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ON THE REGULARITY OF THE SOLUTIONS
OF THE VARIATIONAL INEQUALITIES

Robert Kersner

INTRODUCTION

Let X be a real Hilbert’s space , X' be the dual to X space (i.e. the space of linear
functionals on X).

Let a(u, v) be a bilinear, not necessarily symmetrical form on X satisfying the fol-
lowing conditions (J|..||-norm on X): :

(D) la(u,v)I<cllullllvil; wu v from X, c¢> 0 constant
2) a(v,v)= a|vl?® for every vE X, a> 0 constant .
R C X is a closed, convex set, f is an arbitrary element of X'.

Problem A. Find such an element u of R such that

3) a(u,v—u)=({,v—u) forevery v from R, where
(f, v — u) is the value of f on the element v —u .
In [1] it is proved, that the problem A has a unique solution. The inequalities of type (3)
are called variational inequalities. Their significance lays in the fact that with their help one

can search important problems arising in physics and leading to the non-standard boundary
problems of the equations with partial derivatives. For illustration this see an example (cf. [4]).

Let © be an open,' bounded set of the space R™, I' the bound of Q.

Problem B. (cf. [5]). Find the function u= u(x) = u (xl, e xn), where x from
Q, for which
: n 2
4) —Aut+u=f in @, A=3Z—3, and
i=1 axi
(5) u>0, 2%>0 w--3%-0 on I, where

v is the external normal to T .
We verify that the problem B is a simple variational problem of type (3).

Let us denote the Sobolev’s space, i.e. the space of functions belonging together with
their first derivatives to L2 (Q), by W; (22). This is a Hilbert’s space, the scalar product is
defined by
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Define a functional on W;(Q) (supposing that f from L2(Q))

Jv) = —7f W+ 3 (a" )dx - [ fdx .
Let KC W; (2) be a set of (almost everywhere) non-negative on. I' functions. K is

obviously a closed and convex set.

Let us prove that the problem B is equivalent to the problem of finding InfJ(v), where
v from K and consequently, it allows a unique solution. Indeed, the function J(v) is con-
tinuous and stri'ctlyAconvex on W% and J(v) > + e when ||[V] - . There exists a unique
u from K, that

(6) J(w) < J(v)

for every v from K. (cf [7]).

Set a(u,v)= f(u- v+ g: —g— a; )ydx. It is clear, that
Q = i
(7 '), v) =a,v) —(f,v).

The inequality (6) is equivalent to (J'(u), v —u) > 0 for every v from K.
From this and (7) we obtain

®) { a(u,v —u) = (f,v—u) for every v' from K

u comes within K .
So we came up to the problem A. We shall verify that (8) is equivalent to (4) - (5).

Let us suppose, that the function ¢ is infinitely differentiable and let has a compact
support. (The support of a function ¢ (denoted suppy) is the closure of the set of the
points, where ¢ is different from zero.) Substitute v= u * ¢ in (8). We obtain

%) a(u, p) = (f, 9),

consequently u satisfies (4) in sense of distributions in . Multiply (4) by v —u, and
integrate the obtained equality on £ and apply the Green’s formula, we obtain

f (v wdr+ a(u,v—u)=(F, v—u).

Thus, (8) is equivalent to the following:

uekK, —Au+u="f
(10) {

fau

k. (v—-—u)dr >0 forevery v from K .
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It can be easily proved that u=>0 on I', [ g—g (v—-—u)dr 2 0 forevery v from K are
equivalent to (5). -

Other problems of physics and functional analysis leading also to variational inequal-
ities one can find in [6]. In this paper we have proved the a priori estimations of the solution
of the inequalities of type (3).

A few words on the notations:

a € A means, that the element a comes within A; Va for every a; Va € A = for every

a from A a=| ay, I a matrix with element ay;.-
(,) the scalar product in the number space R® [§|* = E giz s W= u (x) = %, ;
au o :
3 R
n

The essential maximum of a measurable in Q function f(x) is the constant M, that
f(x) < M almost everywhere and Ve > 0 mes{x EQ: fx)>M — e} = 1.

