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Abstract

We have considered the equilibration in relativistic heavy ion collisions at
energies 1-7 AGeV using our transport model. We applied periodic bound-
ary conditions to close the system in a box. We found that the thermal
equilibration takes place in the first 20-40 fm/c which time is comparable to
the duration of a heavy ion collision. The chemical equilibration is a much
slower process and the system does not equilibrate in a heavy ion collision.
We have shown that in the testparticle simulation of the Boltzmann equation
the mass spectra of broad resonances follow instantaneously their in-medium
spectral functions as expected from the Markovian approximation to the
Kadanoff-Baym equations employed via the (local) gradient expansion.
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1. Introduction

In the past half century a great amount of effort was put into understand-
ing the dynamics of relativistic heavy ion collisions. In these collisions only
the initial and the final state is known experimentally, so the link between
them needs to be provided by theoretical tools that describe the hot and dense
medium created by the collision. The theoretical models are developed in two
directions: In the thermal and hydrodynamical models [1, 2, 13, 4, 5] some
kind of equilibration is assumed, while in transport models [6, 7, 8,19, [10] the
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propagation of all particles is followed. In the first case some very simple, but
rather strong assumptions are needed (global or local equilibration, thermal
and chemical freeze out at equilibrium), and in the second case there are a
lot of small details which should be approximated, and the model building
and the calculations are rather tedious. It is desirable to compare the two
approximations. For that purpose we use a transport-model calculation for
a system, that is restricted to limited volume, which we will call the box in
the following discussion. We study the timescales needed for thermal and for
chemical equilibration of the box.

Another important question addressed in this paper is the modification
of the properties of resonances in the nuclear medium. We focus on the vec-
tor mesons p and w, since their in-medium properties are closely related to
the experimentally observable dilepton spectrum. We expect their spectral
function to undergo a significant change in the medium, hence we reckon
the mass distribution of the created mesons to differ significantly from the
vacuum spectral functions. How the mass distribution of these resonances
change during the collision is a non-trivial question. In the year 2000 Cassing,
Juchem [11,112,13] and independently Leupold [14] derived a system of equa-
tions from the Kadanoff-Baym equation, which approximately describes the
propagation of resonances in a strongly interacting medium. These equations
were implemented in several transport codes [15, [16, 12, 17, |8]. The propa-
gation of the spectral function of vector mesons was studied by Schenke and
Greiner [18], too, by directly solving the Kadanoff-Baym equations without
approximations. Here the background was a thermal medium with changing
parameters. We studied the modification of the vector meson spectral func-
tions in our transport model (restricted to a box) by applying the equations
of Cassing, Juchem and Leupold and compared our results to the quantum
field theoretical results of Schenke and Greiner.

Our paper is organized as follows. Essential features of our transport
model are outlined in Section 2l The details and the numerical results of our
box-simulations are presented in Section[3l In Section [l we study analytically
and numerically the evolution of mass distributions of the vector mesons in
thermal medium. Discussion and summary can be found in Section [l



2. The BUU model

The Boltzmann—Uehling-Uhlenbeck (BUU) model [6, [7, I8, 9] is a mi-
croscopic transport model, which is based on the Boltzmann-equation and
includes besides collisions an electromagnetic and a strong mean-field inter-
action between the particles. The equations are solved by approximating dis-
tributions by testparticles and using the parallel ensemble method. The ele-
mentary particles of our version of the model |15, 16] are baryons and mesons:
N(938), N(1440), N(1520), N(1535), N(1650), N(1675), N(1680), N(1700),
N(1710), N(1720), N(2000), N(2080), N(2190), N(2220), N(2250), A(1232),
A(1600), A(1620), A(1700), A(1900), A(1905), A(1910), A(1920), A(1930),
A(1950), A(1116), ¥(1193), 7, n, p, o, w, KT/K° The data of the reso-
nances are partly taken from the Particle Data Group summary book[19],
and partly from fits to 7NV collision data. The o is a scalar-isoscalar meson,
which simulates correlated pion pairs.

