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A graph is 1-planar, if it can be drawn in the plane such that there is at most one crossing 
on every edge. It is known, that 1-planar graphs have at most 4n − 8 edges.
We prove the following odd-even generalization. If a graph can be drawn in the plane such 
that every edge is crossed by at most one other edge an odd number of times, then it is 
called 1-odd-planar and it has at most 5n − 9 edges. As a consequence, we improve the 
constant in the Crossing Lemma for the odd-crossing number, if adjacent edges cross an 
even number of times. We also give upper bound for the number of edges of k-odd-planar 
graphs.

© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the 
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

By a graph we always mean a simple graph, that is, a graph with no loops and no parallel edges. We use the term 
multigraph if loops and parallel edges are allowed. A drawing of a (multi)graph in the plane is a representation such that 
vertices are represented by distinct points and its edges by curves connecting the corresponding points. We assume that no 
edge passes through any vertex other than its endpoints, no two edges touch each other (i.e., if two edges have a common 
interior point, then at this point they properly cross each other), no three edges cross at the same point, and two edges 
cross only finitely many times.

The crossing number of a graph G , cr(G), is the minimum number of crossings (crossing points) over all drawings of G . 
The pair-crossing number, pcr(G), is the minimum number of pairs of crossing edges over all drawings of G . In an optimal 
drawing for cr(G), any two edges cross at most once [17]. Therefore, it is not easy to see the difference between these two 
definitions. Indeed, there was some confusion in the literature between these two notions, until the systematic study of 
their relationship [12]. Clearly, pcr(G) ≤ cr(G), and in fact, we cannot rule out the possibility, that cr(G) = pcr(G) for every 
graph G . Probably it is the most interesting open problem in this area. From the other direction, the best known bound is 
cr(G) = O (pcr(G)3/2 log pcr(G)) [16], [8].

The odd-crossing number, ocr(G), is the minimum number of pairs of edges that cross an odd number of times, over all 
drawings of G . Clearly, (as non-crossing edges cross an even number of times) for every graph G , ocr(G) ≤ pcr(G) ≤ cr(G). 
According to the (weak) Hanani-Tutte theorem [6], [14], if ocr(G) = 0, then G is planar, that is, ocr(G) = pcr(G) = cr(G) =
0. It was shown in [14] that for k = 1, 2, 3, if ocr(G) = k, then ocr(G) = pcr(G) = cr(G) = k. There are examples where ocr

is different from pcr and cr, namely, there is an infinite family of graphs with ocr(G) < 0.855 · pcr(G) [18], [15]. From the 
other direction we only have pcr(G) < 2ocr(G)2 [12].

* Corresponding author.
E-mail addresses: karlj@math.bme.hu (J. Karl), geza@renyi.hu (G. Tóth).

1 Supported by National Research, Development and Innovation Office, NKFIH, K-131529 and ERC Advanced Grant “GeoScape” 882971.
https://doi.org/10.1016/j.comgeo.2022.101901
0925-7721/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license 
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://doi.org/10.1016/j.comgeo.2022.101901
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/comgeo
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comgeo.2022.101901&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:karlj@math.bme.hu
mailto:geza@renyi.hu
https://doi.org/10.1016/j.comgeo.2022.101901
http://creativecommons.org/licenses/by-nc-nd/4.0/


J. Karl and G. Tóth Computational Geometry: Theory and Applications 108 (2023) 101901
Table 1
Nine versions of the crossing number.

Rule + ocr∗(G) ≤ ocr+(G) pcr+(G)
cr(G)

Rule 0 ocr(G) pcr(G)

Rule − ocr−(G) pcr−(G) cr−(G)

In [13] some further variants were introduced, in order to study the role of crossings between adjacent edges. For each 
of cr, pcr, and ocr, they introduced three counting rules.

Rule +: Only those drawings are considered, where adjacent edges cannot cross.
Rule 0: Adjacent edges can cross and their crossings are counted as well.
Rule −: Adjacent edges can cross and their crossings are not counted.