Riesz’s theorem: When u(x) € Lp (2) Vp=1 then

lim ||ull_ = vrai max |ul,
p—>o p Q

1/ . : x 5
where ||u |lp = (fluPdx) ® and vrai max |u| is the essential maximum of |u].
Q Q

THE A PRIORI ESTIMATIONS

Let © be a bounded domain in R", W% = \-V% (£2) is the Sobolev’s space. (u € W% <
aueWé and u=0 on 9Q) R={v€W}2:v>0 on Q}.

Let fe LZ(Q Do A= |l ay; I, a, = aij(x) be bounded, measurable functions on

Q, (la;I<A) and (at, )>N'jg?, VieR", Vxeaq.
Let us see the following problem (”’problem A”):
Find the function u(x) from R, that
(11) s{(aux,(V—u)X)dx>{{ f(V—-udx VVeR.
It is known (cf. [1]), that the problem A has a unique solution. Further the properties of this
solution are studied. .
Theorem 1. Let u(x) be the solution of the problem A;

n
fe Lp(Q), P> 5
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Then vrai max u2<c||f||L @) where c=c(n,p, A, 2) .
Q P

Proof. Let the function F (u) satisfy the conditions
a) F'w=0, F'(uy=0, at uz=> u,

b) F(@) isdefinedat u>=0

¢) Fw=0, F@)=>0 F@O=0.

The function F(u)l-l F(u g{lu) is bounded on the u-axis, so if e > 0 is suffi-

ciently small then the function V= u — eg(u) comes within R .
Substitute it (11): -

(12) J (au, (g(w) )dx< Jf- g(u)dx.
Q Q

As (g(w), = F'2(u) u + F) F’"(u)u , we obtain from (12)

(13) f(auxF'(u), uxF'(u)) dx + f FF"(u) (au , u )dx < f fFu)F'(u)dx .
Q Q

The second integral in the left-hand side is non-negative, we omit it.
Set w = F(u). From (13) we have

f wldx < A | f fEu)F'(u)dx|=Al.

Estimate I in two cases: 1) F(u) = u. Then

(14) < SIfludx<ifiy, - Huly,

The following fact is known (Sobolev’s inequality, cf. e.g. [3]):if u € Wé then

as) - (flulPkdn™® <cm) s uldx,
2 Q

where 1 < k< ﬁ— at n> 3 and k is an arbitrary positive constant at n = 2.
From (14) and (15) we obtain the estimation

1
(16) (fukdx) < clfig
Q P

2) F(u) is one of the members of the serie convergent to u™ (m > 1) in norm of ct.

Set z = u™. Suppose that z € qu(Q ); % 3L 1, The function w = F(u) can be

p
chosen so, that uF'(u)F (u) < mu?™ = mz? and FW)F'(u) < mu?™ ! = mz "5
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Due to Hélder’s inequality we have

: 1 1 1
2(l==) 2q(1- =— L
[<miff2 2Mdxi<mifl, - (f2 T Imgxye
As
1 1 1 1.1
2q(1- =—)  — e TR T
(fz T dx)? < (mesQ)?™4 (g zzqu)( 2m)’q =
Q Q
gl . oL FIL
= (mesQ)2™4. N 2m
ot 5 j s
(17) I<mifl, - ml(mes@)?™d-m-N 2m,
P

B
Apply the inequality |ab| < Lzli + Lg[—, -(1; + 31 =1, a>1 to (17), setting

1 1
1_— _ P S
a=mN 2m b=mlmesQ)2m1 4= zmzrfl and B = 2m:

I<c@m®N+m2™).|f|, , thatis
p’

T
4l fw2dx < clifll, [m3(f z29dx)% + m™2m] .
2 P Q :

In this inequality due to Fatou’s lemma one can take w - z where w= F(u), z = u™:

I
f22dx < clifl, [m?(s 229dx)? + m™2™] .
Q p Q

Having combined this inequality with (15) (at u = z) we obtain the estimation

1

-1_ —
(19) (J z2%dx)* < ¢ fll, [m3( [ z29dx)9 + m—2m] .
2 P Q

Set k=n—22-. As q=p—E—1— and p>—%, k>q (at n= 3).
If n=2 thenlet k€ (q, 2) .

