
Sunflowers in Set Systems of Bounded Dimension
Jacob Fox !

Department of Mathematics, Stanford University, CA, USA

János Pach !

Alfréd Rényi Institute of Mathematics, Budapest, Hungary
Moscow Institute of Physics and Technology, Moscow, Russia

Andrew Suk !

Department of Mathematics, University of California San Diego, La Jolla, CA, USA

Abstract
Given a family F of k-element sets, S1, . . . , Sr ∈ F form an r-sunflower if Si ∩ Sj = Si′ ∩ Sj′ for all
i ̸= j and i′ ̸= j′. According to a famous conjecture of Erdős and Rado (1960), there is a constant
c = c(r) such that if |F| ≥ ck, then F contains an r-sunflower.

We come close to proving this conjecture for families of bounded Vapnik-Chervonenkis dimension,
VC-dim(F) ≤ d. In this case, we show that r-sunflowers exist under the slightly stronger assumption
|F| ≥ 210k(dr)2 log∗ k

. Here, log∗ denotes the iterated logarithm function.
We also verify the Erdős-Rado conjecture for families F of bounded Littlestone dimension and

for some geometrically defined set systems.
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1 Introduction

An r-sunflower is a collection of r sets whose pairwise intersections are the same. That is,
r distinct sets S1, . . . , Sr form an r-sunflower if Si ∩ Sj = Si′ ∩ Sj′ for all i ̸= j and i′ ̸= j′.
For brevity, a k-element set is called a k-set.

Let fr(k) be the minimum positive integer m such that every family of k-sets whose size
is at least m contains r members that form an r-sunflower. Erdős and Rado [11] proved
that fr(k) ≤ k!(r − 1)k. The Erdős-Rado “sunflower conjecture” states that there is a
constant C = C(r) depending only on r such that fr(k) ≤ Ck. Over the years, some small
improvements have been made on the upper bound k!(r − 1)k, see [1, 14]. Very recently, a
breakthrough has been achieved by Alweiss, Lovett, Wu, and Zhang [5], who proved that

fr(k) ≤ (cr3 log k log log k)k,

where c is an absolute constant. For an alternative proof of this result, using Shannon
capacities, see [19]. Some weaker versions of the conjecture are discussed in [3, 17, 16].
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The aim of this note is to study the Erdős-Rado sunflower conjecture for families of
bounded dimension. Apart from set systems realized in low-dimensional Euclidean spaces,
we consider two additional notions of dimension: the Vapnik-Chervonenkis dimension (in
short, VC-dimension) and the Littlestone dimension (LS-dimension), introduced in [24]
and [15], respectively. Both are important combinatorial parameters that measure the
complexity of graphs and hypergraphs, and play important roles in statistics, algebraic
geometry, PAC learning, and in model theory. There is a growing body of results in extremal
combinatorics and Ramsey theory which give much better bounds or stronger conclusions
under the additional assumption of bounded dimension (see [12, 13]).

Given a family of sets F with ground set V , the VC-dimension of F , denoted by
VC-dim(F), is the maximum d for which there exists a d-element set S ⊂ V such that for
every subset B ⊂ S, one can find a member A ∈ F with A ∩ S = B. In this case, we say
that S is shattered by F .

Let fd
r (k) denote the least positive integer m such that every family F of k-sets with

|F| ≥ m and VC-dim(F) ≤ d contains an r-sunflower. Clearly, we have fd
r (k) ≤ fr(k), and

the Erdős-Rado sunflower conjecture implies the following weaker conjecture.

▶ Conjecture 1. For d ≥ 1 and r ≥ 3, there is a constant C = C(d, r) such that fd
r (k) ≤ Ck.

It is not difficult to see that, even for d = 1, the function f1
r (k) grows at least exponentially

in k. More precisely, we have f1
r (k) > (r − 1)k−1. Indeed, consider a rooted complete (r − 1)-

ary tree T with the root on level 0 and with (r − 1)k−1 leaves on level k − 1. Let F be the
family of k-sets consisting of the vertex sets of the root-to-leaf paths in T . Obviously, F does
not contain any r-sunflower, and its VC-dimension is at most 1.

More generally, we have the recursive lower bound

fd
r (k1 + k2) > (fd

r (k1) − 1)(fd
r (k2) − 1).