Combining these rules with the three crossing numbers, we get nine possibilities. But it is easy to see that cr+ = cr

[13]. On the other hand, regarding Rule + for the odd-crossing number, it seems more natural to assume that adjacent 
edges cross an even number of times than to assume that they do not cross at all. So, let ocr∗(G) be the minimum number 
of odd-crossing pairs of edges over all drawings of G where adjacent edges cross an even number of times (these drawings 
are called weakly semisimple in [5]). Therefore, we have nine versions, see Table 1. In this table, values do not decrease if 
we move to the right or up, and it was shown in [15] that cr(G) < 2ocr−(G)2. On the other hand, there are graphs G such 
that ocr−(G) < ocr(G) [7].

The Crossing Lemma, discovered by Ajtai, Chvátal, Newborn, Szemerédi [4] and independently by Leighton [9] is definitely 
the most important inequality for crossing numbers.

Crossing Lemma. If a simple graph G of n vertices has m ≥ 4.5n edges, then cr(G) ≥ 1
60.75

m3

n2 edges.

The bound is tight, apart from the value of the constant [11]. The constant above follows from the beautiful probabilistic 
argument of Chazelle, Sharir and Welzl [3]. This argument works for all nine versions of the crossing number [13]. For the 
classical crossing number, cr(G), the constant was improved in three steps [11], [10], the best bound is due to Ackerman 
[1], cr(G) ≥ 1

29
m3

n2 , when m ≥ 7n.

The only improvement for any other version is a result of Ackerman and Schaefer [2], pcr+(G) ≥ 1
34.2

m3

n2 , when m ≥ 6.75n. 
For all other versions of the crossing number, the constant 60.75 is the best we have.

In this note we get an improvement for two other versions, ocr+ and ocr∗ .

Theorem 1. Suppose that G has n vertices and m ≥ 6n edges. Then ocr+(G) ≥ ocr∗(G) ≥ 1
54

m3

n2 .

Our approach is very similar to all previous improvements mentioned above. The first step is to find many odd-crossing 
pairs in sparse graphs. Then this bound is applied for a random subgraph of G to get the general bound.

A graph G is called k-planar if it can be drawn in the plane such that there are at most k crossings on each edge. Such 
a drawing is called a k-plane drawing. Let mk(n) denote the maximum number of edges of a k-planar graph of n vertices.

Clearly, m0(n) = 3n − 6. It is known that m1(n) = 4n − 8 for n ≥ 12, m2(n) ≤ 5n − 10 and it is tight for infinitely many 
values of n, [11], m3(n) ≤ 5.5n − 11, m4(n) ≤ 6n − 12, which are tight up to an additive constant [10], [1].

We prove an odd-even version of these results. A graph G is called k-odd-planar if it can be drawn in the plane such 
that any edge is crossed an odd number of times by at most k other edges (edges crossing an even number of times do not 
count). Such a drawing is called a k-odd-plane drawing.

Let modd
k (n) denote the maximum number of edges of a k-odd-planar graph with n vertices. Clearly, we have modd

k (n) ≥
mk(n) and by the weak Hanani-Tutte theorem [6], [14], we have modd

0 (n) = 3n − 6.

Theorem 2. For any n, k ≥ 1 we have

modd
k (n) ≤ mk(n) + k(n − 1).

This result is interesting only for small k. For k (and n) large enough, we have an easy better bound.

Theorem 3. For any n, k ≥ 1 we have

modd
k (n) ≤ √

32
√

kn.

We do not think that our bounds are tight. We cannot even rule out the possibility that modd(n) = mk(n) for every n, k.
k
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Fig. 1. Steps in the proof of Lemma 1.

2. Proofs

A (multi)graph G , together with its drawing D in the plane, is called topological (multi)graph. The points (resp. curves), 
representing the vertices (resp. edges) of G are called vertices (resp. edges) of the topological (multi)graph. If the drawing 
is obvious from the context, we do not make any notational distinction between the topological (multi)graph and the 
underlying abstract (multi)graph. Let G be a topological multigraph and e an edge. The pieces of e in small neighborhoods 
of its endpoints are called endings of e and denoted by e+ and e− . As e is an undirected edge, the + and − signs have no 
special meaning, either ending can be e+ and the other one is e− . The rotation system is the cyclic order of adjacent edges, 
or endings, at each vertex. A cyclic order is always clockwise. Two edges form an odd pair (resp. even pair) if they cross an 
odd (resp. even) number of times. An edge is called even if it is crossed an even number of times by every other edge and 
it is odd otherwise.

According to the weak Hanani-Tutte theorem, if a graph can be drawn so that any two edges cross an even number 
of times, then it is planar. This result has many proofs, one of the nicest and simplest is due to Pelsmajer, Schaefer and 
Štefankovič [14]. The proof is based on the following lemma.

