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A B S T R A C T   

In recent years, the construction industry has witnessed a growing preference for welded box-sections due to 
their ease of fabrication and improved stability characteristics. Nonetheless, welded box-sections are prone to 
various instabilities, which can be classified into three categories: global buckling, local buckling, and interactive 
buckling. amongst these, interactive buckling is of primary concern as research in this area is still limited. 
Currently, there is a lack of viable options to effectively address the nonlinear interaction of global and local 
buckling. The equivalent imperfections provided by the Eurocode were developed based on an elastic design 
approach and are not suitable for geometrically and materially nonlinear analysis (GMNIA). Therefore, the 
applicable equivalent geometric imperfections should be revised and improved to make them suitable for plastic 
analysis. The authors previously investigated the interactive buckling resistance of welded square box-sections 
and developed suitable imperfections that can be used for GMNI analysis. However, the study was focused 
only on square box-sections. In the current research, the interactive buckling capacities of square and rectangular 
welded box-sections are investigated. A general rule for imperfection combination is proposed, which can be 
applied to all welded box-section columns. This makes the application of numerical model-based design more 
accurate for box-section columns, as well as significantly improves the general applicability of GMNI analysis- 
based resistance calculations.   

1. Introduction 

Slender columns experience pronounced global and local de-
formations, making them vulnerable to interactive buckling. This 
interaction can significantly reduce the capacity of compressed mem-
bers, which could lead to premature failure of these structures. There-
fore, the accurate consideration of interactive buckling is a key issue in 
the stability design of slender box-section columns. It is well-known 
from previous investigations that these sections exhibit highly unsta-
ble post-buckling paths and are, therefore, more susceptible to imper-
fections, leading to a lower buckling capacity than non-slender sections. 
Shen and Wadee demonstrated this by developing a nonlinear varia-
tional model for thin-walled hollow section struts with initial local and 
global imperfections. They found that in combining imperfections, an 
additional 10% load drop was present compared to pure local or global 
buckling. They also observed a transition from unstable to mildly stable 
post-buckling behaviour as the magnitude of imperfections is increased 
[1–3]. Recent studies have shown that the interaction of global and local 
buckling is not accurately considered in current design approaches [4, 

5]. Analytical and numerical model-based design approaches should be 
further improved to estimate the capacity of welded box-sections 
accurately. The authors have previously developed combinations of 
equivalent global and local imperfections for welded box-section col-
umns that accounts for the nonlinear interaction effect, however, the 
study was limited to square box-section columns. The current research 
aims to expand the scope of the previous study by proposing combina-
tions of equivalent local and global imperfections for both square and 
rectangular sections highlighting the key differences between the two. 
The proposed imperfection combinations can be used in the FEM-based 
design approach. 

There are two main methods that can be used in the process of 
designing sections against buckling. The first method uses buckling 
curves and takes the local and global buckling instabilities into consid-
eration. The second method utilises numerical modelling based on 
GMNIA (geometrical and material nonlinear analysis with imperfec-
tions), which can accurately capture the buckling behaviour if appro-
priate imperfections and residual stress patterns are applied. However, 
modelling residual stresses poses a challenge to designers; hence, it is 
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common to utilise equivalent geometric imperfections that account for 
the effects of residual stresses and geometrical imperfections, as well. A 
key factor in performing GMNIA-based design lies in carefully selecting 
the appropriate and accurate magnitudes of equivalent geometric im-
perfections. Therefore, the primary objective of this paper is to deter-
mine the most appropriate magnitudes of imperfections for local and 
global interactive behaviour. 

In the current study, a numerical model is developed and validated 
against experimental tests conducted on square and rectangular sections 
available in the literature. The numerical model is employed to perform 
extensive parametric studies covering a wide range of local and global 
slenderness ratios in order to estimate the accurate resistance of welded 
box-section columns correctly. Finally, the determined accurate resis-
tance is used to evaluate several combinations of equivalent local and 
global imperfections, and suggestions are made for imperfection com-
binations that can be used in the FEM-based design of welded box- 
section columns. 

2. Literature review 

2.1. Previous investigations on the local and global interaction buckling 
resistance 

Several researchers conducted extensive investigations of the inter-
active buckling of steel columns. Van der Neut [6] investigated the 
interaction of global and local buckling behaviour of an idealised 
thin-walled column made of two flanges connected by an infinitely thin 
web. The mechanical behaviour of the interactive buckling was 
explained, and the relationship between the buckling load and the 
length of the column was demonstrated. The emphasis was placed on 
identifying the regions exhibiting stable and unstable behaviour 
depending on the slenderness of the column. Rasmussen and Hancock 
[7] investigated the geometric imperfections in plated structures expe-
riencing interactive buckling, and developed an analytical technique to 
expand the measured geometrical imperfections based on the buckling 
modes. Schafer [8,9] investigated the interaction of local, distortional, 
and global buckling behaviour of thin-walled columns, which resulted in 
the improvement of the Direct Strength Method. Shen and Wadee 
investigated the interactive buckling of hollow section struts through 
local and global imperfection sensitivity studies [1], and developed a 
hybrid design method combining European column curves and the 
Direct Strength Method [10]. The study pointed out that the effective 
width method can be conservative in some parametric ranges [10]. 
Becque and Rasmussen [11] investigated the interactive buckling of 
stainless steel lipped channel columns and found that ultimate load and 
effective length curves show a slight flattening around the local buckling 
load in accordance with van der Neut’s theory [6]. Based on a numerical 
study [12], it was concluded that the current design standards are 
conservative for stainless steel lipped channel columns for local slen-
derness λp < 1.1, and less conservative for larger slenderness as the 
interaction effect becomes more pronounced. Cao et al. [13] experi-
mentally investigated interactive buckling in H-sections and concluded 
that the current Eurocode [5] design rules slightly underestimate the 
ultimate load of welded H-section members fabricated of 800 MPa steel. 
Therefore, an enhanced design model was proposed, which gives more 
accurate buckling resistance values. Yuan et al. [14] investigated 
stainless steel box-sections and proposed a modified design formula, 
which incorporated new sets of imperfections and limiting slenderness 
values. 

Despite the considerable research on interactive buckling, a limited 
number of investigations were performed on welded box-sections. 
Usami and Fukumoto [15,16] conducted experiments on HSS columns 
to study interactive buckling and developed a formula to determine the 
interactive buckling capacity. Chiew et al. [17] conducted 17 tests on 
S235 box-section steel columns and observed that the failure mode was 