Indeed, for i = 1, 2, let Fi be a family of ki-sets of size fd
r (ki) − 1 with VC-dimension at

most d and without any r-sunflower. For each set S in F1, make a new copy of F2 and add
S to each set in F2. The ground set of copies of F2 are pairwise disjoint for distinct sets
of F1. The resulting set system F is (k1 + k2)-uniform with size (fd

r (k1) − 1)(fd
r (k2) − 1),

VC-dimension at most d, and has no r-sunflower. This implies that if fr(k′) > Ck′ + 1
for some k′ and C, then there is d depending on k′ such that for all sufficiently large k,
fd

r (k) > Ck. Thus, any exponential lower bound for the classical sunflower problem (with
unbounded VC-dimension) can be achieved by a construction with bounded (but sufficiently
large) VC-dimension.

Using a result of Ding, Seymour, and Winkler [10], we settle Conjecture 1 for families of
k-sets with VC-dimension d = 1.

▶ Theorem 2. For integers r ≥ 3 and k ≥ 1, every family of k-sets with VC-dimension d = 1
and cardinality at least r10k has an r-sunflower. That is, we have

f1
r (k) ≤ r10k.

Let log∗ k denote the iterated logarithm of k, i.e., the minimum i for which the i times
iterated logarithm of k satisfies log(i) k ≤ 2. All logarithms used in this note are of base 2.

For d ≥ 2, our upper bound on fd
r (k) is not far from the one stated in Conjecture 1.

▶ Theorem 3. For integers d, k, r ≥ 2, every family of k-sets with VC-dimension at most d

and cardinality at least 210k(dr)2 log∗ k has an r-sunflower. In notation,

fd
r (k) ≤ 210k(dr)2 log∗ k

.
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The Littlestone dimension of F ⊆ 2V is defined as follows. Consider a rooted complete
binary tree Td, with the root at level 0 and with 2d leaves at the last level. Let the leaves
of Td be labeled by sets in F , and all other vertices by elements of V . We say that Td is
shattered by F if for every root-to-leaf path with labels v0, v1, . . . , vd−1, F, we have vi ∈ F

if and only if the (i + 1)st vertex along the path is the left-child of vi, for all 0 ≤ i < d.
The Littlestone dimension of F , denoted by LS-dim(F), is the largest d for which there is a
labeling of Td which is shattered by F .

Obviously, we have VC-dim(F) ≤ LS-dim(F), because if the S = {s0, . . . , sd−1} ⊆ V

is shattered by F , then the labeling of Td in which all vertices at level i are labeled by si,
0 ≤ si < d, and the leaves by the corresponding sets in F with the appropriate intersection
with S, is also shattered by F .

Let hd
r(k) denote the least positive integer m such that every family F of k-sets with

|F| ≥ m and LS-dim(F) ≤ d contains an r-sunflower. Since the Littlestone dimension of a
set system is at least as large as its VC-dimension, we have

hd
r(k) ≤ fd

r (k) ≤ fr(k).

It turns out that hd
r(k), as a function of k, grows much more slowly than fd

r (k). Its growth
rate is only polynomial in k, albeit the degree of this polynomial depends on d.

▶ Theorem 4. For positive integers d, r, k, every family of k-sets with LS-dimension at most
d and cardinality at least (rk)d has an r-sunflower. Using our notation, we have

hd
r(k) ≤ (rk)d.

On the other hand, for integers d, r ≥ 3, and k ≥ 4d, we have

hd
r(k) ≥ (rk/d)d−o(d),

where the o(d) term goes to 0 as d → ∞.

For several geometrically defined set systems, one can verify the sunflower conjecture by
exploring the special properties of the underlying configurations.

A collection D of Jordan regions in the plane is called a family of pseudo-disks if the
boundaries of any two members in D intersect in at most two points. For simplicity, we will
assume that D is in general position, that is, no point lies on the boundary of three regions
and no two regions are tangent. It is well known that the VC-dimension of the set system
obtained by restricting D to V is at most 3 (see [7]) and, hence, Theorem 3 applies. However,
in this case, we can verify the sunflower conjecture.

▶ Theorem 5. Let V be a planar point set and let D = {D1, . . . , DN } be a family of pseudo-
disks such that the size of every set Si = Di ∩ V is equal to k. If N ≥ (500 + r)900k, where
r > 2, then there are r distinct sets Si1 , . . . , Sir

that form an r-sunflower.

Our paper is organized as follows. Sections 2 and 3 contain the proofs of Theorems 2
and 3, respectively. Theorem 4 about set systems of bounded Littlestone dimension is
established in Section 4. Section 5 is devoted to low-dimensional geometric instances of the
sunflower conjecture, while the last section contains some concluding remarks.