In the initial state of the program there are two heavy ions flying towards
each other, and the final state of the program contains the particles leaving
the collision. The evolution of the system is carried out in discrete time
steps, until the interaction between the particles becomes negligible. In each
time step we update the momentum and the coordinates of each particle,
and test if there are any collisions. Two particles collide, if their distance
in their center-of-momentum frame is smaller than \/g , where o is the total
cross section of the collision. In the case of inelastic collision the particles
can cease to exist and new particles can emerge from the center of their col-
lision (while respecting the conservation laws). If in a reaction a resonance
is produced together with another particle, then the energy-momentum con-
servation does not determine alone the mass of the resonance. The resonance
mass is randomly chosen according to its spectral function and the available
phase-space:

_ A(Mres)pf(Mres) (1)
f dMTES'A(MTES)pf(MT’GS)7

where A(M,.s) is the spectral function of the resonance and p; is the out-
going resonance momentum in the center of mass frame of the microscopical
collision.
The interactions incorporated in the program are shown in Table [l
Between collisions the testparticles move in an electromagnetic and a
nuclear mean-field potential. The electromagnetic potential is the sum of
the Coulomb potentials of the charged testparticles. It affects the motion of

S(Mes)
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NN < NN NR < NR
NN < NR NR < NR'
NN + A(1232)A(1232) R+ Nm
R & YK R < AK
R+ A(1232)7 R < N(1440)7
p > T O T
W > pm NN < NNm

Table 1: The types of collisions implemented in the model. The N without mass specifi-
cation means nucleons, R and R’ denote arbitrary baryon resonances, while m denotes an
arbitrary nonstrange meson (m,7, 0, p,w).

all charged particles. The nuclear mean-field potential only interacts with the
baryons, and depends only on the local baryon-density and the momentum
of the testparticle. The concrete form of the interaction is the following:

T 2 3./ !
Po p po ) (27%) 1 4 (p2R))

where p is the local baryon density, py = 0.168 1/fm? is the normal nu-
clear density, f(r,p) is the distribution function of nucleons. The param-
eters of the model are given by: A = —26.09 MeV, B = 56.59 MeV, C =
—64.65MeV, 7 = 1.764 and A = 2.168fm™'. These parameters are obtained
by a fit to the binding energy, to normal nuclear density, to compressibility
and to the nuclear optical potential properties [20]. The local baryon density
is calculated in the following way: we assign a Gaussian density distribution
with 1fm width to all testparticles, and we calculate the total density coming
from these contributions on a 1fm cubic grid. The program calculates the
electric charge density the same way. This potential is the generalization of
the momentum independent Skyrme-potential. The momentum dependent
part of the interaction is basically a Yukawa coupling with a scalar particle
with mass A. Since the potential used is clearly nonrelativistic, problems can
emerge from the fact that we carry out the propagation of particles in lab-
oratory frame, and calculate collisions in center-of-momentum frame of the
colliding particles. Instead of using the nonrelativistic potential, we define
the following potential U in the center-of-momentum frame of the matter
flowing around the testparticle:

VP2 +m?+U"(xr,p) =+/p>+ (m+ U(r,p))>. (3)
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We treat U as if it were a relativistic scalar potential, and this way we can
calculate the potential in any frame. The propagation of the testparticles is
carried out with predictor-corrector method. More details of the model can
be found in [15].

3. Modeling of strongly interacting matter in equilibrium

By introducing periodic boundary conditions for outgoing particles of a
heavy ion collisions, we can model strongly interacting matter on hadronic
level. We initialize the system from a 2C' + 2C collision. After the colli-
sion take place, we introduce periodic boundary conditions, so that particles
coming from the center of the collision cannot leave a finite volume. For
simplicity we choose this finite volume to have cubic shape, and from now
on we will refer to it as the box.

