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Abstract. We present a method to verify the metrological usefulness of noisy Dicke

states of a particle ensemble with only a few collective measurements, without the need

for a direct measurement of the sensitivity. Our method determines the usefulness of

the state for the usual protocol for estimating the angle of rotation with Dicke states,

which is based on the measurement of the second moment of a total spin component.

It can also be used to detect entangled states that are useful for quantum metrology.

We test our approach on recent experimental results.
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Figure 1. Metrology with symmetric Dicke states on the multiparticle Bloch sphere.

In a linear interferometer, the uncertainty ellipse of the state is rotated around the y

axis, while the rotation angle is estimated by collective measurements.

1. Inroduction

Quantum metrology is concerned with metrological tasks in which the quantumness of

the system plays an essential role [1, 2, 3, 4, 5]. One of its key goals is identifying bounds

for the highest precision achievable in parameter estimation tasks in a quantum system,

for example, by using the theory of quantum Fisher information [6, 7, 8, 9, 10]. Recently,

there has been a large effort connecting quantum metrology to quantum information

science, in particular, to the theory of quantum entanglement [11]. It has turned out

that, in linear interferometers, entanglement is needed to surpass the shot-noise limit

corresponding to product states [12]. It has been shown that fully entangled multipartite

quantum states are needed to reach the maximal precision [13, 14, 15]. In particular,

the quantum Fisher information, a fundamental quantity in metrology, can be used to

detect multipartite entanglement.

After the theoretical findings mentioned above, it is crucial to know how large

precision can be achieved in realistic, noisy systems [16, 17]. Thus, quantum metrology

has been a driving force behind the numerous recent quantum optics experiments with

cold gases and cold trapped ions, which were possible due to the rapid technological

advancement in the field [18, 19, 20, 21]. Quantum metrology played a central role even

in the recent experiments with the squeezed-light-enhanced gravitational wave detector

GEO 600 [22].

There have been many experiments with fully polarized atomic ensembles in which

the collective spin of the particles is rotated around an axis perpendicular to the mean

spin (for instance by a homogeneous magnetic field) and the angle of the rotation is

estimated based on collective measurements. It has also been verified experimentally

that spin squeezing can result in a better precision compared to fully polarized product

states (i.e., SU(2) coherent states) [23, 24, 25, 26, 27, 28, 29, 30, 20, 31, 32] since spin-

squeezed states are characterized by a reduced uncertainty in a direction orthogonal to

the mean spin [33, 34, 35, 36]. A method has been presented for detecting metrologically

useful entanglement for spin-squeezed states based on collective measurements [12].

Besides almost fully polarized states, there are also unpolarized states considered
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for quantum metrology. Prime examples of such states are Greenberger-Horne-Zelinger

(GHZ) states [37], which have already been realized experimentally many times

[38, 39, 40, 41, 42, 18, 43, 44]. Recently, new types of unpolarized states have been

considered for metrology, such as singlet states [45, 46] and symmetric Dicke states

realized in cold gases and photons [47, 48, 49, 50]. In the metrological schemes with Dicke

states, the state is rotated around an axis in a linear interferometer and the rotation

angle is estimated based on collective measurements (see figure 1). For this case, a

criterion to detect the metrological usefulness of some of these states has been derived

for symmetric systems [51]. There is another criterion based on an improved Heisenberg

relation to bound the quantum Fisher information close to Dicke states [52]. However,

these criteria show metrological usefulness allowing for arbitrary measurements using

the theory of the quantum Fisher information, while it might be interesting to show

metrological usefulness for the measurements carried out in a particular metrological

scheme. For example, in a large ensemble, we can allow for collective measurements

only.

In this paper, we present a condition for metrological usefulness for the case

when the second moment of a spin component of the state is measured to obtain an

estimate for the rotation angle. Our findings are expected to simplify the experimental

determination of metrological sensitivity since the proposed set of a few collective

measurements is much easier to carry out than determining the metrological sensitivity

directly. Our method is optimal in the sense that it gives the precision of the parameter

estimation exactly, if certain operator expectation values are provided. If not all relevant

expectation values can be measured, it can still give useful bounds. We also test

our approach using data of a recent experiment realizing parameter estimation with

a Dicke state [53]. Thus, our paper is expected to be useful for similar experiments in

the future. Since quantum states with a metrological sensitivity larger than a certain

bound are entangled [12], our method can also be used to detect metrologically useful

entanglement in the vicinity of Dicke states. Note, however, that our work is not related

to the criterion presented in [53], which detects multipartite entanglement in particle

ensembles independently from metrological applications.