For the clarity of presentation, throughout this paper we make no attempt to optimize
the absolute constants occurring in the statements.

SoCG 2021
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2 VC-dimension 1–Proof of Theorem 2

Given a family F of subsets of a ground set V , as usual, let ν(F) denote the packing number
of F , i.e., the maximum number of pairwise disjoint members of F . Also, let τ(F) be the
transversal number of F , i.e., the minimum number of elements that can be selected from V

such that every member of F contains at least one of them. Finally, let λ(F) denote the
maximum integer l such that there are l sets S1, . . . , Sl ∈ F with the property that for any
1 ≤ i < j ≤ l, there is v = vij ∈ Si ∩ Sj such that v ̸∈ St for t ∈ [m] \ {i, j}. It is easy to
verify that λ(F) is at least as large as the VC-dimension of the set system (hypergraph) F∗

dual to F .
We need the following result of Ding, Seymour, and Winkler [10] which bounds the

transversal number of F in terms of its packing number and λ(F).

▶ Lemma 6 (Ding, Seymour, Winkler). Let F be a set system with ground set V , and let
ν(F) = ν, τ(F) = τ and λ(F) = λ. Then we have

τ ≤ 11λ2(λ + ν + 3)
(

λ + ν

λ

)2
.

Notice that VC-dim(F) = 1 implies that λ(F) ≤ 3. Hence, Theorem 2 is an immediate
corollary to the following result.

▶ Theorem 7. Let r ≥ 3 and let F be a family of k-sets with λ(F) = λ which does not
contain an r-sunflower. Then we have |F| ≤ (λ + r)6λk.

Proof. We proceed by induction on k. The base case k = 1 follows from the trivial bound
|F| ≤ r − 1. The induction hypothesis is that the bound holds for families of (k − 1)-sets.
For the inductive step, let F ⊆ 2V be a family of k-sets with no r-sunflower. In particular,
F has no r disjoint members, so that ν(F) < r. By Lemma 6,

τ(F) ≤ 11λ2(λ + r + 3)
(

λ+r
λ

)2 ≤ 11λ2(λ + r + 3)(λ + r)2λ(λ!)−2

≤ 11(λ + r + 3)(λ + r)2λ ≤ 20(λ + r)2λ+1.

Therefore, there is v ∈ V incident to at least |F|/τ(F) ≥ |F|/
(
20(λ + r)2λ+1)

members
of F .

Let F ′ = {S \ {v} : S ∈ F , v ∈ S}. Then we have |F ′| ≥ |F|/
(
20(λ + r)2λ+1)

, λ(F ′) ≤
λ(F), and F ′ does not contain any r-sunflower. By the induction hypothesis, we have
|F ′| ≤ (λ + r)6λ(k−1). Thus, we obtain

|F| ≤ 20(λ + r)2λ+1|F ′| ≤ 20(λ + r)2λ+1(λ + r)6λ(k−1) ≤ (λ + r)6λk,

as required. ◀

3 Bounded VC-dimension–Proof of Theorem 3

In this section, we prove Theorem 3, which is the main result of this paper. We need the
following lemma due to Sauer [20], Shelah [22], Perles, and, in a slightly weaker form, to
Vapnik and Chervonenkis [24]. See also [18].

▶ Lemma 8 (Sauer, Shelah, Perles). Let F be a set system with ground set V and VC-
dimension at most d. Then we have |F| ≤

∑d
i=0

(|V |
i

)
.



J. Fox, J. Pach, and A. Suk 37:5

Before turning to the proof, we need to discuss some closely related variants of the
sunflower problem.

First, we could ask the same question for multifamilies of sets, that is, for collections of
not necessarily distinct sets. Let gr(k) be the minimum positive integer m such that every
multifamily of k-sets of size m contains an r-sunflower. It is an easy exercise to prove that
gr(k) = (r − 1)fr(k) + 1.

Analogously, for any d ≥ 1, let gd
r (k) be the minimum positive integer m such that every

multifamily of k-sets of size m with VC-dimension at most d contains an r-sunflower. We
similarly have gd

r (k) = (r − 1)fd
r (k) + 1.

To obtain upper bounds for gd
r (k) and fd

r (k), we define the following related function.
Let αd

r(k) denote the maximum α such that for every nonempty multifamily F of k-sets
with VC-dimension at most d, if we select r members uniformly at random from F with
replacement, the probability that they have pairwise equal intersections is at least α.