It is important to investigate if the created system gives a good model of
strongly interacting matter. Since the equations of the BUU model conserve
baryon number, it cannot change over time. However nothing guarantees
the conservation of energy, or the number of mesons. The equations of the
BUU model do conserve energy, (although not with the “off-shell propaga-
tion” explained later) but numeric approximating methods that solve these
equations do not have this pleasant property. In our model we demand that
our system has constant total energy over time. If our system fulfills this
demand, we would like to observe the process of thermalization and chemical
equilibration.

3.1. The periodic boundary condition

In our model we employ periodic boundary conditions in order to keep
the outgoing particles in the box. We contain the particles in the following
volume:

—a/2 <z <a/2,
—a/2 <y<a/2, (4)
—a/2 < z<a/2,

where a denotes the size of the box. We introduce this boundary condition
in the following way: if a particle gets outside of the box during propagation,
we shift the appropriate coordinate of the particle by a, so that the particle
gets back to (the other side of) the box. Instead of changing the coordinate,



we could have mirrored the momentum of the particle to the wall of the box,
imitating an elastic collision with the wall, but because of the momentum
dependent potential, this would break the energy conservation.

In Section [2] we mentioned, when calculating the values of the mean-field
potentials, the program evaluates baryon and electric charge densities on a
1fm cubic grid. When a particle leaves the box and re-enters it on its other
side, we would like its momentum to change smoothly, and the total energy
to be conserved. This means that the mean-field potentials have to change
continuously in these transitions, and the density functions have to obey the
following relations:

p(a/Q, Y, Z) = p(—a/2, Y, Z) vyv <,
p(x,a/2,2z) = p(x,—a/2,z) Vz,z, (5)

p(at,y,a/?):p(a?,y,—a/Q) \V/l',y

These equations can be easily fulfilled by calculating densities at all points
of the grid (also outside of the box). Then in a given point we carry out the
following summation:

p’(x,y,z)zzzZp(:c+i~a,y+j~a,z+k-a). (6)

i=—1j=—1k=—1

This way the densities will be equal at arbitrary opposing sides of the box,
and there will not be any discontinuities during propagation of particles.
The summation of densities can be justified the following way: in an infinite
medium particles outside of the box would interact with the particles inside
the box and if represented by Gaussian density profile, the exterior particles
would modify the density inside the box. By using periodic boundary condi-
tions the opposing side of the box acts as matter outside of the box. During
our work we used a cubic box with edge length a = 5fm/c. When choosing
edge length one should remember that the densities are calculated on a 1fm
grid, and periodic boundary conditions demand that a grid point shifted by
a parallel to any grid axis should fall on another grid point.

3.2. Stability of the system

Having defined the initial condition of the system and the boundary con-
ditions, now we turn to the stability of the system we created. Since we
would like to give a model of strongly interacting matter, we wish to keep



the temperature of the system and the particle content roughly constant.
Hopefully this can be achieved by fixing the total energy of the system. The
total energy of the system can be divided into five distinct parts: kinetic en-
ergy of mesons, kinetic energy of baryons, rest mass of mesons, rest mass of
baryons and the energy of the fields. Since the mean-fields of the BUU model
can change the mass of particles, the definition of the previous energies are
not trivial. We chose to define the energies the following way:

Enarkin = 3 A9 + (my + Uy)? = (my + U3),

Ebarrest = Z(mz - mnu6>7

7
_ 2 2
Ereskin = Z \/ P; + m; —m;,
7
Emesrest = E m,
[

where the ¢ index runs over all particles, m; denotes the rest mass of the given
particle in vacuum, m,,. denotes the rest mass of nucleons in vacuum, p; is
the momentum of the particle and U; is the value of the nuclear mean-field
potential at the location of the particle, if the particle is a baryon. We defined
the rest energy of the baryons this way, because the total number of baryons is
fixed, so we removed a constant shift by subtracting m,,,. from every baryon
mass. In this total rest energy only baryon resonances contribute.