Our paper is organized as follows. In section 2, we discuss the basics of quantum

metrology. In section 3, we present our criterion. In section 4, we compare our criterion

to the sensitivity bound obtained from the quantum Fisher information. In section 5,

we show how to apply our criterion to experimental results.

2. Basics of quantum metrology

In this section, we review the basics of quantum metrology. We discuss how the

precision of the parameter estimation can be calculated, and how it can be bounded

by the quantum Fisher information. We also discuss how the precision is linked to the

entanglement of the quantum state.

One of the most fundamental tasks in quantum metrology is the estimation of the
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small phase θ in the unitary dynamics

%θ = e−iHθ%e+iHθ, (1)

where H is the Hamiltonian of the dynamics, % is the initial state, and %θ is the final

state after the evolution. The parameter θ must be estimated based on measuring an

observable M on the final state.

Next, we will discuss how to estimate the uncertainty of the parameter estimation.

The variance of the estimated parameter can be calculated by the error propagation

formula as

(∆θ)2 =
(∆M)2

|∂θ〈M〉|2
. (2)

One can interpret (2) as follows. The larger the variance of M, the worse the precision.

On the other hand, the larger the derivative of the expectation value of M, the better

the precision.

Some operators are better than others for parameter estimation with a certain

quantum state. The quantum Cramér-Rao inequality gives a lower bound on (2) that

cannot be surpassed by any choice of M. In this paper, we will use many times the

Cramér-Rao inequality formulated with the reciprocal of (∆θ)2 as

(∆θ)−2 ≤ FQ[%,H], (3)

where FQ is the quantum Fisher information [6, 7, 8, 9]. It has been shown that the

bound in (3) can be saturated by some measurement, and there is even a formula to find

the optimal observable [8]. Note that all these are valid in the limit of infinite repetitions

of the measurement, from which the expectation values can be obtained exactly. The

case of finite number of measurements is more complicated [3, 4].

In certain situations, it is better to use (2) rather than (3) for calculating the

best precision achievable, since it gives the precision for a particular operator to be

measured in an experimental setup. This is reasonable since in a typical experiment,

only a restricted set of operators can be measured. In this article, we will consider

many-particle systems in which the particles cannot be addressed individually, and only

collective quantities can be measured. In particular, in such a multiparticle system, we

can measure the collective angular momentum operators

Jl =
N∑
n=1

j
(n)
l , (4)

for l = x, y, z, and jl = 1
2
σl, where σl are the Pauli spin matrices. Moreover, N is the

number of pseudo-spin-1
2

particles.

Using collective angular momentum operators, it is even possible to connect the

metrological precision to quantum entanglement [54, 55]. Let us briefly review some

notions of entanglement theory. Separable states are mixtures of multiparticle products

states. If a state is not separable then it is called entangled. Entangled states can be

used as a resource for several quantum information processing tasks [55]. It has turned
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out that certain entangled states are also useful for quantum metrology. In particular,

if a quantum state fullfils

FQ[%, Jl] > N, (5)

then it is entangled [12]. As a consequence of (2), (3) and (5), if

|∂θ〈M〉|2

(∆M)2
> N (6)

holds, then the system is also entangled. Hence, entanglement is required for a large

metrological precision.

Finally, it is even possible to find bounds for states with various forms of

multipartite entanglement. Let us review very briefly the definitions needed to

characterize multipartite entanglement. A pure state containing at most k-particle

entanglement is of the form

|Ψk−particle ent.〉 = |ψ1〉 ⊗ |ψ2〉 ⊗ ...⊗ |ψM〉, (7)

where |ψk〉 are quantum states of at most k qubits. A mixed state containing at most

k-particle entanglement is a mixture of pure states of the form (7) [35, 56, 57]. Recently,

it has been shown that if

FQ[%, Jl] > kN (8)

holds for a quantum state, then it is at least (k+1)-particle entangled [13, 14] †. Another

formulation is saying that the entanglement depth of the state is at least (k + 1) [35].