Set m = (%)", s 1.0 ... wnd
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Note, that m3 <¢’. (19) gives

, 5} L ey
(20) < (c""le‘;’_l +em2mym < ¢ k

5 + (3?7
i

[©

v-1

1
From the inequality (15) follows, that 8, = (r uzkdx)k < o . From (20) we obtain succes-

sively e, <, 8, <, etc Iterate (20):

= 1
Z+1(h” = Q\2Zpy e m
o, <cT (0 + F(OINANT

Due to Riesz’s theorem

1

vrai max u? < lim © < c[(f u®dx)k + 1].
Q p—>o0 V Q

Having combined this with (16) we obtain the statement of the theorem.

K‘o -ball with radius p ; vrai max u= M, vraiminu = m, osc(u; Kr) =M —m;

K K

I I

vrai max u = MO.
Q

Q, = {xeq: dist(x,92)>6}, &<1, dist(x,5Q) the distance from x to 6%.

Theorem 2. Let u(x) be the solution of the problem A. Then for each X, X, € Q;

the estimation

a
lu(x;) —uX,)) < cIx; —X, |

is valid, where c, and « depends only on n,p, A, A, M, f and §.

)

Lemma. Let u(x) be the solution of the problem A; fé& Lp(Q ), P %;
& .

- S | T
r2||f||Lp(K2r)<l where y =1 I ; r< ¢.

Y

When m <1

osc (u; K ) < n * osc(u; Kr) where 1n € (0, 1) is constant.
i

(If M_rz_ﬁ > 1 then obviously osc (u; KL) <osc(u; K)=M —m<17).
5 :

Proof of the lemma. Suppose that K, C . Let ¢ (x) > 0 be a function satisfying
the Lipschitz’s condition, supp ¢ (x) C K2r :
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1 at 0<|x|<T
n(x|)= 0 at |x|=>2r

—Ixl 4 reixi< 2.

1i

Take one more function G (o) defined at o > 0 and satisfying the conditions
) G"(0)>G?%@0), G@<0, G@©)=>0
2) G()~-lno at o->+0
3) G@=20 at o>1.

There exists such a function, e.g.

G(o) =

o2 3
——2-+ 20 — Ino == at o€ (0, 1]
at o2 1.

There are two cases:

a) uz= M+ m on a certain set N C Kr with mesN > —5— mesKr or
b) u<—M—E—1n— on the set N .
_ u— —2—M 1m
If the case a) is true the function v = 1 + == on N is not less then 1. It is
Lo

clear that v{1) > 0.
Let ¢ > O be an arbitrary number, we shall choose it later. The substitution
V=u-GrD + ey

is allowed in (11). Having substituted we have
J@, @6V + y) )dx < 2= 1/f+ G + e)y dx| .

(Here and further the integrals are taken on supp y .)

In the case b) we take the function v(?) = 1 — uﬁWT . It is obviously that
v >1 on N and v(?) > 0.
Verify that the substitution

V=u+2AGE? + ey,

when A = 0 is sufficiently small, is alloved in (11).
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Indeed, when v2) > Ii G’(v(z) + ¢) = 0 due to the definition G. And if v(?) < 1, then
M — M—.E—m-v(z) > %—ln—> 0 and when A > 0 is sufficiently small A lG'(v(z) + o)<

M+ m
S0

< since G'(v{2) + ¢) is bounded.

Substitute V in (11) and divide both sides by A > O:

@, (G + ) ) dx < gr2— 11f - G'¢VP + e)y dx|.