We plotted the above defined energies against time in a run initialized
with a 3 AGeV collision. In Fig. [0 and 2] we can see that under 1000 fm/c
the average value of particle numbers changes significantly, the system is not
chemically stable. In Fig. [Bl we can see that the total energy of the system
is not constant, it changes significantly under 1000 fm/c. Note however, that
the change of the total energy in real collision processes which take not more
than 40 fm/c is negligible. There are two sources of this effect. Equation
(I2), which we are solving is only approximately energy conserving [14, 21/,
and the numerical approximations of our model using momentum dependent
interaction also lead to small changes in the energy. This is an effect we want
to get rid of when performing very long simulations. The easiest way to do it
is to correct the total energy of the system in each time step to a fixed value
by hand. It is reasonable to apply modifications only on baryons in order to
fix the total energy. Denoting the loss of total energy per baryon by AF in
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Figure 1: Number of baryon resonances plotted against time in a run initialized from a
3AGeV C + C collision.
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Figure 2:  Number of mesons plotted against time in a run initialized from a 3 AGeV
C + C collision.
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Figure 3: Kinetic energy and rest mass of mesons and baryons plotted against time in a
run initialized from a 3 AGeV C + C collision.
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Figure 4: Kinetic energy and rest mass of mesons and baryons plotted against time in a
run initialized from a 3 AGeV C + C collision, with fixed total energy.



a time step, we transform the momentum of all baryons the following way to
fix the total energy:

\/(AE +V/P7 + (i + Ui)2>2 — (my; + U;)?
il

since this way all baryon particles gain AE energy:

pPi — P; = - Pi, (8)

E; = \/p;2 +(mi+ Up)° = \/PZ2 + (mi + U;)* + AE
— E+AFE. ()

This modification cannot be done in all cases, since AE can be negative, so
the factor multiplying the momenta can be imaginary. If the modification
cannot be done, then we add the AFE energy to another, randomly chosen
baryon.

3.3. Thermalization of the system

By fixing the energy of the system with the previously described method
we get a stable system. Our aim is to approximately determine the time
needed for thermalization. For this purpose we investigate first how quickly
the ratios of different energy types and the particle content become constant.
We plotted the above defined energies and particle content against time in a
run initialized from a '2C' + 2C collision now with fixed total energy. Using
this initialization the average density in the box will be 0.192 fm™* which is
somewhat larger than the normal nuclear density.

In Fig. dl we can see that in a 3 AGeV collision the ratios of the average
value of different energy types become constant in about 200 fm/c, and after
this transition time the ratios of the energies fluctuate around a constant
value. In Figs. Bl and [6] we can see that in a run initialized with a 7 AGeV
collision the number of particles with strangeness stabilizes also in about
200 fm/c. The number of particles without strangeness seems to get approxi-
mately constant much faster, but the conservation laws of energy and baryon
number relate the nonstrange with the strange sector, so the final thermaliza-
tion of the nonstrange particles happens at the same time when the strange
particles thermalize. When we decrease the energy by initializing the system
from 3 AGeV and 1 AGeV '2C 4 '2C collisions, we find that the equilibration
time increases approximately to 300 fm/c for the 3 AGeV and to 500 fm/c for
the 1 AGeV collisions.

10



25 T
N(938) ——

W A(1232)
| A(1116)
20 H 5(1193) —— A

15 |

A
0 R A A B AAIANAN I A AP AR

Particle multiplicities

; . . . . . .
0 50 100 150 200 250 300 350 400
t (fm/c)

Figure 5: Number of baryon resonances
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plotted against time in a run initialized
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total energy.
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Figure 8: Number of mesons plotted
against time in a run initialized from a
7AGeV Ca + Ca collision, with fixed to-
tal energy.

We also investigate what happens if we change the average density by
initializing the system from a *°Ca + *°Cla collision instead of a 12C' + 12C
collision with the same 7 AGeV colliding energy. In this case the average
density of the system is 0.64fm™® which is around four times the normal
nuclear density. At this density the chemical equilibration time reduces to
100fm/c (see Figs. [ and [{]), which is still much larger than the whole
reaction time in a real heavy ion collision at this energy.