global buckling for relatively long columns with low b/t ratios, where 
the global imperfection had a significant influence. Local buckling of the 
plates was observed besides overall buckling for high b/t ratios. Degée 
et al. [18] conducted an experimental and numerical study on welded 
rectangular sections made of S355, encompassing six samples with 
varying global slenderness ratios while keeping the local slenderness 
ratio constant. In addition, a numerical parametric analysis was con-
ducted on rectangular box-sections. The authors recommended to apply 
global imperfection of L/1000 and local imperfection of b/1000 in 
conjunction with residual stresses in the numerical model. However, if 
residual stresses are not applied, they proposed using global imperfec-
tion of L/750 and local imperfection of b/250. It was found that the 
design method in EN1993–1–1 [5] does not accurately capture the 
interactive buckling of slender welded box-sections. The existing buck-
ling curve "b" specified in EN 1993–1–1 [5] was overly conservative for 
welded box-section columns, and an upgraded curve "a" is proposed that 
more accurately reflects the experimental and numerical results. A new 
design method was introduced to determine the interactive slenderness 
of normal and high-strength steel columns. This method incorporated a 
new global slenderness, referred to as λint, which accounts for the effect 
of local buckling. Pavlovčič et al. [19] performed eight tests on S355 
welded and cold-formed slender thin-walled box-section columns sub-
jected to concentric and eccentric compression. Based on their numeri-
cal studies, it was found that columns subjected to pure compression are 
highly susceptible to initial imperfections with a reduction in capacity of 
45%, however, when combining different imperfections, the reduction is 
of a smaller magnitude compared to the effect of independent imper-
fections. The authors tested different combinations of equivalent geo-
metric imperfections and found that the Eurocode recommendations for 
equivalent imperfections can be used for columns with thick welds. 
Kwon and Seo [20] investigated welded box-sections fabricated from 
6.0 mm steel plates with a yield strength of 315 MPa, and proposed the 
direct strength method (DSM) to estimate the buckling resistance of 
welded box-section columns. Khan et al. [21] tested HSS slender welded 
box-section columns. Based on their research, medium-length samples 
failed by interactive buckling (combined global and local buckling) and 
suggested a reduction factor to take the interactive effect into consid-
eration. In the FEM study of the test specimens, b/1000 and L/1000 were 
used as local and global imperfections, respectively. Heavy and light 
residual stress patterns were examined, as well. The study concluded 
that the buckling curve "b" specified in Eurocode is suitable for deter-
mining the interactive buckling of welded box-sections and that there 
were no major differences between heavily and lightly welded speci-
mens. Yang et al. [22] experimented on S235 and S355 medium-length 
columns to study the global and local interactive buckling. In this study, 
a total of twelve specimens were tested, comprising ten rectangular 
hollow sections (RHS) and two square hollow sections (SHS), all of 
which exhibited failure primarily attributed to interactive buckling. It 
was found that the influence of the residual stresses on the buckling 
capacity is around 10–20% for medium-length columns, while the effect 
is less pronounced for significantly low- or high-slenderness columns. 
The authors suggested the buckling curve "a" to be used for S960 steel 
grade. Schillo et al. [4] examined the interactive buckling of welded 
box-section columns made of S500 and S960, with high b/t ratios. These 
columns experienced both global and local buckling at various global 
slenderness ratios. Using experimental and accompanying numerical 
investigations, the authors proposed an alternative design approach, 
where the effect of local buckling was introduced to the Eurocode global 
buckling calculation method using an equivalent local imperfection (ep). 

Radwan and Kövesdi [23] conducted a numerical investigation on 
square welded box-section columns to accurately estimate the interac-
tive buckling resistance on a broad range of local and global slenderness 
ratios for several steel grades. The authors developed combinations of 
global and local imperfections with residual stresses to estimate the 
interactive buckling capacity accurately taking into account the 
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local-global interactive nonlinear behaviours. In another research [24], 
the authors developed equivalent local and global imperfection combi-
nations that effectively approximate the accurate resistance, and found 
that the proposed imperfections meet the safety requirements specified 
in the Eurocode. Müller et al. [25] investigated the interactive buckling 
of hot-rolled and cold-formed square and rectangular hollow sections. 
GMNI analyses were performed to derive practical decision criteria for 
combining the local and global imperfections depending on the slen-
derness values of αcr, loc and αcr, glob, where αcr = 1

λ. A decision tree was 
proposed to determine the local and global imperfections based on 
certain slenderness limits αcr, loc = 2.2 and αcr,glob = 25. It was 
concluded that in cases where both limits are exceeded, the imperfec-
tions should be neglected. The authors suggested to use the proposed 
rules instead of the Eurocode rule stating that the accompanying 
imperfection should be reduced to 70%, as the latter would require 
performing the analysis twice. 

To summarise, several studies investigated the interaction buckling 
behaviour of different types of steel columns. Depending on the studied 
slenderness range, some studies emphasised that the curve "b" of EN 
1993–1–1 [5] often underestimates the buckling capacity, while other 
studies found that it is suitable for welded box-section. Various studies 
utilised L/1000 and b/1000 as global and local imperfections with 
applied residual stresses to estimate the interactive buckling resistance. 
Several researchers suggested applying a reduction factor accounting for 
the combined buckling effect, and defining a new interaction slender-
ness parameter to take the local buckling effect into account. The re-
sidual stresses and initial imperfections play a significant role in 
determining the interactive buckling capacity of columns. Accurate 
consideration of them can lead to a more economical design. It is 
possible to conclude that the interactive buckling resistance of welded 
box-section requires further investigations to adequately address the 
shortcomings of previous research programs, including using constant 
value imperfections to model local and global imperfections and utilis-
ing equivalent geometric imperfections that are not developed for GMNI 
analysis. 

2.2. Previous investigations on the global and local imperfection 
magnitudes 

2.2.1. Global imperfection 
The maximum manufacturing tolerance is currently set at L/750, as 

per EN 1090–2:2008+A1:2011 [26] (now superseded by EN 1090 
2:2018 [27]). However, some studies suggest that a global imperfection 
of L/1000 can be used [4,18,23,24,28], provided that residual stresses 
are modelled. Rondal and Maquoi [29] introduced equivalent imper-
fections, now utilised in the Eurocode buckling curves, representing a 
sinusoidal initial imperfection. EN1993–1–1 [5] and prEN1993–1–1 
[30] suggest that the equivalent bow imperfection magnitudes used in 
GMNIA may be determined in two ways, either by calibrating the 
imperfection magnitudes against the buckling curves or by using 
approximate tabulated values. Generally, the tabulated values are more 
conservative compared to the calibrated values against the buckling 
curves. 

Walport et al. [31] showed that the equivalent bow imperfections in 
the Eurocode are not suitable to be used in GMNI analyses, as these 
imperfections were developed based on elastic analyses. The authors 
suggested Eq. (1) to determine the imperfection magnitude (where L is 
the length of the member and α is the imperfection factor according to 
EN1993–1–1 [5]). This equivalent imperfection formula was developed 
based on a numerical parametric study and a calibration process. The 
authors calibrated the imperfection formula based on the resistance 
obtained from a numerical model incorporating a global imperfection of 
L/1000 and the modelling of residual stresses. 

e0 =
αL
150

(1) 

Lindner et al. [32,33] studied equivalent imperfections for columns 
under pure compression, adopting an initial bow imperfection in the 
shape of a sin curve and considering e0 as the maximum amplitude. The 
authors proposed the application of tabulated equivalent geometrical 
imperfections using Eq. (2), where α represents the imperfection factor, 
β denotes the reference relative bow imperfection, L indicates the length 
of the member, and ε is determined based on the strength of the mate-
rial. The proposed imperfections are independent of slenderness and 
effective length to simplify the determination of the imperfection. 

e0

L
=

αβ
ε (2) 

Somodi et al. [34] determined equivalent global imperfections by 
calibrating their values against EN1993–1–1 [5] buckling curves using 
GMNI analysis for square and rectangular sections. The authors sug-
gested two formulas; a slenderness-dependant accurate formula ac-
cording to Eq. (3) and a simplified formula (Eq. (4)) based on statistical 
evaluations to provide an average level of safety for the buckling resis-
tance calculations. This simplified approach is independent of the rela-
tive slenderness ratio and the geometry of the cross-section. The 
simplified formula depends on the steel yield strength of the 
cross-section, where ε =

̅̅̅̅̅̅
235
fy

√
, and α is the imperfection factor set in EC3 

[5]. In Eq. (3), λg is the global slenderness ratio according to EN19 
93–1–1 [5]. 

e0 =
L

ε
α

(
λ− 3.8

g − 26⋅λg + 168
) (3)  

e0 =
αL

150ε (4)  