Similarly to the previous paragraph, it follows that a quantum state is at least (k + 1)-

particle entangled if

|∂θ〈M〉|2

(∆M)2
> kN (9)

holds.

Based on this section, one can see the advantages of using the quantity (∆θ)−2

rather than (∆θ)2 in our discussion. It can be directly compared to the quantum Fisher

information [see (3)]. Moreover, (∆θ)−2/N directly leads to a lower bound on the

entanglement depth. Note the relation of (∆θ)−2 to the precision: it is large for a high

precision and small for a low precision.

3. Metrology with Dicke states

In this section, we will consider metrology with symmetric Dicke states [58]. In

particular, we will consider symmetric states that are the eigenstates of Jz with a zero

eigenvalue. The metrological setup is the following. The Dicke state is rotated around

the y axis of the multiparticle Bloch sphere. Then, we estimate the rotation angle by

† Equation (8) is valid if k is a divisor of N. The general formula is somewhat more complicated than

(8) [13, 14]. Equation (8) can also be used if k � N, since in this case the difference between (8) and

the general formula is small. Note that k � N is fulfilled in practice in many experiments.
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collective measurements. Such an experiment has already been carried out in cold gases

[47]. It was found that for noisy states, the optimal angle for parameter estimation is

not θ = 0. Thus, (2) was recorded for many different values of θ. The phase estimation

uncertainty was then plotted as a function of the rotation angle θ, and the best precision

could be identified. In this section, we will show that the optimal angle can be obtained

easily as a closed formula. We even find a closed formula for the maximal parameter

estimation precision, as a function of a few expectation values. In this way, one can verify

the metrological usefulness of the state without directly probing the phase estimation

uncertainty for many phases.

Next, let us define the Dicke states, and examine their metrological properties. A

N -qubit symmetric Dicke state is given as

|D(m)
N 〉 =

( N

m

)− 1
2
∑
k

Pk(|1〉⊗m ⊗ |0〉⊗(N−m)), (10)

where the summation is over all the different permutations of the product state having

m particles in the |1〉 state and (N −m) particles in the |0〉 state. One of such states is

the W -state for which m = 1, which has been prepared with photons, ions, and neutral

atoms [59, 60, 61].

From the point of view of metrology, we are interested mostly in the symmetric

Dicke state for even N and m = N
2
. This state is known to be highly entangled [62, 63]

and allows for Heisenberg-limited interferometry [64]. In the following, we will omit the

superscript giving the number of |1〉’s and use the notation

|DN〉 ≡ |D
(N
2
)

N 〉. (11)

Symmetric Dicke states of the type (11) have been created in photonic systems

[65, 66, 50, 49, 67], in cold gases [47, 48, 53] and recently in trapped cold ions [68],

and their metrological properties have also been verified experimentally [47, 49].

How can we do metrology with a |DN〉 state, taking into account even the practical

case of a nonideal Dicke state? We will consider a general initial state %, rather than

the special case of a Dicke state. We will study a scheme in which the state is rotated

around the y axis, corresponding to a unitary evolution under the Hamiltonian

HD = Jy. (12)

Then, we measure 〈J2
z 〉 to obtain an estimate for the angle of rotation. The error

propagation formula (2) gives us the variance of the parameter estimation as

(∆θ)2 =
(∆J2

z )2

|∂θ〈J2
z 〉|2

. (13)

Next, we calculate the quantites in (13) one after the other. For that, we need to use

the dynamics of Jz given in the Heisenberg picture as

Jz(θ) = eiJyθJze
−iJyθ. (14)

In the following, all operators evolve according to the Heisenberg picture and all

expectation values are calculated for the initial state %.
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Before continuing our calculations, we need to make an important simplifying

assumption. We will assume that for all θ

〈J2
z (θ)〉 = 〈J2

z (−θ)〉,
〈J4

z (θ)〉 = 〈J4
z (−θ)〉 (15)

holds. Equation (15) implies that the two expectation values must be even functions

of θ, and that we can omit the terms that are odd in θ. In section 5, we will see that

unitary dynamics starting from the experimentally prepared state have the property

(15).