Thus we can see that the full chemical equilibration takes more time, than
the average time of a heavy ion collision. Kinetic equilibration can however
be much faster. To examine this we plotted the velocity distribution of nu-
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pions at different times in a run initialized
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line show the Boltzmann distribution with
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cleons and the momentum distribution of pions at the initial stage of the
thermalization in a system initialized from a 7 AGeV C'+ C collision. In Fig.
[ we see that the velocity distribution of the nucleons becomes constant after
around 30-40 fm/c, which is comparable to the timescale of heavy ion colli-
sions. In Fig. [[0 we see that the same is true for the momentum distribution
of pions. When increasing the density by initializing from a 7 AGeV Ca+ Ca
collision we found no substantial change in the kinetic equilibration time. On
the other hand, if we decrease the initial collision energy to 1 or 3 AGeV, the
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kinetic equilibration time reduces to approximately 20fm/c as one can see in
Figs. [Iland 12l In Figs. [[0 and [[2] we show that the pion momentum distri-
butions converge to a Boltzmann-distribution with T=80 MeV and T=125
MeV, respectively. We can determine the temperature of the system from
the particle content or from the velocity or momentum distributions by fit-
ting to the corresponding quantities of the free hadron resonance gas. Since
our system is not a free gas, different methods of temperature calculations
give different results. We find that this uncertainty in the temperature is
less than 15% (Fig. [3]). The temperature of the pions falls somewhat out,
but the process NN <> N N7 may not fulfill the detailed balance completely,
and this explains that the pion number and momentum distribution give
somewhat different temperatures than the rest.

Similar investigation have been carried out in [22, 23, 24]. In [22, 23] they
studied thermal and chemical equilibrations at higher energies relevant for
AGS and SPS compared to our studies which is appropriate for SIS. In [24]
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the low energy case is studied as well, however, the correspondence between
the thermal and chemical equilibration temperatures are not investigated like
in Fig. 03 in this paper.

3.4. Simulation of varying density nuclear matter

In heavy ion collisions the density and the temperature of the nuclear
matter change rapidly. The rapidly changing density can modify the spectral
functions of vector mesons, which motivates us to try to simulate nuclear
matter with non-constant density. In the present work we aim to modify
density linearly in time, leaving the temperature of the system approximately
unchanged. The modification of density in our model can be accomplished
by removing baryons from the system. In Fig. [[4 and [[5 we can see how the
particle multiplicities change when the density is reduced linearly by a factor
of two under At = 4fm/c. After the reduction of density no transient effects
seem to happen, the multiplicities do not change considerably. The number
of p mesons and pions however seem to change a little, which is caused by
the change of the self-energy of the p mesons.

4. Resonances in dense matter

An interesting application of our nuclear medium is the investigation of its
effect on the properties of broad resonances. Similar numerical investigation
was carried out in [13]; however the equilibration of the mass distribution
was not studied there, and this is our aim here. As an example we study the
vector mesons, however, it applies similarly for other resonances as well. The
dilepton production of heavy ion collisions depends strongly on the spectral
functions of the vector mesons, therefore it is important to have a good
understanding of the modification of their spectral functions in medium. We
investigate this question by putting high number of vector meson testparticles
(p and w) in our box of interacting hadrons. We forbid their decay and any
collisions between them: they only interact with the medium via their density
dependent self-energies.