2.2.2. Local imperfection 
Using the Winter-type buckling curve [35] to calculate the local 

buckling resistance, has been criticised by many researchers for over-
estimating the buckling resistance of welded box-section columns 
[36–38]. As specified in Table C.2 of EN1993–1–5 [35], it is recom-
mended to use equivalent geometrical imperfections unless a more 
detailed analysis of the imperfections is performed. Eurocode suggests 
an amplitude of at least b/200, where b is the shorter span. The 
magnitude of this imperfection was primarily calibrated to align with 
the Winter-type buckling curve, resulting in a local buckling capacity 
that closely approximates the one determined by the buckling curve. 
Based on experimental and numerical investigations, it was found that 
the buckling curves of Annex B of EN1993–1–5 [35] and Schillo et al. 
[36,39] provide better estimations of the local buckling resistance 
compared to the Winter-type curve [4,37]. Consequently, the authors 
conducted new calibrations [37] to determine equivalent geometric 
imperfections that yield the buckling resistances of the buckling curve 
available in Annex B of Eurocode EN1993–1–5 [35] and the buckling 
curve developed by Schillo et al. [36,39]. The calibrated imperfection 
formula is a function of the relative slenderness ratio λp and the yield 
strength fy of the cross section, as shown in Eqs. 5,6. A large database 
was used to perform a statistical evaluation of imperfections. It was 
found that utilising b/125 as a constant value for local imperfection 
yields the best average estimation of the buckling resistance [40], as 
provided by the buckling curve developed by Schillo et al. [36,39]. 

b
f0,local

(5)  

f0,local =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1
λ2.2

p

⋅
(
200 − 0.2⋅fy

)
, λp ≤ 1.35

1
λp

⋅
(
160 − 0.2⋅fy

)
, λp > 1.35

(6) 
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2.3. Executed research strategy 

This study aims to assess if the previously proposed imperfection 
combinations, originally developed for square box-sections, can be 
applied to rectangular ones. A comparison between the interactive 
buckling capacity of square and rectangular box-sections is made to 
show the difference in the behaviour of both sections on a wide local and 
global slenderness range. Several width-to-height ratios (b/h) are stud-
ied, including 1.0, 1.25, 1.5, 1.75 and 2.0, and the investigation is 
specifically conducted for steel grade S355. One parametric study is 
performed to determine the accurate buckling resistance using applied 
residual stresses. Three additional parametric studies are performed to 
find equivalent global and local imperfections that can be utilised for 
square and rectangular welded box-sections. Finally, two additional 
parametric studies are conducted to show the effect of reducing the 
accompanying imperfection factor when a leading imperfection is cho-
sen as per Annex C of EN1993–1–5 [35]. Table 1 provides a summary of 
the imperfections utilised in this research. 

This research program is summarised as follows:  

1. Development and validation of the numerical model is done through 
a comparison with test results available in the international 
literature.  

2. Appropriate local geometric imperfection is utilised to control the 
local buckling capacity based on the buckling curve specified in 
Annex B of EN 1993–1–5 [35]. The magnitude of the applied 
imperfection varies depending on fy and λp of each analysed 
cross-section, as detailed in [37], with a maximum limit of ±b/125, 
which adheres to European manufacturing tolerance, as per EN 
1090–2:2018 Table B.4 No. 3 [41].  

3. Global imperfection of L/1000 is used with applied residual stresses 
to control the global buckling capacity, as proposed by several re-
searchers [18,42].  

4. A numerical parametric study is performed to determine the accurate 
buckling resistance of square and rectangular box-section columns 
using the combinations of imperfections and residual stresses given 
in steps 2 and 3. 

5. A numerical parametric study is performed with the equivalent im-
perfections using slenderness-dependant formulas calibrated for 
global and local buckling curves, according to Eq. (3) and Eq. (5), 
respectively.  

6. A numerical parametric study is performed with the equivalent local 
and global imperfections previously developed for welded box- 
sections, according to Eq. (1) and Eq. (4) for global imperfection 
and a constant value of b/125 for local imperfection, as it was found 
to lead to an accurate estimation of the local buckling resistance 
[40].  

7. To further examine the impact of different combinations of local and 
global geometric imperfections, supplementary numerical para-
metric analysis is conducted in accordance with the design guide-
lines outlined in EN 1993–1–5 [35], where the leading imperfection 
is chosen, and the accompanying imperfection is reduced to 70%.  

8. Reliability assessment is performed to ensure the applicability of the 
proposed imperfection combinations for square and rectangular box 
sections. 

3. Development and validation of the numerical model 

3.1. The developed numerical model 

A numerical model is developed using the Ansys finite element 
software [43] to determine the interactive buckling capacity of square 
and rectangular welded box-section columns. A four-node full thin shell 
element model is developed, as shown in Fig. 1.a. Geometrical and 
material nonlinear analysis with imperfections (GMNIA) is employed to 
calculate the buckling resistance using the full Newton-Raphson solver 
technique. The convergence was checked based on the norm Euclidean 
of the unbalanced internal forces. The convergence tolerance factor was 
0.1%. Half sin-wave imperfections are used to model the global and local 
imperfections. The width of the wider plate is denoted by (b), while the 
width of the shorter plate is denoted by (h), as shown in Fig. 1.b. The 
applied local imperfections are based on hand-defined method, where 
the number of half sin-waves, which are used for local buckling, is 
determined by dividing the plate length (L) by the plate width (b) and 
rounding to the nearest integer [19]. The same number of half sin-waves 
is applied to all the sides of the column, with adjacent sides having 
opposite amplitudes. The configuration is illustrated in Fig. 1.a, where 
outward imperfections are considered positive. This is a simplified 
approach to model the local imperfection, which leads to a reliable 
estimation of the buckling resistance. The global imperfection is defined 
as a half sin-wave spanning the entire length of the column. The half 
sin-wave is applied along the x-axis, as shown in Fig. 1.a. The columns 
are designed to fail by buckling on the minor axis (x-axis). Both global 
and local imperfections were applied simultaneously to study their in-
teractions, as depicted in Fig. 1.a. Boundary conditions and loads are 
applied to master nodes created at the geometrical centre of the column. 

Table 1 
Applied global and local imperfections.  

Imperfection 
Type 

Residual stresses applied Residual stresses 
not applied 

Global 
Imperfection 

Member length (L)
1000 

Walport et al. [31]  

Eq. (1) (e0 =
αL

150
) 

Somodi et al. [34]  
Eq. (3) 
Somodi et al. [34]  
Eq. (4) 

(
e0 =

αL
150ε

)

Local 
Imperfection 

Radwan and Kövesdi [37 Calibrated 
imperfections to Annex B curve that 
depend on fy and λp with a maximum 
imperfection of ±b/125, according to 
Figure 15 of [37] 

Radwan and 
Kövesdi [37] Eq. 
(5) 
Radwan and 

Kövesdi [40] (
b

125
)  

Fig. 1. a) the developed numerical model and b) the general cross-section.  
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All 6 DOFs are coupled between the nodes of the end cross sections and 
the master nodes. The first master node is restrained in the global di-
rection in UX, UY, UZ and RZ, and the second master node is restrained 
in UX, UY and RZ, where U and R indicate restraining translation and 
rotation, respectively. The material model shown in Fig. 2 is utilised to 
simulate the behaviour of normal strength steel (NSS), which is a 
quad-linear material model developed for hot-rolled steel. This material 
model accurately captures the strain-hardening behaviour of NSS, and it 
was developed based on a large number of coupon tests by Yun and 
Gardner [44]. 