Next, notice that the value of fr(k) remains the same if we change the definition from
families of k-sets to families of sets with at most k elements. Indeed, this can be achieved by
adding distinct “dummy” vertices to each set of size smaller than k so that it will have size
exactly k. The same holds for the functions fd

r (k), gr(k), gd
r (k), and αd

r(k) because adding
dummy vertices does not affect the VC-dimension of the family.

Considering a family of VC-dimension d which consists of fd
r (k) − 1 sets of size k and

contains no r-sunflower, we immediately obtain the following upper bound on αd
r(k) as the

r-tuples of sets from the family that have pairwise equal intersections are those that consist
of the same set r times.

αd
r(k) ≤ (fd

r (k) − 1)1−r. (1)

The following lemma implies that this bound on αd
r(k) is tight within a factor err−1.

▶ Lemma 9. For integers d, k, r ≥ 2 we have

αd
r(k) ≥ gd

r (k)1−r/e.

Proof. Let Sd
r (m, k) denote the minimum possible number of r-sunflowers in a multifamily

F of at most k-element sets with cardinality m and VC-dimension at most d. From the
definition, if m < gd

r (k), then Sd
r (m, k) = 0, while if m ≥ gd

r (k), then Sd
r (m, k) ≥ 1.

Our argument is based on the proof technique used to obtain the “crossing lemma” [2],
see also [23]. The idea is to use an averaging (or, equivalently, probabilistic) argument to
amplify a weak bound to a better bound. By deleting one set from each r-sunflower, we get
the trivial bound Sd

r (m, k) ≥ m − gd
r (k) + 1. For M ≥ m, by averaging over all subfamilies

of size m, we obtain

Sd
r (M, k) ≥ Sd

r (m, k)
(

M

r

)
/

(
m

r

)
.

In particular, Sd
r (m, k)/

(
m
r

)
is a monotone increasing function of m. Set m0 = (1+1/r)gd

r (k)−
1. Then we have Sd

r (m0, k) ≥ m0 − gd
r (k) + 1 = gd

r (k)/r. Thus, for m ≥ m0, we have

Sd
r (m, k) ≥ Sd

r (m0, k)
(

m

r

)
/

(
m0

r

)
≥ 1

r
gd

r (k)
(

m

r

)
/

(
(1 + 1/r)gd

r (k)
r

)
(2)

≥ 1
er

gd
r (k)1−rmr.

SoCG 2021
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Let αd
r(m, k) be the maximum α with the property that for every multifamily F of at

most k-element sets with cardinality m and VC-dimension at most d, if we uniformly at
random choose r sets from F with replacement, the probability that they have pairwise equal
intersections is at least α. Thus,

αd
r(m, k) ≥ Sd

r (m, k)/
(

m

r

)
+ m1−r, (3)

where the first term comes from possibly choosing r different sets (in terms of label, if we
view the m not necessarily distinct sets as labeled from 1 to m), and the second term comes
from possibly choosing the same set r times.

For m ≥ m0, by using (3) and then (2), we have

αd
r(m, k) ≥ Sd

r (m, k)/
(

m

r

)
≥ r!Sd

r (m, k)m−r ≥ (r − 1)!gd
r (k)1−r/e.

For m < m0, using the trivial bound Sd
r (m, k) ≥ 0, we have

αd
r(m, k) ≥ m1−r > m1−r

0 =
(
(1 + 1/r)gd

r (k) − 1
)1−r ≥ gd

r (k)1−r/e.

As αd
r(k) = infm αd

r(m, k), we have the desired bound αd
r(k) ≥ gd

r (k)1−r/e. ◀

Combining the previous lemma with the Erdős-Rado bound fr(k) ≤ k!(r − 1)k, and the
inequality gd

r (k) ≤ gr(k) = (k − 1)fr(k) + 1, we obtain the following corollary.

▶ Corollary 10. For any integers d, k, r ≥ 2, we have

αd
r(k) ≥

(
k!(r − 1)k+1 + 1

)1−r
/e.

We are now in a position to prove the following result which, together with (1), immediately
implies Theorem 3.

▶ Theorem 11. For any d, k, r ≥ 2, we have

αd
r(k) ≥ 2−10k(dr)2 log∗ k

.

Proof. If r = 2, then we have αd
2(k) = 1 and the result follows. Therefore we can assume

r ≥ 3. We use induction on k. For the base cases k < 8, by Corollary 10, we have

αd
r(k) ≥

(
k!(r − 1)k+1 + 1

)1−r
/e ≥ 2−10k(dr)2 log∗ k

.