Let us now continue computing the precision given by (13). First, let us calculate

the numerator of (13). Using (14) to obtain the dynamics, and with our simplifying

assumptions (15) we arrive at

〈J2
z (θ)〉 = 〈J2

z 〉 cos2 θ + 〈J2
x〉 sin2 θ,

〈J4
z (θ)〉 = 〈J4

z 〉 cos4 θ + 〈J4
x〉 sin4 θ

+
(
〈{Jz, Jx}2〉+ 〈{J2

z , J
2
x}〉
)

cos2 θ sin2 θ, (16)

where {X, Y } = XY +XY is the anticommutator of X and Y. Then, we calculate the

denominator of (13). Using the dynamics of 〈J2
z (θ)〉 given in (16) and the assumption

in (15), we obtain the derivative as

∂θ〈J2
z 〉 = 2(〈J2

x〉 − 〈J2
z 〉) cos θ sin θ. (17)

The details of our calculations are given in appendix A.

Substituting (16) and (17) into the error propagation formula (13), after

straightforward algebra, we arrive at a simple expression for the parameter variance

(∆θ)2 =
(∆J2

x)2f(θ) + 4〈J2
x〉 − 3〈J2

y 〉 − 2〈J2
z 〉(1 + 〈J2

x〉) + 6〈JzJ2
xJz〉

4(〈J2
x〉 − 〈J2

z 〉)2
, (18)

where

f(θ) :=

[
(∆J2

z )2

(∆J2
x)2

1

tan2 θ
+ tan2 θ

]
. (19)

For the details of the calculation, see appendix B.

Next, we determine the optimal angle θ that minimizes the parameter variance (18).

It is easy to see that the optimal angle has to minimize also (19). The angle minimizing

(19) is given by

tan2 θopt =

√
(∆J2

z )2

(∆J2
x)2

. (20)

Equation (20) makes it possible to plan an experiment for the verification of the maximal

accuracy such that we do not need to measure the sensitivity for a large range of θ’s,

but can target the parameter values close to the optimal angle.

Remarkably, we can even use (20) to obtain an explicit formula from (18) for the

minimal parameter variance achievable by the setup as

(∆θ)2opt =
2
√

(∆J2
z )2(∆J2

x)2 + 4〈J2
x〉 − 3〈J2

y 〉 − 2〈J2
z 〉(1 + 〈J2

x〉) + 6〈JzJ2
xJz〉

4(〈J2
x〉 − 〈J2

z 〉)2
. (21)
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For the evaluation of (21), we do not need to make a direct measurement of the sensitivity

for some range of θ in the vicinity of θopt. We need to measure only the expectation values

〈J2
x〉, 〈J2

y 〉, 〈J2
z 〉, 〈J4

x〉, 〈J4
z 〉, and 〈JzJ2

xJz〉 of the initial state (i.e., at θ = 0), which could

make the experiments much easier. Later, we will discuss how to avoid measuring

〈JzJ2
xJz〉, and even avoiding measuring the fourth order moments.

Finally, let us demonstrate the correctness of our formula (21) for the pure Dicke

state |DN〉. For this purpose, we will summarize the expectation values of the relevant

moments of some collective observables for the state. Our Dicke state is an eigenstate

of Jz with an eigenvalue zero. Hence, it immediately follows that

〈J2
z 〉 = 0, 〈J4

z 〉 = 0, 〈JzJ2
xJz〉 = 0. (22)

Moreover we know that for every quantum state

〈J2
x〉+ 〈J2

y 〉+ 〈J2
z 〉 ≤

N(N + 2)

4
(23)

holds, while symmetric quantum states, such as the Dicke state |DN〉, saturate the

inequality. Based on (22) and (23), and knowing that the rotational symmetry around

the z axis implies 〈J2
x〉 = 〈J2

y 〉, we arrive at

〈J2
x〉 = 〈J2

y 〉 =
N(N + 2)

8
. (24)

Somewhat technical, but straighforward algebra leads to

〈J4
x〉 = 〈J4

y 〉 =
(N + 2)

8

(
3N(N + 2)

16
− 1

2

)
, (25)

which will be useful later in the article. Equations (22) and (24) are sufficient to evaluate

(21), and we obtain

(∆θ)2opt =
2

N(N + 2)
, (26)

which reproduces the value given by the quantum Fisher information [47]. Hence, for

this case the Cramér-Rao bound (3) is saturated, which also means that J2
z is the optimal

operator to measure for the ideal Dicke state. In addition, (20) yields that the optimal

angle for the ideal Dicke state (11) is θopt = 0.