This study employs a multilinear inelastic material model that de-
fines the stress-strain relationship using a set of coefficients. Table 2 lists 
the required coefficients for the model, including the yield strain εy = fy/ 
E, strain hardening strain εsh, and modulus Esh. Here, A = 0.2 is the 
elongation after fracture, C1 is the "cut-off" strain coefficient, and C2 is 
used to determine the slope of strain hardening Esh. In this research 
program, a modulus of elasticity of E = 210,000 MPa and a Poisson’s 
ratio v = 0.3 are used for all numerical tests. 

Several researchers highlighted the significance of the residual 
stresses model [46,47], as they could lead to premature failure and loss 

of stiffness under compression. The details of the residual stress model, 
according to the ECCS recommendations, are illustrated in a previous 
research study by the authors [37]. 

3.2. Validation of the numerical model 

To efficiently conduct extensive parametric studies, it is important to 
select a mesh size that leads to accurate resistance while also being 
numerically feasible. Therefore, a mesh sensitivity analysis for the 
smallest and largest plate widths in the study was performed before-
hand. The analysis revealed that a mesh consisting of 16 elements along 
the plate width provides an accurate estimation of the buckling capacity, 
with an error of less than 1%, as shown in the previous research work 
[24]. Four distinct research programs are employed to validate the 
model, with several samples taken from each research program with 
various b/h ratios ranging from 1.0 to 1.96. The measured values of the 
studied columns are incorporated into the numerical model according to 
the specified research programs. To ensure consistency with previous 
research, a global imperfection of L/1000 and the calibrated local 
geometrical imperfections and residual stress, as presented in Fig.15 of 
the prior research [37], are applied to the numerical model. The samples 
utilised for the validation process are presented in Table 3, where flocal_h 
and flocal_b are the imperfection scaling factors applied as (h/flocal_h) or 
(b/flocal_b). The full sample set has a mean and CoV of 0.998 and 0.069, 
respectively. Most of the samples demonstrate a high level of agreement 
with the numerical model, showing a difference of maximum 5%, as 
shown in Table 3. Larger discrepancies may be attributed to unintended 
eccentricities in the experimental tests. To compare the numerical and 
experimental results, two samples are presented in Fig. 3. The arc-length 
method is used to trace the loading path until the failure point is 
reached. The left-hand side figure depicts a test sample from the research 
program conducted by Yang et al. [22], while the sample in the 
right-hand figure is taken from a research program conducted by 
Pavlovčič et al. [19]. Both samples exhibit similar behaviours and 
buckling capacities as observed in the experimental tests. This shows the 

Fig. 2. Material model according to prEN 1993–1–14 [44,45].  

Table 2 
The applied material model parameters.   

fy 

[MPa] 
fu 

[MPa] 
εsh 

[-] 
εu 

[-] 
C1 
[-] 

C2 
[-] 

Esh 

[MPa] 
C1 ⋅εu  

[-] 
fC1εu 

[MPa] 

S355 355 510 0.015 0.182 0.31 0.448 2310 0.057 451  

Table 3 
The results of the validation process.  

b/h λg λp b λp h b (mm) h (mm) t (mm) L (mm) fy (MPa) fu (MPa) Local imp. flocal-b Local imp. flocal-h Fu,exp (kN) Fu,num (kN) Fu,num

Fu,exp  

Chiew et al. [17] 
1 0.37 0.71 0.71 80 80 2 1100 261 360 2130 2130 159 150.75 0.95 
1 0.47 0.71 0.71 80 80 2 1500 261 360 2130 2130 140 141.69 1.02 
1 0.59 0.71 0.71 80 80 2 1850 261 360 2130 2130 143 134.51 0.94 
1 0.50 0.71 0.71 80 80 1.4 1850 261 360 566 566 72 72.31 1.01 
Yang et al. [22] 
1.88 0.44 0.94 0.50 254 135 5.5 2251.6 309 458 496 2200 1057.7 1081.55 1.02 
1.96 0.67 1.12 0.57 309 158 5.6 4159.9 309 458 556 2200 1176.9 1162.25 0.99 
1.92 0.40 1.50 0.78 404.5 210 5.4 3585.3 309 458 125 2040 1284.6 1261.58 0.98 
1.96 0.38 1.82 0.93 491.2 251.4 5.4 4378.1 309 458 125 497 1287.6 1352.61 1.05 
1.94 0.48 1.24 0.64 312.5 161.8 5.69 2786.9 385 545 359 2200 1414.6 1430.83 1.01 
1.93 0.44 1.56 0.81 312.1 163 6.05 4165.6 385 545 125 1300 1456.7 1619.3 1.11 
Pavlovčič et al. [19] 
1.25 0.79 1.11 0.89 200 160 4 4000 373.4 452 548 570 706 711.6 1.01 
1.25 1.03 1.11 0.89 200 160 4 5200 373.4 452 548 570 564 623.66 1.11 
Kwon [48] 
1.36 0.62 1.02 0.75 300 220 6 5000 315 490 480 2200 1676.1 1471.41 0.88 
1.55 0.67 1.05 0.68 310 220 6 5000 315 490 493 2200 1627.3 1414.2 0.87 
1.07 0.46 1.05 0.99 310 290 6 5000 315 490 493 483 1524.4 1554.6 1.02              

Mean 0.998              
COV 0.069  
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ability of the model to capture the interactive buckling under investi-
gation. Fig. 4 shows the interactive buckling mode of a sample from a 
research study by Yang et al. [22], where b = 491 mm, h = 251 mm, and 
t = 5.4 mm. The figure also shows the deformations and the Von-Mises 
stress of the sample. It can be seen that the column failed due to minor 
axis buckling, particularly in the wider plate of the column, as it has a 
larger local slenderness compared to the shorter plate. The validation 
process proves the accuracy and reliability of the proposed method for 
estimating the interactive buckling resistance. 

3.3. Geometrical properties of the sections used in the study 

In this study, the analysed sections have h/t and b/t ratios larger than 
40 with global slenderness ratio (λg) larger than 0.2 and local slender-
ness ratio (λp) larger than 0.7 for both the width and the height of the 
cross-section. Table 4 provides an overview of the geometric properties 
of all the samples in this study. Five different b/h ratios are studied to 
investigate the effect of b/h ratios on the interactive buckling resistance 
of the welded box-sections. The plate width (b) is determined by 
multiplying the plate height (h) by the b/h ratio. 

4. Results of the parametric studies 

4.1. Geometrical imperfections with applied residual stresses 

A numerical parametric study is executed to determine the accurate 
resistance of square and rectangular columns by performing the analysis 
with the combinations of imperfections and residual stresses developed 
in previous research works [23,37]. A combination of L/1000 as global 
imperfections, local imperfections calibrated to the Annex B curve of 
EN1993–1–5 [35] with a maximum value of b/125 as per EN 
1090–2:2018 Table B.4 No. 3 [41], and residual stresses [37] is used. 
The applied local imperfection for each plate of the column depends on 
its local slenderness ratio λp. As was shown in previous research [37], a 

Fig. 4. The failure mode at the final load step of Yang et al. test specimen 491–251–5.4 [22]; a) deformed shape, b) Von-Mises stresses.  

Table 4 
Geometries of the studied cross-sections.  