Lemma 0 ([14]). Let G be a topological multigraph that has one vertex and n edges (loops). Suppose that every edge is even. Then, G
can be redrawn such that the rotation system is the same and there is no edge crossing.

First we prove the following generalization.

Lemma 1. Let G be a topological multigraph that has one vertex and m edges (loops). Then, G can be redrawn such that (i) the rotation 
system is the same (ii) even pairs do not cross, (iii) odd pairs cross once, and (iv) there are no self-crossings.

Proof. The proof is by induction on the number of edges. If there is only one loop, the statement is trivial.
Suppose that G has one vertex v and m > 1 loops, and the statement has been proved for a smaller number of loops. Let 

D denote the present drawing of G . We can assume immediately that there are no self-crossings, since we can eliminate 
self-crossings of each loop without changing the number of crossings between different loops.

Let s be a very short segment ending in v and not crossing any of the loops.
Assume without loss of generality that for any loop e, s, e− and e+ are in this clockwise order at v (otherwise we can 

switch the notation for e− and e+).
For two loops e and f , we say that f ≺ e if the clockwise order of endings at v is s, e− , f − , f + , e+ . The relation ≺

defines a partial order on the loops. Let e be a minimal loop with respect to ≺. That is, any other loop f has at most one 
ending between e− and e+ .

Delete e and apply the induction hypothesis. We get a drawing D ′ satisfying the conditions. In particular, the cyclic order 
of endings is the same as in D . Insert e− and e+ back to their original places and connect them by an arc in a small 
neighborhood of v , going clockwise from e− to e+ . We can do it such that it crosses only those endings, each exactly once, 
which are between e− and e+ . In the obtained drawing D1, the rotation system is the same as in D and there are no 
self-crossings. For any two loops f , g �= e, (ii) and (iii) are satisfied by the induction hypothesis. If e, f is an odd pair in D , 
then it has exactly one ending between e− and e+ so in D1 they cross once. If it is an even pair in D , then f has no ending 
between e− and e+ so in D1 they do not cross. This concludes the proof of Lemma 1. See Fig. 1. �
3
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Fig. 2. Contracting edge e = uv to u. The resulting vertex is called w .

Remarks. 1. The statement of Lemma 1 can be found implicitly in [14], p. 492, as a remark.
2. Another possible proof is the following. Take a drawing of G which has the same rotation system and under this 

condition the minimum number of crossings. It can be shown that this drawing satisfies the conditions, otherwise we could 
have a better drawing of G . But we did not find this method easier.

Lemma 2. Let k ≥ 0, l ≥ 1. Suppose that n1, . . . , nl > 0 and n1 + · · · + nl = n. Then

mk(n) ≥ mk(n1) + · · · + mk(nl).

Proof. For every i take a k-plane graph of ni vertices and mk(ni) edges. Their disjoint union is a k-plane graph with n
vertices and mk(n1) + · · · + mk(nl) edges. �
Definition. Suppose that G is a topological multigraph. Let e = uv be an edge. The contraction of e to u is the following 
procedure. Move v to u, along the edge e. At the same time, extend all other edges incident to v by curves along e, from a 
neighborhood of v to u, without creating any crossing among them. See Fig. 2.

Suppose that e = uv is an even edge of G . Contract e to u and let w be the new vertex and G ′ the resulting topological 
graph. There is a natural bijection between the edges of G \ e and G ′ , and the odd pairs are exactly the same. Any vertex 
x �= u, v of G remains a vertex of G ′ with the same cyclic order of incident edges. Suppose that in G , e, e1, . . . , ea and 
e, f1, . . . , fb are the cyclic orders of incident edges at u and v , respectively. Then in G ′ , the cyclic order of edges at w is 
e1, . . . , ea, f1, . . . , fb . We can “reverse” the contraction as follows. If we replace w in G ′ by two very close vertices u′ and 
v ′ , connected by an edge, u′ incident to e1, . . . , ea and v ′ incident to f1, . . . , fb , we get a topological graph with exactly the 
same rotation system as G .