For the inductive step, let k ≥ 8 and assume that the statement holds for all k′ < k.
Let F be a non-empty multifamily of at most k-element sets with VC-dimension at most d.
Without loss of generality, we may assume that the ground set is N. Let ϵi be the fraction
of sets in F that contain i. By reordering the elements of the ground set, if necessary, we
may also assume that ϵ1 ≥ ϵ2 ≥ . . ., that is, the elements of the ground set are ordered in
decreasing frequency.

As each member of F has size at most k, the expected size of the intersection of
[s] = {1, 2, . . . , s} with a randomly selected member of F is at most k. On the other hand,
this expectation is ϵ1 + · · · + ϵs ≥ sϵs. Therefore, we have ϵs ≤ k/s.

Set s = ⌈4k4/αd
r(log k)⌉. Define two multifamilies, F1 and F2, as follows. Let

F1 = {S : S ∈ F and |S ∩ [s]| ≤ log k}, F2 = F \ F1.
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Thus, we have |F| = |F1| + |F2|. We select at random, uniformly and independently with
repetition, r sets S1, . . . , Sr ∈ F . Let X denote the event that the r sets form an r-sunflower.
The proof now falls into two cases.

Case 1: Suppose that |F1| ≥ (1 − 1/r)|F|. Let Y denote the event that S1, . . . , Sr ∈ F1.
Let Z be the event that S1 ∩ [s], . . . , Sr ∩ [s] have pairwise equal intersections, and let W

be the event that S1 \ [s], . . . , Sr \ [s] are pairwise disjoint. Hence,

P[X] ≥ P[Y ∩ Z ∩ W ] = P[Y ∩ Z] − P[Y ∩ Z ∩ W̄ ] ≥ P[Y ∩ Z] − P[W̄ ]. (4)

Clearly, we have

P[Y ] ≥ (1 − 1/r)r ≥ 1
4 , (5)

and, by definition,

P[Z | Y ] ≥ αd
r(log k). (6)

Therefore, by (5) and (6), we have

P[Y ∩ Z] = P[Y ]P[Z | Y ] ≥ 1
4αd

r(log k). (7)

Fixing Si \ [s], which has size at most k, the probability that Sj \ [s] contains at least
one of the elements of Si \ [s] is at most kϵs+1 ≤ k2/(s + 1). Hence, by the probability
union bound, we have

P[W̄ ] ≤
(

k
2
)
k2

s + 1 <
k4

2s
≤ αd

r(log k)
8 . (8)

Combining (4), (7), and (8), we obtain

P[X] = P[Y ∩ Z] − P[W̄ ] ≥ αd
r(log k)

4 − αd
r(log k)

8 = αd
r(log k)

8 .

Hence, by the induction hypothesis, we have

αd
r(k) ≥ P[X] ≥ 1

8αd
r(log k) ≥ 1

82−10(log k)(dr)2 log∗ k−2
≥ 2−10k(dr)2 log∗ k

.

Case 2: Suppose that |F2| ≥ |F|/r. Since F has VC-dimension at most d, by the Sauer-
Shelah-Perles lemma, Lemma 8, the number of distinct sets in {S ∩ [s] : S ∈ F} is at
most sd. By the pigeonhole principle, there is a subset A ⊂ [s] with |A| ≥ log k such that
the family

F ′ = {S ∈ F : S ∩ [s] = A}

has at least |F2|/sd ≥ |F|/(rsd) members.
Select r sets S1, . . . , Sr from F uniformly at random with repetition. Let Y ′ denote the
event that S1, . . . , Sr ∈ F ′ and let Z ′ denote the event that S1 \ [s], . . . , Sr \ [s] form an
r-sunflower. Hence,

P[X] ≥ P[Y ′ ∩ Z ′]

= P[Y ′] · P[Z ′ | Y ′]

≥
( 1

rsd

)r
αd

r(k − log k)

≥ 1
rr(5k4)dr

(
αd

r(log k)
)dr

αd
r(k − log k).

SoCG 2021
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By the induction hypothesis, we obtain

P[X] ≥ 1
rr(5k4)dr

(
2−10(log k)(dr)2 log∗ k−2

)dr (
2−10(k−log k)(dr)2 log∗ k

)
.

Since dr ≥ 6 and k ≥ 8, we have

P[X] ≥ 1
rr(5k4)dr

2−10k(dr)2 log∗ k+8 log k(dr)2 log∗ k

≥ 2−10k(dr)2 log∗ k

.