Property [unit] Range 

Global slenderness ratio λg [-] 0.2–2.0 
Local slenderness ratio λp− h [-] 0.9–2.0 
Plate thickness t [mm] 3–6 
Plate height h [mm] 250 
Plate width b [mm] 250 - 500 
Plate length L [mm] 750–17,500 
Steel yield strength fy [MPa] 355 
b/h ratios [-] 1, 1.25, 1.5, 1.75, 2.0  

Fig. 3. The load-deformation diagram of the experiment and the numerical analysis: a) Yang et al. 491–251–5.4 [22] and b) Pavlovčič et al. test specimen 
200–160–4 [19]. 
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higher local slenderness ratio λp requires a larger imperfection to be 
applied in the numerical model to yield the resistance of the buckling 
curve. Fig. 5 shows the result of the parametric study, where the x-axis 
shows the global buckling slenderness ratio λg and the y-axis shows the 
reduction factor χ for studied λp− h including 0.9, 1.08, 1.35 and 1.8. The 
reduction factor is determined as follows χ =

Nanalysis
Aeff ⋅fy

, where Nanalysis is the 
buckling resistance obtained using the numerical analysis and Aeff is the 
effective area determined using the Annex B curve. 

Several b/h ratios are studied, specifically 1.0, 1.25, 1.5, 1.75, and 
2.0. The differences in the reduction factor χ between the different b/h 
ratios are relatively small, especially for the local slenderness range λp− h 

< 1.1 with a maximum difference of 5%. For λp− h > 1.1, the difference is 
larger and can reach up to 20% for a very large local slenderness range 
λp− h = 1.8. It can be clearly seen that the square box-section with b/h =
1 can be considered the lower bound for sections with larger b/h ratios. 
This is due to the fact that in rectangular sections, smaller plates (h) 
provide larger stiffness to wider plates (b), increasing the edge restraint 
[49] and allowing larger buckling resistances. 

4.2. Equivalent geometrical imperfection 

Three parametric studies are performed to determine suitable 
equivalent imperfection combinations that can be used in FEM-based 
design approaches. The applied imperfections are chosen to be inde-
pendent of the slenderness ratios to provide a convenient way of 
applying them. As shown in the literature review, several suggestions 
are available for imperfections that were developed for GMNI analyses 
and are independent of the slenderness ratio λg; the suggestions of 
Walport et al. [31] (Eq. (1)) and Somodi et al. [34] (Eq. (4)) are used for 
equivalent global imperfections in the current study. The two sugges-
tions are highly similar; both depend on the length of the member and 
the α imperfection factor specified in the Eurocode. The main difference 
between the two is that the suggestion of Somodi et al. [34] uses ε to 
account for the yield strength of the steel, as this suggestion was based 

on the Eurocode buckling curves, while the suggestion of Walport et al. 
[31] was based on benchmark GMNI analyses. Both imperfections meet 
the safety requirements of the Eurocode based on reliability assessment 
studies. As for local imperfections, the authors have previously per-
formed a comprehensive reliability assessment study to find imperfec-
tion factors that satisfy the safety requirements of Eurocode and yield 
accurate buckling resistances [40]. It was found that an imperfection of 
b/125 satisfies the requirements of the Eurocode, and yields reliable 
results to the buckling curve developed by Schillo et al. [4]. This 
buckling curve was found to provide an accurate estimation of the local 
buckling capacity of welded box-sections by conducting numerical and 
experimental tests. It should be mentioned that both the Annex B curve 
[35] and the buckling curve of Schillo et al. [4] are quite similar, 
showing a small difference in the estimated capacity for large local 
slenderness ratios λp. Therefore, the imperfection b/125 is chosen to be 
used as a local imperfection factor. It is worth noting that the accurate 
imperfection magnitude should ideally be dependant on the slenderness. 
Consequently, employing an imperfection factor with a constant value 
yields safe resistances for the small slenderness range and slightly unsafe 
results for very slender structures. To demonstrate this, an additional 
parametric study is performed with slenderness-dependant imperfec-
tions. Table 5 summarises the studied imperfection combinations in this 
section. 

The first parametric study is performed with slenderness-dependant 
imperfections, where the global imperfection is applied according to Eq. 
(3), and the local imperfection is applied according to Eq. (5), here 

Fig. 5. Relationship between the global slenderness ratio λg and global reduction factor χ curves for various local slenderness ratios λp− h and b/h ratios.  

Table 5 
Studied combinations of imperfections.  

Combination Name Global imperfection Local imperfection 

Slenderness-dependant 
combination 

Somodi et al. [34], 
Eq. (3) 

Radwan and Kövesdi [37], 
Eq. (5) 

Walport et al. [31] 
combination 

Walport et al. [31],  
Eq. (1) 

b/125 

Somodi et al. [34] 
combination 

Somodi et al. [34],  
Eq. (4) 

b/125  
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called slenderness-dependant combination. This combination is studied 
to highlight the dependency of applied imperfections on both local and 
global slenderness, and by using the slenderness-dependant imperfec-
tions, a safer resistance can be achieved. Both imperfections are applied 
with a 100% magnitude without any reduction. The parametric study is 
conducted for the same geometries described in Table 4, with a limited 
slenderness of 2.0, as the formulas were calibrated up to that range. The 

resistance obtained using the equivalent imperfection combinations will 
be referred to as “equivalent resistance (Reqv)”, while the resistance 
obtained using the imperfection combination with residual stresses will 
be referred to as “accurate resistance (Racc)” from now on. Fig. 6 presents 
the results of the parametric study, illustrating six plots corresponding to 
the studied global slenderness ratios (λg = 0.2 − 2.1). Each plot shows 
the relationship between the local slenderness ratio of the longer plate 
λp− b on the x-axis and the ratio of equivalent resistance (Reqv− SD) to 
accurate resistance (Racc) on the y-axis. The b/h ratios examined in the 
study are shown on each plot. Based on the individual plots in Fig. 6, it is 
possible to see the relationship and the differences between the analysed 
cross-section geometries and the trend in terms of the b/h ratio. It can be 
observed that this combination provides a safe estimation of the accu-
rate resistance with a mean value of 0.891 and a standard deviation of 
0.08 for equivalent to accurate resistance ratios. This combination 
usually underestimates the buckling resistance of welded box-section 
columns, which is expected when using equivalent geometric imper-
fections. It should be highlighted that the imperfection formulas for pure 
global and local buckling were developed independently based on 

Fig. 6. Comparing the equivalent resistance (Reqv− SD) to the accurate resistance (Racc) using the slenderness-dependant combination.  

Table 6 
Statistical measures of the equivalent resistance to the accurate resistance using 
the slenderness-dependant combination.  

b/h Samples 
number 

Mean 
μ 

Standard 
deviation σ 

COV Max Min 

1 30 0.883 0.068 0.077 0.999 0.752 
1.25 30 0.883 0.082 0.093 1.016 0.759 
1.5 30 0.897 0.083 0.093 1.027 0.817 
1.75 30 0.905 0.094 0.103 1.065 0.817 
2 30 0.896 0.089 0.099 1.043 0.817 
All 150 0.891 0.080 0.090 1.065 0.752  

Fig. 7. Comparing the equivalent resistance (Reqv− W) to the accurate resistance (Racc) using Walport et al. [31] combination.  
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calibrations of the Eurocode [5] and Schillo et al. [4] buckling curves, 
respectively. These curves include reductions accounting for the effect of 
residual stresses and imperfections; therefore, applying both imperfec-
tions with a 100% magnitude might lead to duplicating the included 
residual stresses. 

The results shown in Fig. 6 also prove that the buckling resistances 
corresponding to square box-section (b/h = 1) are the closest to the 
accurate solution, as the equivalent geometrical imperfections were 
developed for b/h = 1. The results also indicate that for larger b/h ratios, 
the application of the equivalent geometric imperfections leads to a safe 
solution, which means that the equivalent geometric imperfections 
developed for square box-section columns can be safely used for rect-
angular section columns, as well. As the difference between the esti-
mated capacities for the square and rectangular section is minimal, it is 
possible to apply the previously developed equivalent imperfections for 
rectangular cross-sections. Table 6 shows the statistical evaluation of the 
ratio of equivalent to accurate resistance using the slenderness- 
dependant combination. 