4. Testing our bound on concrete examples

In this section, we compare our formula (21) for (∆θ)2opt with the bound obtained from

the quantum Fisher information. We find that the formula gives a good lower bound on

the quantum Fisher information using the inequality (∆θ)−2
opt ≤ FQ[%, Jy]. It has been

mentioned in the introduction that our formula yields the best precision assuming that

〈J2
z 〉 is measured after the linear interferometer. If a different operator is measured, then

the precision can even be higher. The quantum Fisher information gives us a bound on

the precision if any measurement is allowed. However, note that in the latter case the

optimal measurement might turn out to be impractical.
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Figure 2. (a) The reciprocal of the parameter variance (∆θ)2opt given in (21) and the

quantum Fisher information for the ground states of the spin-squeezing Hamiltonian

(27) as a function of λ for N = 100 particles. (b) The same quantities are shown for

the thermal states (29) as a function of T.

Let us consider first the example of pure spin-squeezed states obtained as a ground

state of the spin squeezing Hamiltonian

Hsq(λ) = J2
z − λJx, (27)

where λ is a real parameter. For λ > 0, the ground state is unique, and it is in the

symmetric subspace. Hence, we can use the SU(2) generators instead of the collective

operators Jl defined in (4) [35]. We will get the same result, however, we can model

larger systems this way. For λ → ∞, the ground state is the fully polarized state in

the x-direction. For λ → +0, it is the Dicke state (11). For intermediate λ values, the

ground state is a state which is polarized in the x-direction and spin squeezed in the

z-direction. We will now find the best precision that can be achieved with this state if

we consider estimating θ in the unitary dynamics

%θ = e−iJyθ%0e
+iJyθ. (28)

Figure 2(a) compares the sensitivity we obtained with the optimum defined by the

quantum Fisher information. Our bound is close to the optimum when the state is well

polarized. It also coincides with the bound in the λ → 0 limit, when the ground state

is close to a Dicke state.

Our next example is a noisy Dicke state of the form

%th(T ) ∝
N∑
m=0

e−
(m−N/2)2

T |D(m)
N 〉〈D

(m)
N |, (29)

where N is even and |D(m)
N 〉 is defined in (10). From (29), we obtain the Dicke state

|D(N/2)
N 〉 for T = 0. For T > 0, other symmetric Dicke states in the vicinity of the state

|D(N/2)
N 〉 are also populated. The distribution of Dicke states is Gaussian and (29) can

be interpreted as a thermal state. We consider again estimating the parameter θ in the



Detecting metrologically useful entanglement in the vicinity of Dicke states 10

dynamics (28). The results can be seen in figure 2(b). Again, our bound is quite close

to ultimate bound defined by the quantum Fisher information.

Next, we verify that the dynamics fulfill the condition (15) for both cases considered

in this section. In this way we demonstrate that it was justified to use the formula (21) to

obtain the precision. Simple algebra shows that if the states considered in our examples

are used for metrology as initial states then

Tr(e−iJyφ%e+iJyφJmz ) = Tr(e+iJyφ%e−iJyφJmz ) (30)

holds for m = 2, 4, from which (15) follows.

Finally, note that in figure 2(a) and figure 2(b) a metrologically useful (k +

1)−particle entanglement is detected based on (9) if the quantum Fisher information

divided by N is larger than an integer k ‡. Based on (9), a similar statement holds

for (∆θ)−2
opt/N, which detects entanglement that is useful for the metrological procedure

with a 〈J2
z 〉 measurement.

5. Applications of the method to experimental data

In this section, we discuss how to apply the formula (21) in the cold gas experiment

described in [53]. In the experiment, it is possible to measure the operator Jz, which is

defined as a population difference as

Jz =
1

2
(N+1/2 −N−1/2), (31)

where N+1/2 and N−1/2 are the number of particles in the spin-states jz = +1/2 and

jz = −1/2, respectively. Hence, in principle the expectation values of all moments of Jz
can be obtained. In practice, it is possible to measure the lower order moments like 〈J2

z 〉
and 〈J4

z 〉, while higher order moments necessitate an increasing number of repetitions

of the experiment to get sufficient statistics.