For the vector meson self-energies we chose the following form:

ReX E.t) = p(r,t
eX(r,p, E,t) = ReX(r,t) = —(MZ — M?) (r )’
Po (10)

ImX(r, p, E,t) = Im%(r,t) = — M, ((Fx — Fo)p(r, t) + FO) :
Po
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where M, is the peak value of the mass distribution in vacuum, I'y is the
vacuum width, p(r,t) is the local baryon density of the medium, py is the
average density in the box at the initial state, whereas M, and I', are pa-
rameters to be chosen. The parameters M, and My/M, T, correspond to the
peak location and width of the mass distribution in a medium with a density
p(r,t) = po. For the vacuum masses and widths we used the following values
for the vector mesons: M} = 768 MeV, I'§ = 150 MeV, Mg = 782 MeV and
I'y = 8.5 MeV. Although in our model we use energy-dependent widths for p
and w mesons, in this calculations we use energy independent width to avoid
unnecessary complications caused by C; in Eq. (I2) which can be sometimes
close to one in case of energy dependent width.

The masses of the vector meson testparticles are chosen randomly accord-
ing to a Breit-Wigner distribution:
2 Im¥(r, t)

AM? r,t) = —= 5 5 .
T (M? — Mg — ReX(r,t))” 4+ ImX(r, t)?

(11)

The time evolution of their coordinates are carried out according to the
following equations [14, [13]:

dX; 1 1

E? — P2 — M2 — ReXre
— <2P,- + Vp ReXj® + =17 o — Rei

Vpilnget) s

dt 1-— CZ QEZ ImZ;et
dP; 1 1 E2 — P2 — M2 — ReXret
v V. R Z(’et i % 0 LN v | Z(’et ’
dt 1-C,2E; ( X esy Ty XS
(12)
dE; 1 1 [0Rex;® E2?—P2— M2— ReX;® Olmy;®
dt 1—C;2F; ot Im¥7et ot ’
where
1 (OReX}®  E? — P? — MZ — ReXye glmyet
i — 3 (3 (3 (3 3 . 1
¢ QEZ < 0EZ + ImZ;-"Et 8E, ) ( 3)

With the momentum independent self-energies described in Eq. (I0) the
momentum derivatives of the self-energies can be dropped.

4.1. Analytical prediction for homogeneous systems

First let us analyze how the phase space coordinates of the individual
particles and their mass distribution change, if we neglect the density fluc-
tuations of the medium. If the density of the medium is constant in space,
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but changing in time, then the momenta of the particles are constant, and
the masses of the particles change according to the following equation:

d dReY;  MZ(t) — MZ — ReX; dImY;
—M;(t)? = : U 0 ‘ L. 14
TR < a Ty, ar ) (14)
Equation (I4]) can be reorganized to have the following form:
d 5 ) _ MZ(t) — Mg — ReX; dImY;
E(Mz(t) - MO - RGEZ) - ImY; dt (15>

It is worth making a few points here. According to Eq. (1) the peak of the
spectral function is at Mg +ReX(r, t). If we have a testparticle with mass just
at the peak of the distribution: M;(t)? = M2+ ReX;, then it always stays at
the peak of the spectral function independent of how the surrounding medium
changes. We now see that the peak of the mass distribution during the
whole evolution agrees with the peak of the spectral function calculated from
the self-energies at the local densities. The next question is what happens
with the mass distribution itself during the evolution. After some algebraic
manipulations of Eq. (IH) we get a relation, which can be integrated over
time:

%log (M7 (t) — Mg — ReXi(t)) = %log (Im¥;(t)) . (16)

After integration we can express the particles masses at any time using the
following relation [14, [13, 125):

MZ(t) — M§ — ReX;(t)  Im¥(t)
M2(0) — M2 — ReX;(0)  ImX;(0)°

(17)

Using this equation it is straightforward to prove that in the homogeneous
case the mass distribution will remain a Breit-Wigner distribution, but with
the self-energies changing according to the medium.

dM?

dM"?
Im¥(0, 0)
= A(M? — = = A(M”? 1

F(M™,t) = A(M?,0,0)

Here we used the fact that at ¢ = 0 the spectral function A(M?,0,0) de-
scribes the distribution of the masses, and that the mass distribution func-
tion changes according to the change of the mass square intervals. The last
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step can be proven by using the explicit form of the Breit-Wigner distribu-
tion. Similar result was derived in [14] after the gradient expansion for the
imaginary part of the retarded propagator which plays the role of the mass
distribution, however, up to our knowledge it was not deduced yet for the
testparticle dynamics (Eq. (I2])).