Proof of Theorem 2. Suppose that G has n vertices and m edges, and it is drawn in the plane such that any edge is crossed 
by at most k other edges an odd number of times. We can assume that G is connected, as an abstract graph, otherwise, 
by Lemma 2, we can argue separately for each component. Suppose first that G contains a spanning tree F whose edges 
cross each other an even number of times. Remove all edges of G that cross an edge of F an odd number of times. We 
get the topological graph G1 in the inherited drawing. Since F has n − 1 edges and each of them is crossed by at most k
other edges an odd number of times, for the number of m1 edges of G1, m1 ≥ m − k(n − 1). In G1, all edges of F are even. 
Contract all edges of F . We get a topological multigraph G2, which has only one vertex v . The odd pairs are exactly the 
same as in G1. Apply Lemma 1 for G2 and get the topological multigraph G3. Since the rotation system is the same in G3
as in G2, we can reverse the contractions without creating any additional crossing. This way we get G4. Observe that G4 is 
a redrawing of G1, with the property that if two edges form an even (odd) pair in G , then they do not cross (cross once) in 
G4. By the assumption, every edge in G1 is part of at most k odd pairs. Therefore, G4 is a k-plane drawing of G1 so it has 
at most mk(n) edges. Consequently, for the number of edges of G we have m ≤ mk(n) + k(n − 1).

Suppose now that G does not contain a spanning tree whose edges cross each other an even number of times. Let F be 
a maximal forest whose edges cross each other an even number of times. Let V 1, . . . , Vl be the vertices of the connected 
components of F , |V i | = ni . Since F is not a tree, l ≥ 2 and |E(F )| = n − l. By the maximality of F , those edges of G that 
connect two components cross some edge of F an odd number of times. Remove all edges of G that cross some edge 
of F an odd number of times. We removed at most k(n − l) edges. The resulting graph has l components G1, G2, . . . , Gl , 
on vertices V 1, . . . , Vl . Let |E(Gi)| = mi . By the construction, each Gi contains a spanning tree Fi whose edges are even. 
Contract the edges of Fi and argue as above. We get that
4
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m ≤
l∑

i=1

mi + k(n − l) ≤
l∑

i=1

mk(ni) + k(n − l) ≤ mk(n) + k(n − 1). �

Proof of Theorem 1. We have modd
0 (n) = 3n − 6, and by Theorem 2, modd

1 (n) ≤ m1(n) + n − 1 = 5n − 9.
First we show, by induction on the number of edges that for any graph with n vertices and m edges, ocr(G) ≥ m − 3n. If 

m ≤ 3n, the statement is trivial. Suppose that m > 3n and we have proved the statement for m − 1. Take any drawing D of 
G . Since modd

0 (n) = 3n − 6, there is an odd pair e, f . Remove e from G , and then the obtained drawing has one less edges 
and at least one less odd pairs. Therefore, the number of odd pairs in D is at least 1 + (m − 1) − 3n = m − 3n.

Now we show, again by induction on the number of edges that for any graph with n vertices and m edges, ocr(G) ≥
2m − 8n. If m ≤ 5n, then ocr(G) ≥ m − 3n ≥ 2m − 8n. Suppose that m > 5n and we have proved the statement for m − 1. 
Take any drawing D of G , since modd

1 (n) ≤ 5n − 9, there is an edge e in two odd pairs, e, f and e, g . Remove e from G , and 
then the obtained drawing has one less edges and at least two less odd pairs. Therefore, the number of odd pairs in D is at 
least 2 + 2(m − 1) − 8n = 2m − 8n.

Let G be a graph of n vertices and m ≥ 6n edges, drawn in the plane realizing ocr∗(G), that is, any two adjacent edges 
cross an even number of times and there are ocr∗(G) pairs of edges that cross an odd number of times. Take a random 
subgraph G ′ such that we take each vertex independently with probability p = 6n/m. Let n′ , m′ , and x(G ′) denote the 
number of vertices (resp. edges) of G ′ , and the number of odd-crossing pairs of edges in G ′ , in the inherited drawing. We 
have

E(n′) = pn, E(m′) = p2m, E(ocr∗(G ′)) ≤ E(x(G ′)) = p4
ocr∗(G).

For G ′ we have ocr∗(G ′) ≥ ocr(G ′) ≥ 2m′ − 8n′ , taking expected values,

p4
ocr∗(G) ≥ 2p2m − 8pn.