The angular momentum components Jx and Jy are measured by rotating the total

spin using a π
2

microwave coupling pulse before the population difference measurement.

Whether Jx or Jy is measured depends on the relation between the microwave phase and

the phase of the initial Bose-Einstein condensate. The condensate phase represents the

only possible phase reference in analogy to the local oscillator in optics. Intrinsically, it

has no relation to the microwave phase, such that we homogeneously average over all

possible phase relations in our measurements. From another point of view, one can also

say that the fluctuation of the phase results in a random rotation of the spin around

the z axis. Hence, we measure

Jα = sin(α)Jx + cos(α)Jy, (32)

where α is a random phase, and we need to consider an averaging over α. Effectively,

the density matrix of the state is

% =
1

2π

∫
e−iJzφ%0e

+iJzφdφ, (33)

‡ This is true if k is a divisor of N, or k � N [13, 14].



Detecting metrologically useful entanglement in the vicinity of Dicke states 11

where %0 is what we would obtain if we had access to the phase reference §. For a

state of the form (33), the equality (30) holds for m = 2, 4, which can be seen directly

by substituting (33) into (30). Hence, the unitary dynamics will fulfill the simplifying

assumption (15). Note that integration over the rotation angle in (33) does not create

quantum entanglement. If the state % is entangled, %0 must also be entangled.

Next, we will simplify the bound for the precision of the parameter estimation (21),

based on the consequences of our state having the form (33). Since % is invariant under

rotations around the z axis, we have

〈Jmα 〉 = 〈Jmx 〉 = 〈Jmy 〉, (34)

for all m. Hence, the expectation values 〈Jmx 〉 and 〈Jmy 〉 can be obtained from

measurements of 〈Jmα 〉. Moreover, there is a single remaining term in (21), the

expectation value 〈JzJ2
xJz〉, which is difficult to measure directly in an experiment.

It can be bounded as

〈JzJ2
xJz〉 =

〈Jz(J2
x + J2

y )Jz〉
2

=
〈Jz(J2

x + J2
y + J2

z )Jz〉 − 〈J4
z 〉

2

≤ N(N + 2)

8
〈J2

z 〉 −
1

2
〈J4

z 〉 =: Z, (35)

where the last inequality is due to (23), which is saturated for symmetric states. Thus,

for symmetric states the formula (35) is not only an upper bound, it is exact. Using

(34) and (35), we can simplify (21) as

(∆θ)2opt ≤
2
√

(∆J2
z )2(∆J2

x)2 + 〈J2
x〉 − 2〈J2

z 〉(1 + 〈J2
x〉) + 6Z

4(〈J2
x〉 − 〈J2

z 〉)2
, (36)

where Z is defined in (35).

Next, we will substitute the experimentally measured values to (36). The measured

data from [49] for N = 7900 yields

〈J2
z 〉 = 112± 31, 〈J4

z 〉 = 40× 103 ± 22× 103,

〈J2
x〉 = 6× 106 ± 0.6× 106, 〈J4

x〉 = 6.2× 1013 ± 0.8× 1013. (37)

Hence, we obtain for the precision

(∆θ)−2
opt

N
≥ 3.7± 1.5. (38)

In (37) and (38), the statistical uncertainties have been obtained through boot strapping.

Note that a direct substitution of the mean values into (36) would yield a gain of 3.3.

Based on (6), (38) proves the presence of metrologically useful entanglement [12]. Based

on (8), it even indicates that the quantum state had metrologically useful 4-particle

entanglement. Within one standard deviation, it demonstrates 3-particle entanglement.

In figure 3, we plot the precision as a function of the rotation angle using the

expectation values (37) obtained experimentally. Since we cannot obtain the expectation

§ States of the form (33) can be written as incoherent mixtures of states with a definite Jz, i.e.,

% =
∑N/2

l=−N/2 pl%l, where for the subensembles 〈Jz〉%l
= l and (∆Jz)2%l

= 0 hold, while for the

probabilities pl ≥ 0 and
∑

l pl = 1.
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Figure 3. (solid) (∆θ)−2/N as a function of the parameter θ given by (18), for

parameter values given in (37). (dashed) The maximum is taken at θ = 0.0057, as

calculated based on (20). (dotted) (∆θ)−2/N corresponding to the shot-noise limit. If

the curve is above this line, then the quantum state shows entanglement based on (6).

value 〈JzJ2
xJz〉 experimentally, we approximate it with the right-hand side of (35), i.e.,

we plot the right-hand side of (36). With that, we overestimate (∆θ)2, or equivalently

we underestimate (∆θ)−2.