The second parametric study is executed using the imperfection 
value proposed by Walport et al. [31] depicted in Eq. (1) as global 
imperfection and b/125 for the local imperfection referred to as Walport 
et al. [31] combination. The parametric study is done for the same ge-
ometries described in Table 4. The results of the parametric study are 
shown in Fig. 7, where Reqv− W is the equivalent resistance using Walport 
et al. [31] combination. Two important findings can be seen in Fig. 7: (i) 
the buckling resistance for the b/h = 1 case also represents the 
upper-bound surface; as the b/h ratio increases, the ratio of the equiv-
alent to accurate resistances decreases; (ii) as the local slenderness ratio 
increases, the ratio of the equivalent to accurate resistances increases, as 
well. It can be seen that as the local slenderness increases, the 

overestimation of the buckling resistance also increases and can reach 
up to 15% for very large slenderness λp− b > 2. This comes from the fact 
that a constant value for local imperfection (b/125) is applied, which 
gives slightly unsafe resistances within the very large slenderness range 
(λp− b > 2, which rarely occurs in the design practice). If a larger 
imperfection is used, the overestimation is lower, as shown in Fig. 6, 
with a maximum value of less than 5%. A similar trend cannot be 
observed depending on the global slenderness ratio; thus, the same 
parameter range is analysed within the entire parametric study. Upon 
evaluating the results in terms of the global slenderness ratio, it can be 
observed that when the b/h ratio is increased, there is a noticeable 
decrease in the ratio of equivalent to accurate buckling resistance, 
especially for λg > 0.48. This means that the largest overestimation oc-
curs in square sections (b/h = 1), and the equivalent geometric imper-
fection developed for them can also be applied for rectangular section 
columns, resulting in safer resistances. A statistical assessment is also 
performed on the equivalent-to-accurate resistance ratio for all the b/h 
ratios. The results are summarised in Table 7. A total number of 150 
samples are studied, with 30 samples for each b/h ratio. It can be seen 
that the overall mean of all the samples equals 1.022, with a standard 
deviation of 0.079, indicating an excellent fit to the accurate resistance. 
The maximum and minimum values are 1.152 and 0.820, respectively. 

The third parametric study is done by using the imperfection pro-
posed by Somodi et al. [34] depicted in Eq. (4), referred to as Somodi 
et al. [34] combination. The results of the parametric study are sum-
marised in Fig. 8, where Reqv− S is the equivalent resistance using Somodi 
et al. [34] combination. In Fig. 8, a similar behaviour to the Walport 
et al. [31] combination can be observed, where the largest over-
estimation occurs in the region of very large local slenderness (λp > 2). 

Table 7 
Statistical measures of the equivalent resistance to the accurate resistance using 
Walport et al. [31] combination.  

b/h Samples 
number 

Mean 
μ 

Standard 
deviation σ 

COV Max Min 

1 30 0.960 0.085 0.088 1.067 0.820 
1.25 30 0.999 0.084 0.084 1.101 0.821 
1.5 30 1.036 0.060 0.057 1.127 0.944 
1.75 30 1.052 0.063 0.059 1.152 0.958 
2 30 1.061 0.060 0.057 1.151 0.969 
All 150 1.022 0.079 0.078 1.152 0.820  

Fig. 8. Comparing the equivalent resistance (Reqv− S) to the accurate resistance (Racc) using Somodi et al. [34] combination.  

Table 8 
Statistical measures of the equivalent resistance to the accurate resistance using 
Somodi et al. [34] combination.  

b/h Samples 
number 

Mean 
μ 

Standard 
deviation σ 

COV Max Min 

1 30 0.935 0.087 0.093 1.046 0.788 
1.25 30 0.973 0.088 0.090 1.093 0.790 
1.5 30 1.011 0.067 0.066 1.122 0.908 
1.75 30 1.026 0.070 0.068 1.146 0.921 
2 30 1.035 0.067 0.065 1.144 0.934 
All 150 0.996 0.084 0.084 1.146 0.788  
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Table 8 summarises the statistical evaluation of the parametric study. 
Applying Somodi et al. [34] combination in the numerical model leads 
to a safer mean value of 0.996 with a standard deviation of 0.084 and a 
maximum and minimum value of 1.146 and 0.788, respectively. This 
combination leads to smaller resistances compared to the combination 
that uses the imperfection proposed by Walport et al. [31]. This is due to 
the fact that the imperfection proposed by Somodi et al. [34] was cali-
brated to the Eurocode buckling curves. Therefore, when this imper-
fection is utilised in a more accurate GMNIA-based combination, it 
results in a larger scatter compared to the imperfection of Walport et al. 
[31], which is based on GMNI calculations. 

Based on the parametric studies performed, it can be concluded that 
the proposed imperfection combinations can be safely used for rectan-
gular box-section columns, as well, using the global imperfections pro-
posed by Walport et al. [31] and Somodi et al. [34]. 

4.3. Reduced equivalent imperfections 

The Annex C of EN1993–1–5 [35] states that in combining imper-
fections, a leading imperfection should be chosen, and the magnitude of 
the accompanying imperfection can be reduced to 70%. In this research, 
two parametric studies are performed to investigate the importance, 
effect, and accuracy of the rules for combinations of imperfections. The 
same geometries will be studied here, as shown in Table 4. The combi-
nations of imperfections in Table 5 are investigated twice; (i) by 
choosing a leading global imperfection applied with a 100% magnitude 
and reducing the accompanying local imperfection to 70%, referred to 
as reduced local combination; (ii) by choosing a leading local imper-
fection applied with a 100% magnitude and reducing the accompanying 
global imperfection to 70%, referred to as reduced global combination. 
The results of the parametric studies are compared to the non-reduced 
combination (100% for both local and global imperfections) in 
Table 5 and to the accurate resistance described in the previous sections. 

The slenderness-dependant combination is studied, where the global 
imperfection (Eq. (3)) is applied with a 100% magnitude, and the local 
imperfection (Eq. (5)) is reduced to 70% referred to as reduced local 
combination. A statistical assessment is performed on the ratio of the 
resistance achieved by applying the reduced local combination to the 
accurate resistance. Here, only the final outcomes are summarised. The 

reduced local combination yields resistances that are closer to the accu-
rate buckling resistance on average, with a mean value of 0.954 and a 
standard deviation of 0.084. The maximum and minimum values are 1.08 
and 0.883, respectively. However, the results also show that this combi-
nation yields unsafe resistances for specific slenderness ranges 
(λg and λp > 1.8) with a maximum overestimation of 8%. Another para-
metric study is performed using a reduced global imperfection (Eq. (3)) at 
a magnitude of 70%, and the local imperfection (Eq. (5)) is applied with a 
100% magnitude, referred to as reduced global combination. A similar 
statistical assessment is performed to evaluate the equivalent-to-accurate 
resistance ratio using the reduced global combination. The mean and the 
standard deviation of this combination are equal to 0.938 and 0.066, 
respectively. The mean value obtained for this combination is smaller 
compared to that of the reduced local combination. This combination 
provides better estimation of the accurate resistance compared to the non- 
reduced combination, as indicated by all mean values being below 1.0 
and a maximum overestimation of 6%. It is observed that this combina-
tion provides a larger resistance compared to the non-reduced combina-
tion by approximately 7%. The largest difference occurs in the large 
global slenderness range, irrespective of the local slenderness ratio. Fig. 9 
and Table 9 show the statistical measures of the minimum of the studied 
combinations. The obtained resistance using reduced global or reduced 
local slenderness-dependant combinations are shown in Fig. 9 as 
Reqv− SDRG and Reqv− SDRL , respectively. The mean value for all the b/h 
ratios equals 0.922 with a standard deviation of 0.05. The maximum and 
minimum values are 1.067 and 0.911, respectively. 