This completes the proof. ◀

4 Littlestone dimension – Proof of Theorem 4

Originally, the Littlestone dimension was introduced for the characterization of regret bounds
in online learning, see [4, 15, 6]. As Chase and Freitag [8] pointed out, the notion is equivalent
to Shelah’s model theoretic rank. The definition can also be reformulated as follows.

For a finite family F of sets with ground set V , define LS-dim(F), the Littlestone
dimension of F , recursively. If |F| ≤ 1, then let LS-dim(F) = 0. For an element x of the
ground set, let Fx = {S \ {x} : x ∈ S and S ∈ F} and F ′

x = {S : x ̸∈ S and S ∈ F}. If
|F| > 1, then let

LS-dim(F) = 1 + max
x∈V

min (LS-dim(Fx), LS-dim(F ′
x)) .

For d ≥ 1, let hd
r(k) be the minimum positive integer m such that every family of k-sets

with size at least m and Littlestone dimension at most d contains an r-sunflower.

▶ Lemma 12. For positive integers k and r, we have h1
r(k) = k + r − 1.

Proof. We have h1
r(k) > k + r − 2 by considering the following family Fr,k of k-sets. For

k = 1, let the family consist of r − 1 singleton sets. For k > 1, we obtain Fr,k from Fr,k−1
by adding one new ground element to all sets in Fr,k−1, and then including one additional
k-set with entirely new ground elements. It is straightforward to check that this family of
k-sets has k + r − 2 members, its Littlestone dimension is 1, and it does not contain any
r-sunflower.

We prove the upper bound inductively on k, with the base case k = 1 being trivial. Let
k ≥ 2 and let F be a family of k-sets with size h1

r(k) − 1 which has Littlestone dimension at
most 1 and does not contain an r-sunflower. A family of sets has Littlestone dimension at
most 1 if and only if every element x of the ground set belongs to at most one or to all but
at most one set in the family, that is, if |Fx| ≤ 1 or |F ′

x| ≤ 1 for all x. If there is an element
x for which |F ′

x| ≤ 1, then |Fx| = |F| − 1 = h1
r(k) − 2 and Fx is a family of (k − 1)-sets

of Littlestone dimension at most 1 which does not contain an r-sunflower, from which we
obtain h1

r(k − 1) ≤ h1
r(k − 1) + 1. If there is no ground element x in more than one set in F ,

then all members of F are disjoint. Therefore, |F| < r and h1
r(k) ≤ r. ◀

▶ Lemma 13. For any family F of sets of size at most k with no (r + 1)-sunflower, there is
an element of the ground set which belongs to at least a 1

kr -fraction of the sets.

Proof. Consider a maximum family {S1, . . . , Ss} of sets in F which are pairwise disjoint.
Such a family forms a sunflower and hence s ≤ r. In particular, any set in F contains at
least one element from

⋃s
i=1 Si, which has a total of ks ≤ kr elements. By the pigeonhole

principle, there is an element of the ground set which belongs to at least a fraction 1
kr of the

sets in F . ◀
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▶ Lemma 14. For integers k, r ≥ 1 and d ≥ 2, we have

hd
r(k) ≤ max

(
k(r − 1)

(
hd−1

r (k − 1) − 1
)

+ 1, hd
r(k − 1) + hd−1

r (k) − 1
)

.

Proof. Let F be a family of k-sets with size hd
r(k) − 1 which has Littlestone dimension at

most d and does not contain an r-sunflower. By Lemma 13, there is an element x of the
ground set in at least a fraction 1

k(r−1) of the sets in F . As F has Littlestone dimension d,
at least one of Fx or F ′

x has Littlestone dimension at most d − 1.
If Fx has Littlestone dimension at most d − 1, then Fx is a family of (k − 1)-sets which

has no r-sunflower, and hence

1
k(r − 1)

(
hd

r(k) − 1
)

= 1
k(r − 1) |F| ≤ |Fx| ≤ hd−1

r (k − 1) − 1,

from which it follows that hd
r(k) ≤ k(r − 1)

(
hd−1

r (k − 1) − 1
)

+ 1.
If F ′

x has Littlestone dimension at most d − 1, then we have |F ′
x| ≤ hd−1

r (k) − 1 and
|F ′

x| ≤ hd
r(k − 1) − 1, from which it follows that

hd
r(k) − 1 = |F| = |Fx| + |F ′

x| ≤ hd−1
r (k) − 1 + hd

r(k − 1) − 1,

and, hence, hd
r(k) ≤ hd−1

r (k) + hd
r(k − 1) − 1. ◀

We can now prove Theorem 4.