Thus, we could detect metrological usefulness by measuring the second and fourth

moments of the collective angular momentum components. For future applications of our

scheme, it is important to further reduce the number of quantities we need to measure

for our method. In practice, one can easily avoid the need for determining 〈J4
x〉. Note

that the distribution of values obtained from measuring Jx is strongly non-Gaussian.

The values ±N/2 appear most frequently, and the value 0 appear least frequently [47].

One can bound the fourth moment of Jx as follows

〈J4
x〉 ≤

N2

4
〈J2

x〉. (39)

Equation (39) is based on the fact that for two commuting positive-semidefinite

observables, A and B, we have

〈AB〉 ≤ λmax(A)〈B〉, (40)

where λmax(A) is the largest eigenvalue of A. Since even for a noisy Dicke state 〈J2
x〉 is

very large, (39) is a very good upper bound. Substituting the right-hand side of (39) in

the place of 〈J4
x〉 into (36), we will underestimate (∆θ)−2.

It is also possible to approximate 〈J4
z 〉 with 〈J2

z 〉. This will not lead to a strict bound

on the precision as the one for 〈J2
x〉, but still can help us to access the metrological

usefulness based on second moments only. One can use the formula

〈J4
z 〉 = β〈J2

z 〉2, (41)

where β is a constant. In principle, β can be obtained based on some knowledge of the

distribution of the measured values. In practice, the distribution is typically dominated



Detecting metrologically useful entanglement in the vicinity of Dicke states 13

(a) (b)

Figure 4. (a) Lower bound on (∆θ)−2 as a function of 〈J2
x〉 and 〈J2

z 〉 for an ensemble

of N = 7900 particles. For all points in a region with index k, the precision is

bounded according to (∆θ)−2 > (k − 1)N, and the state possesses at least k-particle

entanglement [see (9)]. Any state corresponding to points below the curve labelled

”shot-noise” is entangled. The lower bound on (∆θ)−2 is based on (36). In addition,

(39) is used to bound 〈J4
x〉 and a Gaussian distribution is assumed for the measurement

results of Jz. Note that the horizontal axis is normalized by J2
max which equals 〈J2

x〉
for Dicke states given in (24). The cross and the uncertainty ellipse correspond to the

experimental results given in (37). (b) A cross section corresponding to the vertical

dashed line in figure (a). The uncertainty for the error bar is taken from (37).

by a Gaussian technical noise. For a Gaussian distribution and for large N, we have

β = 3. Note that the distribution is expected to be centered around zero, since the

method used to create a Dicke state makes sure that 〈Jz〉 = 0 [47, 49]. Thus, (41) can

give an estimate on the fourth moment, even if only the second moments are measured,

under the assumption of a Gaussian probability density.

Substituting (39) and (41) into (36), we obtain a formula that gives an upper bound

on (∆θ)2 merely as a function of 〈J2
x〉, 〈J2

z 〉 and β. It is reasonable to choose β = 3

assuming a Gaussian statistics for the measurement results of Jz. Figure 4(a) shows the

two-dimensional plot which is obtained based on these considerations. The regions with

various levels of multipartite entanglement can clearly be identified. The ideal Dicke

state (11) corresponds to the bottom–right corner. In figure 4(b), the cross section of

the two-dimensional plot is shown. Note that calculations based only on the second

moments give a metrological usefulness different from (38), which used information also

on the fourth order moments. Finally, also note that a figure similar to figure 4(a)

appears in [53], where multipartite entanglement has been detected independently from

metrology.
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6. Conclusions

We have discussed how to access the metrological usefulness of noisy Dicke states for

estimating the angle of rotation. Our formula is able to verify the metrological usefulness

without carrying out the metrological task. We have demonstrated the use of our

formula for recent experimental results. The metrological usefulness can be inferred

from measurements of second and the fourth moments of the x-component and the

z-component of the collective angular momentum only. In practice, the fourth-order

moments can be well approximated by the second-order moments. After completing

our calculations, we have recently become aware of a related work by Haine et al.