Our result tells us that if we simulate a mass distribution by testparticles
according to the local spectral function, and evolve it using Eq. (I2)), then the
mass distribution will always be the Breit-Wigner distribution with the self-
energies corresponding to the actual density. This means that in our model
there is no memory effect at all concerning the mass distributions. When
solving the Kadanoff-Baym equations themselves [18], substantial memory
effects were found. The equations of motion Eq. (I2)) does not have this
feature, so all the terms responsible for the memory effects present in the
Kadanoff-Baym equations must have been neglected during the gradient ex-
pansion, as Eq. (3.33) in [14] shows.

If we are interested only in the mass distribution of the resonances in a
transport model, we can use the spectral function at the given density, we
do not need testparticles and evolution equations for them to calculate the
distribution. However, if the momentum distribution and velocities of the
resonances also play role, then we should use Eq. (I2). Momentum distri-
butions are important for example when one is interested in the produced
dilepton spectrum. Also, when solving Eq. (I2)) we gain a knowledge about
how the vector mesons created in the dense matter get on-shell: we can
find out how much of the final energy comes from the mesons initial kinetic
energy, and how much energy comes from the medium.

4.2. Change of mass distributions in a dynamical model

Having seen in the previous subsection that in a homogeneous system
the mass distribution of the vector mesons should always follow the spectral
function of the medium without any delay, it is interesting to check whether
it is true also in the simulations. In principle there can be differences due
to density fluctuations. We test their influence numerically in the medium
presented in the earlier chapters.

We initialize the medium from a 7 AGeV 2C + 2C collision, while con-
straining the particles to the a = 5fm edge sized box. We let the medium
equilibrate for to = 300fm/c, and then we put in 10000 p and w testpar-
ticles with self-energies described in Eq. (I0), with random spatial coordi-
nates, zero momentum, and masses chosen randomly according to the local
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Breit-Wigner distribution Eq. (IIl). The density can be calculated from
the number of baryons in the system and the box size, and turns out to be
po = 0.192 fm 3.

80 T T T T T
Breit-Wigner ——
t=300 fm/c
nor =350 fm/c —— |
t=351 fm/c
60 t=352 fm/c 7
t=353 fm/c ——
B t=354 fm/c ——
“.'A 50
>
(&)
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0.6 0.65 0.7 0.75 0.8 0.85 0.9
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Figure 16: The distribution of masses of the w mesons at different times compared to the
Breit-Wigner distribution corresponding to the average density of the box. Parameters in
the self-energy are chosen to be M, = 682MeV, I';, = 8.5 MeV.

At first, we did not change the density of the medium, and we checked
if the mass distribution changes. We chose the self-energy parameters to be
My = 682MeV, I'Y = 8.5MeV, M? = 668 MeV and I'? = 150 MeV, so we
shifted their peak from the vacuum value by 100 MeV and we did not change
their width. We can see in Fig. [[6that in the case of w mesons even the initial
mass distribution differs significantly from the Breit-Wigner distributions.
This is due to density fluctuations: the average of different density Breit-
Wigner distributions does not give back the Breit-Wigner distribution of
the average density, but we get a broader distribution. Then the mesons
gain some momentum (they were initialized with zero momentum), and the
distribution broadens a little even more. For p mesons in Fig. [I§ this effect
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Figure 17: The distribution of masses of the w mesons at different times compared to the
Breit-Wigner distribution corresponding to the average density of the box. Parameters in
the self-energy are chosen to be M, = 682MeV, I', = 40 MeV. The density is decreased
from po to zero under At = 4fm/c.

cannot be seen: the mass distribution agrees well with the Breit-Wigner
distribution. Hence we can draw the conclusion, that density fluctuations
are only important in the case of very narrow resonances.