2)

Thus, both functions v = v{1) and v = v(?) satisfy the inequality

1) flav,, G"(v + )V, ¥) + (av,, G'(v + )y )1dx < == fIf- G'y |dx .
As G" > G? and |G'(Vv+ €)|< —; , from (21) follows
(22) NaG'(v+ e) vy, G'(v+ v )y + @G'(v+ e) v, ¥ )]dx < G(M—Em)ﬂflwdx-

If one omit the first component on the left side of (22) (which is non-negative), then one can
see from the obtained inequality that the function z = G(v + €) is the non-negative general-
ized subsolution of the equation

n 2
S 'E (aij(x) in')xj = ?(M——

£
1,j=1 =g

It is known (cf. [2]) that if g——< 1, =< 1, "2} 1y then
: M—m >~ "¢ " Lp(Kop)
(23) vrai max z2 < ¢(r ™ T 22dx + 1).
KL ' *
2
Set in (22) ¥(x) = n%(1x[) and z = G(V + ¢)
(24) /az,m, z n)dx + 2f(az n,n )dx < _e(Tz—_rrTT Fifin*dx .

Apply the inequalities (az n, z,n) > z n 2 and 2 l(az,n, n ) I< AEizn 2 + 'ﬁr ni)

where E > 0 is an arbitrary number; we have from (21)

X [12,n 2 dx < ABS1z,n 2 dx + 4 fn2 dx + e /I f1n? dx .

Set E = —2%\-2

(25) flzen 12 dx < H2A% fn2 dx + iy S I fin? dx .

Estimate the right-hand side of (25): 4A2A2 | ni dx < e ? since In, I < —1— :
Kor
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ke [GAL 2 4\
M= me k), 117 X< Wy Ml x,,y mes Ky)
5
W . i I
T M= e "f”l.p(lczr) r

since 2y + n — 2 = n(l —%).
Due to the conditions of the lemma, we have

(26) f 22dx < o E,
K

) &

It is known (cf. [3] or [2]) that if w(x) € WL(K), N, C K, mesN, >+ mesK,

then r™® [ |Jwi2dx<c(r' ™ wi dx + r " f w? dx).

K K N;

I r

Set here Nl =N, w=2z Asv=1 on N, z=G(v+ ¢€)=0 on N and consequently

[ Z2dx=cJ zidx,

K K

I T

and this inequality combined with (26) gives the inequality

27 fz22dx < e .
K

)

Having combined (27) and (23) we obtain

vrai max 22 < ¢ i.e. —z7 2= —\/c1 = —C,
K.L
2

or due to the definition of the function z= G(v+ €): In(v+ ¢) > — C, that is

02 W »
(28) v+e=>e = C4 in K_;_,c3€(0,1).
o = ‘27‘ C3 -
Beside the condition ¢ ! - r? < 1 we require that e < —5— were fulfilled, which can be
reached by decreasing r, since c, doesn’t depend on r. If it is valid, then from (28) fol-

c
lows that in K_I_ > —7—3= C4r C4 € (0, —%—). This means in case a) that
2

u._
; - :
1+ R Oy ie. u» 5 ¢ tm in K

Asm

N"—l
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= c
osc(u;Kr)<M-—MTmc4 —m = (1 —74)(M —m)=1q-* osc(u;Kr).
2
In case b)
. MLE I
1———M—'__—m—'>c4 1.} u<M—L-_2—m—C4 in K_:_’
Xsm z
o)

osc(u; K_L) <M - Lz——m c, —m=q osc(u; Kr) !
2

The lemma is proved.

The theorem 2 can be easily obtained from this lemma (cf. [2]) if we set a = min(log L)
2
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Summary

On the regularity of the solutions of the variational inequalities

The paper deals with apriori estimates of the solutions of the so-called variation inequalities. It
proves that on adequate conditions the solutions have bounds and satisfy the Holder condition.
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Pes3wwMme

(@) PEeryndapHOCTH pelieHud BapHAUHMOHHBIX HepPaBeHCTB

B pa6ore paccmaTpuBaloTCd aANpHOPHBIE ONEHKHM pPEIIeHM# Tak Ha3bIBa@MBIX Ba=
pHALMOHHEIX HepaBeHCTB, [lokasbiBaeTcd, 4WTO NpH MOAXOAAIMX YyCJIOBHSAX pelie—

HUS OrpaHHuYEHHbIe W yOOBJeTBOPHIOT ycaosuio I'enbaepa,
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