Fig. 9. The minimum ratio of the resistance of the studied combination (reduced local or reduced global slenderness-dependant combination (Reqv− SDRL, Reqv− SDRG)) 
to the accurate resistance (Racc). 

Table 9 
Statistical measures of the minimum ratio of the studied combinations (reduced 
local or reduced global slenderness-dependant combination) to the accurate 
resistance.  

b/h Samples 
number 

Mean 
μ 

Standard 
deviation σ 

COV Max Min 

1 30 0.906 0.051 0.057 0.992 0.796 
1.25 30 0.919 0.068 0.074 1.018 0.797 
1.5 30 0.932 0.066 0.071 1.029 0.866 
1.75 30 0.938 0.077 0.082 1.067 0.867 
2 30 0.928 0.073 0.078 1.042 0.862 
All 150 0.922 0.050 0.055 1.067 0.911  
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By taking the minimum of the two imperfection combinations, a 
smaller mean value and standard deviation are achieved compared to 
combinations with a 100% magnitude. The results further indicate that 
there is only a small difference in the buckling resistance when 
comparing the application of 100% magnitudes for global and local 
imperfections versus reducing one to 70%; however, the computational 
time is doubled by investigating two different imperfection combina-
tions. Therefore, it is recommended to apply both imperfections with a 
magnitude of 100%. 

Somodi et al. [34] combination is studied next, where the global 
imperfection is determined according to Eq. (4), and the local imper-
fection is equal to a constant value of b/125. The previously discussed 
combinations, namely reduced global and reduced local combinations, 
are studied here, as well. A statistical assessment is performed on the 
ratio of the equivalent-to-accurate buckling resistance. Here, only the 
final outcomes are discussed. It is found that reducing the local imper-
fection results in a larger buckling resistance with an approximate in-
crease of 6% in the region of low local slenderness (λp− b < 1.0). The 
mean of all the samples is equal to 1.036 with a standard deviation of 
0.077, compared to 0.996 and 0.084 for the non-reduced combination in 
Table 8. This represents an increase of approximately 4% based on the 
mean values. The accurate resistance is overestimated by 5–16% if this 
reduction is applied. The mean values for all the samples categorised by 
b/h ratios are larger than 1.0, except for b/h<1. It is possible to conclude 
that reducing the local imperfection to 70% reduces the safe range 
where this combination can be applied. 

If the local imperfection is reduced to 70% and Walport et al. [31] 
global imperfection (Eq. (1)) is used instead of Somodi et al. [34] 
imperfection (Eq. (4)), the mean value and the standard deviation are 
equal to 1.062 and 0.073, respectively. The minimum and maximum 
values are 0.862 and 1.169, respectively. A similar parametric study is 
performed by employing a reduced global imperfection based on 
Somodi et al. [34] (Eq. (4)) at a magnitude of 70% and a local imper-
fection of b/125 at a magnitude of 100%, referred to as Somodi et al. 
[34] reduced global combination. It is observed that the overestimation 
of the non-reduced resistance is approximately 6%. The largest over-
estimation occurs in the region of high global slenderness range (λg 

> 1.5), highlighting the influence of global slenderness within this 
specific slenderness range. The overestimation is observed across the 

entire local slenderness range, suggesting that it is independent of the 
local slenderness for all b/h ratios. A statistical assessment was con-
ducted to evaluate the ratio of the equivalent-to-accurate resistance. The 
mean value for all the samples being studied is equal to 1.049 with a 
standard deviation of 0.077. This can be compared to the values of 1.036 
and 0.077 if the local imperfection is reduced. Similarly, the mean 
values for all the samples categorised by b/h ratios are larger than 1.0, 
except for b/h<1. The utilisation of this combination results in over-
estimated resistances with an approximate range of 5–16% higher than 
the accurate resistance. For reduced global imperfection using Walport 
et al. [31] combination, the mean value and the standard deviation are 
equal to 1.069 and 0.076, respectively. The minimum and the maximum 
of the ratio are equal to 0.868 and 1.182, respectively. Fig. 10 shows the 
minimum of ratios of the equivalent resistances obtained using Somodi 
et al. [34] reduced global and Somodi et al. [34] reduced local combi-
nations to the accurate resistance. The resistances of reduced global and 
reduced local combinations are shown in Fig. 10 as Reqv− SRG and 
Reqv− SRL , respectively. Table 10 shows the statistical measures based on 
the minimum ratios of the combinations to the accurate resistance. The 
mean of all the samples is determined to be 1.033 with a standard de-
viation of 0.077. Although the mean value of the minimum of the 
combinations is smaller than the mean of the reduced combinations, it is 
still larger than the mean achieved by applying both imperfections with 
a 100% magnitude. However, the standard deviation of the minimum is 
smaller than the standard deviation of the non-reduced Somodi et al. 

Fig. 10. The minimum ratio of the resistance of the studied combinations (reduced local or reduced global Somodi et al. [34] combination (Reqv− SRL, Reqv− SRG)) to 
the accurate resistance (Racc). 

Table 10 
Statistical measures of the minimum ratio of the studied combinations (reduced 
local or reduced global Somodi et al. [34] combination) to the accurate 
resistance.  

b/h Samples 
number 

Mean 
μ 

Standard 
deviation σ 

COV Max Min 

1 30 0.986 0.084 0.086 1.103 0.830 
1.25 30 1.023 0.083 0.081 1.125 0.828 
1.5 30 1.053 0.062 0.059 1.143 0.946 
1.75 30 1.061 0.068 0.064 1.161 0.946 
2 30 1.056 0.063 0.060 1.153 0.961 
All 150 1.033 0.077 0.074 1.161 0.828  
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[34] combination. Within each b/h category, the mean value is found to 
be smaller than the mean value of the reduced combinations. Table 11 
shows the minimum of the reduced local or global combination using 
imperfection proposed by Walport et al. [31]. Similar observations to 
that of the reduced combinations using imperfection proposed by 
Somodi et al. [34] can be made in this case. 

Fig. 11 shows the ratio of the minimum of the studied combinations, 
reduced local or global combination (min(Reqv− SRL, Reqv− SRG)), to the 

Somodi et al. [34] combination to show the slenderness range where the 
minimum of the reduced combination leads to overestimated results 
compared to the non-reduced Somodi et al. [34] combination. It is 
evident from the results that reducing one of the imperfections leads to a 
maximum increase in the resistance of approximately 6%. The largest 
overestimation occurs in the region of high global slenderness and low 
local slenderness for all b/h ratios. 

4.4. Reliability assessment study 

A reliability assessment study is conducted to show the applicability 
of the proposed combinations for the b/h ratios being studied. The study 
follows the guidelines specified in EN1990 Annex D [50] to examine the 
validity and accuracy of the proposed combinations. The details of the 
reliability assessment can be found in a previous study conducted by the 
authors focusing specifically on square box-section columns [24]. Here, 
only the final results are shown. 