For p = 6n/m, we have

ocr∗(G) ≥ 1

54

m3

n2
. �

Remark. Combining Theorem 2 and the bounds for mk(n) we obtain that modd
1 (n) ≤ 5n − 9 and modd

2 (n) ≤ 7n − 12. In 
the proof of Theorem 1 we used only the first inequality, the second would not help. However, if we could prove that 
modd

2 (n) ≤ 6.8n + c for some constant c, then we would get an improvement in Theorem 1 as well.

Proof of Theorem 3. We apply a version of the Crossing Lemma for the odd-crossing number, from [12]: If G has n vertices 
and m edges, and m ≥ 4n, then ocr(G) ≥ 1

64
m3

n2 .

Let k ≥ 1. Suppose that G is k-odd-planar with n vertices and m = modd
k (n) edges. We can assume that m ≥ 4n, otherwise 

we are done.
Take a k-odd-plane drawing of G . Every edge participates in at most k odd pairs. Therefore, there are at most km/2 odd 

pairs, so ocr(G) ≤ km/2. On the other hand, we can apply the Crossing Lemma for the odd-crossing number, so

km/2 ≥ ocr(G) ≥ 1

64

m3

n2
.

It follows that m ≤ √
32

√
kn. �

Remarks. 1. It is easy to see that Theorem 3 is better than Theorem 2 if n, k ≥ 40. This threshold 40 can be improved, but 
it is not very interesting.

2. The analogue of Theorem 3 for mk(n) instead of modd
k (n) was first proved in [11]. Using the best known constant for 

the Crossing Lemma from [1] we can get that for any n, k ≥ 2, mk(n) ≤ 3.81
√

kn.
3. In the proof of Theorem 1 we had to assume that adjacent edges cross an even number of times. Therefore, it holds 

only for ocr∗(G) and ocr+(G). We believe that it is not necessary and Theorem 1 can be extended to ocr(G). Similarly, we 
believe that the bound of Ackerman and Schaefer [2], pcr+(G) ≥ 1

34.2
m3

n2 can be extended to pcr(G). We also believe that 
both of them are very interesting problems.
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[15] M. Pelsmajer, M. Schaefer, D. Štefankovič, Odd crossing number and crossing number are not the same, Discrete Comput. Geom. 39 (2008) 442–454.
[16] M. Schaefer, Crossing Numbers of Graphs, CRC Press, December 5, 2017, p. 350 pages.
[17] L. Székely, A successful concept for measuring non-planarity of graphs: the crossing number, Discrete Math. 276 (2004) 331–352.
[18] G. Tóth, Note on the pair-crossing number and the odd-crossing number, Discrete Comput. Geom. 39 (2008) 791–799.
6

http://refhub.elsevier.com/S0925-7721(22)00044-X/bib032AABBA74FDEBA97AC9FA6CF5CDA257s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib49993C8611C3DC97E98B290C3444304As1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib49993C8611C3DC97E98B290C3444304As1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibC9BA3F306E74590E40690A9B0DDE1814s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib843D2C0934B14A6CC44F6BC3FA43A286s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib843D2C0934B14A6CC44F6BC3FA43A286s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibE5818F1C87A388E221582E57A9CA75C1s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibE5818F1C87A388E221582E57A9CA75C1s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib46FC3471553DEF7D7947FCA654D13426s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib7DAAA3B12F63371E8D362F9D86757AB7s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib7DAAA3B12F63371E8D362F9D86757AB7s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibD58402BF069636287E5A8BACFAC17968s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib87D5BE18C3F5EA9721B8B343120CD71Cs1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib74D93DD74CF62DDA23EAE97B73CE9681s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib74D93DD74CF62DDA23EAE97B73CE9681s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibFCAC0C688C376FFC877D769E43BF2E66s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib6DFFA79CD60147C66283F61D7E88458As1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibEA929C714AFB10A868E2823D8B413689s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibE4C51EB81AF205F3371C0BFA804311ACs1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib2D1E68036829126A46A994C6E1C4B2FAs1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibF2482427CB2A6F8C562F6E7B97043E10s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bib49B5E94782813C8B320A9F7957F659C5s1
http://refhub.elsevier.com/S0925-7721(22)00044-X/bibFD9C54B77A359A57C8842CC8C9CFE02Es1

	Crossing lemma for the odd-crossing number
	1 Introduction
	2 Proofs
	Declaration of competing interest
	References