Proof of Theorem 4. For the upper bound, the proof is by induction on the Littlestone
dimension d. In the base case d = 1, we have h1

r(k) = k + r − 1 ≤ kr. Suppose d ≥ 2.
Consider the recursive upper bound on hd

r(k) from Lemma 14. We split the proof into two
cases depending on the maximum of the two functions in the upper bound on hd

r(k). In each
case, we use the induction hypothesis.

In the first case, we have

hd
r(k) ≤ k(r − 1)

(
hd−1

r (k − 1) − 1
)

+ 1 ≤ kr(kr)d−1 = (kr)d.

In the latter case, we have

hd
r(k) ≤ hd−1

r (k)+ hd
r(k −1)−1 < (kr)d−1 +((k −1)r)d ≤ (kr)d−1 +(1− 1

k
)(kr)d < (kr)d.

In either case, we obtained the desired bound.

For the lower bound, let d ≥ 6, r ≥ 3, k be sufficiently large with k ≥ 4d, n =
k2r/(500d log k), t = ⌈log d⌉ and m = n−1(n/k)d−t. We use the probabilistic method to
show that there exists a family F of k-element subsets of [n] := {1, . . . , n} with |F| ≥ m/2,
F does not contain any r-sunflower, and the Littlestone dimension of F is at most d. This
implies the desired lower bound on hd

r(k).
We will show that F satisfies four properties each with high probability. This means that

the probability is of the form 1 − o(1) with the o(1) term tending to 0 as k tends to infinity.
Hence, all four properties hold with high probability. These four properties guarantee that
F has the desired properties and hence there is a choice of F with the desired properties.

Pick m subsets S1, . . . , Sm ⊂
([n]

k

)
uniformly and independently at random. Let F be the

family of distinct Si. Since m ≪
(

n
k

)
, it is easy to see that, with high probability, we have

|F| ≥ m/2.
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We next show that, with high probability, F does not contain any r-sunflower. Consider
a subsequence of r of these random sets, say S1, . . . , Sr. The number of sequences of r sets
in

([n]
k

)
which have pairwise equal intersection, and this intersection has size s, is(

n

s

) r∏
i=1

(
n − s − (i − 1)(k − s)

k − s

)
= s!−1(k − s)!−rn!/ (n − s − r(k − s))!

This is because there are
(

n
s

)
ways of choosing the common intersection of size s, and given

the Sj with j < i, the remaining k − s elements from Si not in the common intersection
must be chosen from the n − s − (i − 1)(k − s) elements not in any of the Sj with j < i. As
there are

(
n
k

)
ways to pick each Si, the probability that the r random sets S1, . . . , Sr have

pairwise equal intersection of size s is(
n

k

)−r

s!−1(k−s)!−r n!
(n − s − r(k − s))! =

(
k

s

)
·(k!/(k − s)!)r−1·n!/(n − s − r(k − s))!(

k!
(

n
k

))r . (9)

Note that the expression in the right hand side of (9) is the product of three factors.
The middle factor is at most ks(r−1). In the third factor in the right hand side of (9), the
numerator can be expressed as the product of factors (n − j) for j = 0, . . . , s + r(k − s) − 1,
which is a total of s + r(k −s) factors, while the denominator can be expressed as the product
of rk factors which are of the form (n − h) with h ≤ k. It follows that the third factor in the
right hand side of (9) is at most

(n − k)−s(r−1)
(r−1)(k−s)−1∏

j=1

(
1 − j

n − k

)
≤ (n − k)−s(r−1)e−(r−1)2(k−s)2/(4n),

where we used the inequality 1 − x ≤ e−x for x ≥ 0 to bound each factor in the product.
It follows that the expression on the right hand side of (9) is at most(

k (k/(n − k))r−1
)s

· e−(r−1)2(k−s)2/(4n). (10)

Thus, the probability that S1, . . . , Sr form an r-sunflower is at most

k∑
s=0

(
k (k/(n − k))r−1

)s

e−(r−1)2(k−s)2/(4n).

