8.0 4 5 3 

35 4.015 22.138 4.1 7 2 1 

 

85 2.652 33.793 5.0 10 4 0 

36 3.991 22.278 3.6 4 1 3 

 

86 2.624 34.170 6.3 9 4 2 

37 3.952 22.500 6.5 4 3 2 

 

87 2.618 34.257 5.3 5 6 1 

38 3.899 22.806 1.9 3 4 1 

 

88 2.610 34.355 7.0 3 2 5 

39 3.863 23.022 10.1 4 4 0 

 

89 2.601 34.481 4.5 10 2 3 

40 3.769 23.609 3.3 8 2 0 

 

90 2.575 34.836 2.5 6 6 0 

41 3.725 23.892 7.3 5 3 2 

 

91 2.564 35.003 2.6 12 1 2 

42 3.709 23.991 3.0 4 2 3 

 

92 2.558 35.076 2.5 9 0 4 

43 3.684 24.157 2.4 1 4 2 

 

93 2.550 35.197 2.3 7 3 4 

44 3.596 24.758 9.6 8 0 2 

 

94 2.531 35.465 1.8 9 1 4 

45 3.571 24.934 11.3 2 3 3 

 

95 2.516 35.683 6.6 11 3 2 

46 3.534 25.202 5.3 5 4 1 

 

96 2.512 35.740 3.5 12 3 0 

47 3.522 25.288 9.3 8 1 2 

 

97 2.492 36.046 8.3 5 2 5 

48 3.389 26.301 10.9 4 4 2 

 

98 2.484 36.160 2.0 12 2 2 

49 3.364 26.500 2.0 3 0 4 

 

99 2.473 36.335 4.6 1 5 4 

50 3.335 26.732 5.5 6 4 1 

 

100 2.464 36.459  4.8 1 6 3 

 

Figures 
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Figure 1. SEM images of (a) AMT1 and (b) AMT2 

 

 

Figure 2. FTIR spectra of (a) AMT1 and its thermal decomposition products in nitrogen and 

(b) AMT2 
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Figure 3. XRD patterns of (a) AMT1 and its thermal decomposition products in nitrogen and 

(b) AMT2 

 

 

Figure 4. TG/DTA and evolved gas analytical MS ion current curves of the thermal 

decomposition of AMT1 in nitrogen 
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Figure 5. TG/DTA and evolved gas analytical MS ion current curves of the thermal 

decomposition of AMT1 in air 

 

 

Figure 6. FTIR spectra of the thermal decomposition products of AMT1 in air 
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Figure 7. XRD patterns of the thermal decomposition products of AMT1 in air 

 

 

Figure 8. TG/DTA curves of the thermal decomposition of AMT2 in nitrogen 

 