[69], which is based on the preliminary work in [70], and obtains sensitivity bounds for

metrology with twin-Fock states.
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Appendix A. Details of the derivation of (16) and (17) using the symmetry

(15)

In this appendix, we discuss how we use the symmetry (15) to simplify our calculations.

First, let us see the numerator of (13). Based on (14), the dynamics of the second

and the fourth moments are obtained, respectively, as

〈J2
z (θ)〉 = 〈J2

z 〉 cos2 θ + 〈J2
x〉 sin2 θ − 〈{Jz, Jx}〉 sin θ cos θ,

〈J4
z (θ)〉 = 〈J4

z 〉 cos4 θ + 〈J4
x〉 sin4 θ

+
(
〈{Jz, Jx}2〉+ 〈{J2

z , J
2
x}〉
)

cos2 θ sin2 θ

− 〈A〉 cos θ sin3 θ − 〈B〉 cos3 θ sin θ. (A.1)

where A = {J2
z , JxJz + JzJx}, and B = {J2

x , JxJz + JzJx}. After calculating the terms

in the numerator of (13), for the derivative in the denominator of (13) we obtain

∂θ〈J2
z 〉 = 2(〈J2

x〉 − 〈J2
z 〉) cos θ sin θ + 〈{Jz, Jx}〉(cos2 θ − sin2 θ). (A.2)

For calculating (A.2), we used the dynamics of of 〈J2
z (θ)〉 given in (A.1).
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Let us use now the assumption (15) to simplify the equations (A.1) and (A.2).

From (15) it follows that the coefficients of all terms that are odd functions of θ must

be zero. First, let us consider the equation giving the dynamics of 〈J2
z (θ)〉 in (A.1). We

realize that

〈{Jz, Jx}〉 = 0 (A.3)

must hold. Then, we set the coefficients of all other terms that are odd functions of θ

to zero. Hence, from (A.1) we arrive at (16). In a similar way, using (A.3), from (A.2)

we arrive at (17).

Finally, as we discussed before, the experimentally prepared state has the symmetry

(15), which is also an assumption used to derive (21). Let us examine the case of an

initial state % that does not have this property. Let us define now the state

%z = σ⊗N
z %σ⊗N

z , (A.4)

Direct substitution of (A.4) into (A.1) shows that

〈J2
z (θ)〉% = 〈J2

z (−θ)〉%z ,
〈J4

z (θ)〉% = 〈J4
z (−θ)〉%z . (A.5)

Hence, the state

%s =
1

2
(%+ σ⊗N

z %σ⊗N
z ), (A.6)

obeys the symmetry (15). Note that the transformation (A.6) does not change the

quantities in (18) and in (21). Thus, in a sense with our scheme we get information on

the metrological usefulness of the state %s, that we would get after the trivial mixing

operation (A.6).

Appendix B. Details of the calculations for (18)

In this appendix, we give further details of our calculations for obtaining (18). After

straightforward but long algebra based on commutation relations, the coefficient of the

term cos2 θ sin2 θ in (16) can be obtained as

〈{Jz, Jx}2〉+ 〈{J2
z , J

2
x}〉 = 4〈J2

x〉 − 3〈J2
y 〉 − 2〈J2

z 〉+ 6〈JzJ2
xJz〉. (B.1)

Then, based on (13), (16), (17), and (B.1), we can write the variance of the estimated

parameter θ in the following way

(∆θ)2 =
(∆J2

z )2 cos4 θ + (∆J2
x)2 sin4 θ + C cos2 θ sin2 θ

4(〈J2
x〉 − 〈J2

z 〉)2 cos2 θ sin2 θ
, (B.2)

where

C := 4〈J2
x〉 − 3〈J2

y 〉 − 2〈J2
z 〉+ 6〈JzJ2

xJz〉 − 2〈J2
x〉〈J2

z 〉. (B.3)

Simplifying and rearranging terms in (B.2), we arrive at (18). Note that without the

assumption (15), we could not have obtained a formula with so simple dependence on

θ.



Detecting metrologically useful entanglement in the vicinity of Dicke states 16

[1] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330–1336

[2] Paris M G A 2009 Int. J. Quant. Inf. 07 125–137
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Smerzi A 2012 Phys. Rev. A 85 022321
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