We bound the probability that there is an r-sunflower in F by taking the union bound over
all the

(
m
r

)
choices of r sets from S1, . . . , Sm. Note that (10) is the product of two factors

which are each at most 1. We bound (10) for s ≥ 2d by the first factor, and for s < 2d by
the second factor. We also use the inequality

(
m
r

)
≤ (em/r)r. Substituting in the chosen

values for n and m, we get a o(1) probability that there is an r-sunflower in F .
Finally, we bound the probability that F has Littlestone dimension greater than d. If F

has Littlestone dimension greater than d, in the rooted complete binary tree realizing the
Littlestone dimension, going down from the root by taking the left-child each time for d − t

levels, we see that there are at least 2t ≥ d sets that each contain the same d − t vertices. So
the probability that F has Littlestone dimension greater than d is at most the probability
that there are d sets in F that each contain the same d− t elements from [n]. This probability
in turn is at most(

m

d

)(
n

d − t

) (
k

n

)(d−t)d

<
(em

d

)d
(

en

d − t

)d−t (
k

n

)(d−t)d

= o(1).
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Here we used the union bound over all
(

m
d

)
choices of d indices from [m] and over all

(
n

d−t

)
choices of d − t distinct integers in [n]. We also used that the probability that a given set
of d − t elements in [n] is in a random k-set is at most (k/n)d−t. The last inequality is by
substituting in the chosen values of n and m. ◀

5 Geometric versions of the sunflower conjecture

We start with the proof of Theorem 5. We need the following lemma due to Sharir [21].

▶ Lemma 15. Let D = {D1, . . . , Dt} be a family of pseudo-disks in the plane, and let P

denote the set of all intersection points of the boundaries of Di. Then the number of points
in P covered by the interior of at most k other regions Di is at most 26kt.

Proof of Theorem 5. Given r > 2, let N = (500 + r)900k. We proceed by induction on k.
The base case k = 1 is trivial. Now assume the statement holds for k′ < k.

Let V be a planar point set and let D = {D1, . . . , DN } be a family of pseudo-disks
in the plane such that |Di ∩ V | = k for all i. By slightly perturbing each region Di, we
can assume that no point in V lies on the boundary of Di for all i. Set Si = Di ∩ V and
F = {S1, . . . , SN }.

Let t = λ(F) and suppose the sets S1, . . . , St ∈ F have the property that for any
1 ≤ i < j ≤ t, there is a vertex v ∈ Si ∩ Sj from V such that v ̸∈ Sℓ for ℓ ∈ [t] \ {i, j}. Then,
by letting Ci denote the boundary of Di, there are at least

(
t
2
)

connected components in
R2 \

⋃
i Ci that are covered by at most two regions Di. On the other hand, by Lemma 15,

there are at most 4(52)t such regions, since every point in the arrangement
⋃

i Ci is incident
to at most four such connected components. Therefore, we have(

t

2

)
≤ 208t,

which implies that t ≤ 417.

Further, we can assume that ν(F) ≤ r − 1, since otherwise we would be done. By
Lemma 6, we have

τ(F) ≤ 11(417)2(419 + r)
(

416 + r

417

)2
≤ (500 + r)900.

There is a vertex v ∈ V which is incident to at least N/τ(F) members in F . Let D′ = {Di ∈
D : v ∈ Di}, V ′ = V \ {v}, and S′

i = V ′ ∩ D′
i. Hence, |D′| ≥ N/τ(F) ≥ (500 + r)900(k−1).

By the induction hypothesis, there are r sets S′
i1

, . . . , S′
ir

in D′ that form an r-sunflower.
Together with vertex v, we obtain an r-sunflower in F . ◀

Replacing Lemma 15 with Clarkson’s theorem on levels in arrangement of hyperplanes [9],
the argument above gives the following.

▶ Theorem 16. Given r > 2, there is a constant C = C(r) for which the following statement
is true. If V is a point set in R3 and H = {H1, . . . , HN } is a family of N ≥ Ck half-spaces
such that the size of the set Si = Hi ∩V is k for all i, then there are r distinct sets Si1 , . . . , Sir

that form an r-sunflower.
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6 Concluding Remarks

The Erdős-Rado sunflower conjecture remains an outstanding open problem. Although we
made progress in this paper, it still remains open for families of bounded VC-dimension.

We were able to prove the conjecture in a geometric setting in the plane (Theorem 5).
We think it would be interesting to prove the conjecture in other geometric settings, such
as for families of sets that are the intersection of the ground set with semi-algebraic sets of
bounded description complexity. Such families are of bounded VC-dimension. The following
conjecture is a natural special case to consider.

▶ Conjecture 17. For each integer r ≥ 3, there is a constant C = C(r) such that the
following holds. If V ⊂ R3 and F is a family of subsets of V each of size k with |F| ≥ Ck

such that every set in F is the intersection of V with a unit ball in R3, then F contains an
r-sunflower.
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