Now we discuss the evolution of mass distributions in the case of changing
density. In our model of strongly interacting matter this can be achieved by
the removal of baryons from the system. We decreased the density from pg to
zero under At = 4fm/c linearly. In this simulation we chose the self-energy
parameters to be MY = 682 MeV, I'Y = 40 MeV, M? = 668 MeV and I' =
250 MeV', so we shifted their peak from the vacuum value by 100 MeV and
we also modified their widths relative to their vacuum value. In Fig. [[7 and
we can see, that at the creation time both the w and p mass distribution
agrees well with the Breit-Wigner formula, and in the case of the w mesons,
this will also be the case after the removal of the nuclear medium. This is
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Figure 18: The distribution of masses of the p mesons at different times compared to the
Breit-Wigner distribution corresponding to the average density of the box. Parameters in
the self-energy are chosen to be M, = 668 MeV, I';, = 150 MeV.

in agreement with our analytical considerations in the previous subsection.
However in the case of the p mesons the mass distribution after the removal of
the nuclear medium differs significantly from the Breit-Wigner distribution.
The peak is well described by the Breit-Wigner formula, however, the low
mass tail differs. The reason for this difference is the following: a testparticle
with a very small mass in vacuum would have negative M? in the medium
according to Eq. ([IT), and in our model we do not simulate such particles.
The Breit-Wigner formula cannot be exactly implemented, since that would
require negative M? testparticles. The M? > 0 initial cutoff will result in
higher M? cutoffs in the more and more dilute medium, since the distribution
gets narrower. The net effect of the difference on the low mass tail is rather
small for physical observables like dilepton production since the time average
of the simulated distribution function and the time average of the exact Breit-
Wigner distributions do not differ substantially.
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Figure 19: The distribution of masses of the p mesons at different times compared to the
Breit-Wigner distribution corresponding to the average density of the box. Parameters in
the self-energy are chosen to be M, = 668 MeV, I', = 250 MeV. The density is decreased
from po to zero under At = 4fm/c.

Our simulations thus suggest, that for resonances whose in-medium decay
width is not very small (larger than 20 MeV), the mass distribution of the
particles can always be well described by the spectral function corresponding
to the actual density of the system. Differences can occur at the low mass
tail of the distribution, but the peak is well described by the Breit-Wigner
distributions even for broad resonances. This suggests that the mass distri-
bution of vector mesons always follows the spectral function of the nuclear
matter, just as it was suggested from the analysis describing homogeneous
nuclear matter.

5. Summary

In summary we have considered the equilibration in a relativistic heavy
ion collision using our transport model. We applied periodic boundary con-
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ditions to close the system in a box. We found that the thermal equilibration
takes place in the first 20-40 fm/c which time is comparable to the duration
of a heavy ion collision. The chemical equilibration is a slower process. The
nonstrange degrees of freedom approximately equlibrate in 50-100 fm/c, but
for the strangeness the equilibration time is from 100 to 300 fm/c depending
on the density and on the bombarding energy.

We also study the propagation of broad resonances within our approach.
Vector mesons are described by spectral functions and these are evolved in
space and time by a testparticle method. We have utilized here the transport
equations from Ref. [11, [14] which are approximations of the much more in-
volved Kadanoff-Baym equations [18]. We solved the equations analytically
in the case of a homogeneous system. We found that in our model the
mass distributions of the resonances always follow the spectral function cor-
responding to the given density, so there is no memory effect in contrast to
the exact treatment. The same results were obtained by the numerical simu-
lations as well. This means that the mass distributions of resonances can be
extracted without following a large number of testparticles. Our results how-
ever do not mean that Eqs. (I2) are useless: they describe the momentum
evolution of the resonances, which is important for example for calculating
dilepton production since the time spent in the dense phase depend on its
momentum.

We acknowledge stimulating discussion with Stefan Leupold, Carsten
Greiner and Volker Metag. This work were supported by the Hungarian
OTKA funds NK101438 and K109462 and by the HIC for FAIR within the
framework of the LOEWE program launched by the State of Hesse.
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