Table 12 shows the results of the reliability assessment, where the 
combination name, the applied global and local imperfections, the mean 
correction factor b, the coefficient of variation Vδ, the coefficient of 

Fig. 11. Ratio of the minimum resistances (reduced local or global combination (Reqv− SRL, Reqv− SRG)) to the combination using 100% Somodi et al. [34] global 
imperfection and 100% local imperfection (b/125)(e.g. Somodi et al. [34] combination (Reqv− S)). 

Table 12 
Reliability assessment of the analysed combinations of imperfection.  

Combination name Global imp. Local imp. b Vδ Vrt Vr γ*M 

Slenderness-dependant combination 
(SD) 

Eq. (3) Eq. (5) 1.11 0.080 0.086 0.117 0.93 

SD-reduced global  
(SDRG) 

0.7* Eq. (3) Eq. (5) 1.07 0.058 0.086 0.104 0.99 

SD-reduced local (SDRL) Eq. (3) 0.7* Eq. (5) 1.05 0.069 0.086 0.110 1.07 
Somodi et al. [34] combination 

(S) 
Eq. (4) b/125 1.05 0.084 0.086 0.121 1.12 

Walport et al. [31] combination 
(W) 

Eq. (1) b/125 1.02 0.080 0.086 0.118 1.20 

Somodi et al. [34] -Reduced local 
(SRL) 

Eq. (4) 0.7* b/125 1.01 0.077 0.086 0.115 1.21 

Somodi et al. [34] -Reduced global (SRG) 0.7* Eq. (4) b/125 1.00 0.078 0.086 0.116 1.26 
Walport et al. [31]-Reduced local 

(WRL) 
Eq. (1) 0.7* b/125 0.99 0.073 0.086 0.113 1.30 

Walport et al. [31]-Reduced global 
(WRG) 

0.7* Eq. (1) b/125 0.98 0.076 0.086 0.115 1.33  

Table 11 
Statistical measures of the minimum ratio of the studied combinations (reduced 
local or reduced global Walport et al. [31] combination) to the accurate 
resistance.  

b/h Samples 
number 

Mean 
μ 

Standard 
deviation σ 

COV Max Min 

1 30 1.003 0.077 0.077 1.108 0.863 
1.25 30 1.032 0.070 0.068 1.125 0.862 
1.5 30 1.059 0.048 0.045 1.142 0.984 
1.75 30 1.076 0.056 0.052 1.158 0.991 
2 30 1.083 0.056 0.051 1.165 0.998 
All 150 1.051 0.066 0.063 1.165 0.862  
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variation of the basic variables Vrt, the coefficient of variation of the 
model Vr, and the corrected partial safety factor γ∗M, for each combina-
tion are shown. The corrected partial safety factor is determined based 
on the nominal values of the basic variables and taking the effect of the 
overstrength factor of the steel material into consideration in the 
determination of γ∗M [4,40]. The combinations are sorted in ascending 
order based on γ∗M value. Based on the mean correction factor b, all the 
combinations provide safe results with a b value greater than 1.0 except 
for the reduced Walport et al. [31] combinations, where the b value is 
less than 1.0. If the uncertainties of the model and the basic variables are 
taken into consideration, the slenderness-dependant combinations pro-
vide the safest results with γ∗M of 0.93. Furthermore, by decreasing the 
magnitudes of imperfections or applying a constant-value imperfection, 
the mean value approaches 1.0. However, due to the quite large stan-
dard deviation observed in the results, a relatively large γ∗M is obtained. 

5. Conclusion 

Several researchers pointed out that equivalent geometrical imper-
fections specified in the Eurocode were originally developed for elastic 
analysis, raising questions about their applicability to GMNI analysis. 
Consequently, the authors conducted two parametric studies to derive 
equivalent global and local imperfection factors through a pre-existing 
database that incorporates accurate combinations of imperfections and 
residual stresses, which had been previously developed and researched 
by the authors [23]. These combinations showed good agreement with 
the experimental test results conducted on square box-sections. In the 
current research, parametric studies are performed on welded 
box-section columns made of S355 steel grade with different b/h ratios. 
A comparison is made to evaluate the buckling resistance of rectangular 
and square welded box-section columns. Furthermore, the applicability 
of the previously proposed imperfection combinations for square sec-
tions is examined for rectangular sections. Based on the numerical re-
sults, the following conclusions are drawn:  

1. By using the accurate slenderness-dependant imperfections for both 
global and local buckling, results show that if the b/h ratio of the 
cross-section is increased, the application of the equivalent 
geometrical imperfections leads to a safe solution, which means that 
the equivalent geometric imperfections developed for square box- 
section columns can be safely utilised for rectangular section col-
umns, as well.  

2. By using the simplified, slenderness-independent imperfections for 
both global and local buckling, the following conclusions are drawn: 
(i) the buckling resistance for the b/h = 1 gives the upper-bound 
surface, meaning that the previously developed imperfections are 
safe for rectangular cross-sections; (ii) if the b/h ratio is increased, 
the ratio of the equivalent-to-accurate resistances will decrease; (iii) 
the ratio of the equivalent-to-accurate resistances exhibits an 
increasing trend with the increase of local slenderness ratio. As the 
local slenderness increases, the overestimation of the buckling 
resistance increases, as well and can reach up to 15% for large 
slenderness ratios (λ(p− b) > 2) due to applying a constant value for 
local imperfection (b/125). Thus, there are slightly unsafe re-
sistances within the large slenderness region (λ(p− b) > 2), which 
rarely occurs in the design practice.  

3. By using the 70% reduction rule for local and global imperfections, it 
is found that taking the minimum of the two imperfection combi-
nations results in a mean value closer to the accurate solution and a 
smaller standard deviation compared to combinations with 100% 
magnitudes. However, numerical calculations show that reducing 
one imperfection to 70% only leads to small differences (max 6%) in 
buckling resistance. Nevertheless, the latter approach would double 
the computational efforts by performing the analysis twice. 
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Methodology, Software, Validation, Formal analysis, Investigation, Re-
sources, Data curation, Writing – review & editing, Visualization, Su-
pervision, Project administration, Funding acquisition. 

Declaration of Competing Interest 

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Data Availability 

Data will be made available on request. 

Acknowledgement 

The presented research program has been financially supported by 
the Grant MTA-BME Lendület LP2021-06/2021 "Theory of new gener-
ation steel bridges" program of the Hungarian Academy of Sciences and 
Stipendium Hungaricum Scholarship. Both grants are gratefully 
acknowledged. 

References 

[1] J. Shen, M.A. Wadee, Imperfection sensitivity of thin-walled rectangular hollow 
section struts susceptible to interactive buckling, Int. J. Non-Linear Mech. 99 
(2018) 112–130, https://doi.org/10.1016/j.ijnonlinmec.2017.11.004. 

[2] J. Shen, M.A. Wadee, Length effects on interactive buckling in thin-walled 
rectangular hollow section struts, Thin-Walled Struct. 128 (2018) 152–170, 
https://doi.org/10.1016/j.tws.2017.04.006. 

[3] J. Shen, M.A. Wadee, A.J. Sadowski, Interactive buckling in long thin-walled 
rectangular hollow section struts, Int. J. Non-Linear Mech. 89 (2017) 43–58, 
https://doi.org/10.1016/j.ijnonlinmec.2016.11.007. 

[4] N. Schillo, M. Feldmann, A. Taras, Local and Global Buckling of Box Columns Made 
of High Strength Steel, RWTH Aachen University, 2017. 

[5] European Committee for Standardization (CEN), EN 1993-1-1:2005. Eurocode 3: 
design of steel structures - Part 1-1: general rules and rules for buildings, CEN, 
Brussels, 2005. 

[6] A. van der Neut, The interaction of local buckling and column failure of thin-walled 
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