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Abstract: We simulate the hadroproduction of a t t̄-pair in association with a hard photon

at LHC using the PowHel package. These events are almost fully inclusive with respect

to the photon, allowing for any physically relevant isolation of the photon. We use the

generated events, stored according to the Les-Houches event format, to make predictions

for differential distributions formally at the next-to-leading order (NLO) accuracy and

we compare these to existing predictions accurate at NLO using the smooth isolation

prescription of Frixione. Our fixed-order predictions include the direct-photon contribution

only. We also make predictions for distributions after full parton shower and hadronization

using the standard experimental cone-isolation of the photon.
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1. Introduction

Isolated hard photons are important experimental tools for a variety of processes at the

LHC. Most notably, one of the cleanest channels to identify the Standard Model (SM) Higgs

particle is its decay into a pair of hard photons. Although this channel has a small (about

0.2 %) branching ratio as compared to the hadronic and leptonic channels, the spectacular

resolution of the electromagnetic calorimeters of the ATLAS and CMS detectors and the

relatively low background made this as one of the prime discovery channels [1, 2].

From the theoretical point of view isolated hard photons are rather cumbersome ob-

jects. Unlike leptons, the photons couple directly to quarks. If the quark that emits the

photon is a light quark, treated massless in perturbative QCD, then the emission is en-

hanced at small angles and in fact, becomes singular for strictly collinear emission. The

usual experimental definition of an isolated photon allows for small hadronic activity even

inside the isolation cone. Due to the divergence of the collinear emission, this isolation can-

not be implemented directly in a perturbative computation at leading-order (LO) accuracy

because even small hadronic activity inside the cone leads to infinite results.

Of course, one can approximate the experimental definition with complete isolation

of the photon from the coloured particles inside a fixed cone and obtain a perturbative

prediction at LO. The problem however, comes back with a different face if we want to

define the isolated photon in a computation at the next-to-leading order (NLO) accuracy.
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At NLO there are two kinds of radiative corrections: (i) the virtual one with the same

final state as the Born contribution, but including a loop and (ii) the real one that involves

the emission of a real parton in the final state. These two contributions are separately

divergent, but their sum is finite for infrared (IR) safe observables according to the KLN

theorem [3, 4]. The IR-safe observables are represented by a jet function Jm, where m is

the number of partons in the final state: for an n-jet measure m = n at LO and for the

virtual corrections, while m = n+ 1 in the real correction.

There exist general methods (see e.g. ref. [5]) to combine the real and virtual corrections

for infrared (IR) safe observables Jm, for which Jn+1 tends to Jn smoothly in kinematically

degenerate regions of the phase space, namely when two final-state partons become collinear

or a final-state gluon becomes soft. The problem with the isolated-photon cross section in

perturbative QCD is that the cone-photon isolation is not IR safe beyond LO. The extra

gluon in the real radiation may be radiated within the isolation cone in which case the

event will be cut even if the gluon energy tends to zero.

There are ways to make predictions for photon production in perturbation theory, but

all have drawbacks. In a pioneering work [6] the measurement of the inclusive photon

cross section was advocated, but that is not very useful from the experimental point of

view. In ref. [7] an isolation procedure was proposed that is similar in spirit to the case

of inclusive cross section, yet provides a smooth isolation prescription that is IR safe at

all orders in perturbation theory. However, the implementation of the smooth prescription

experimentally is very cumbersome as it requires very fine granularity of the detector, so

it has never become popular among experimenters.

There is a precise way of defining the isolated photon theoretically, but that requires

the inclusion of the photon fragmentation component as well (see e.g. [8]). The drawback

of this approach is the need for non-perturbative input and the extra computational effort

for a contribution that is mostly discarded when the experimental isolation is used (cone

with small hadronic activity inside that is described by the fragmentation contribution).

Thus one would be tempted to neglect the fragmentation contribution, which is however,

uncontrolled from the theoretical point of view and thus is not a viable option in a fixed-

order computation.

In the last decade new approaches were proposed to make predictions that are formally

accurate to NLO but include the advantage of event simulations of the shower Monte Carlo

(SMC) programs [9, 10, 11]. By now many processes have been included in the generic

frameworks of these NLO+PS approaches, the aMCatNLO [12] and the POWHEG-BOX [13]

codes. In a series of papers we combined the POWHEG-BOX with the HELAC-NLO package [14]

into PowHel to make predictions for the hadroproduction of a t t̄-pair in association with a

hard boson (scalar [15], pseudoscalar [16], vector [17] or jet [18]). The only missing boson

of the SM in this list is the hard photon. In view of the above, the reason is clear: the

photon has to be isolated, which makes this computation more involved than for the other

cases.

In this paper we use the PowHel framework to simulate events containing direct photons

only, that is we neglect the fragmentation contribution. We generate the events with loose

isolation cut, resulting in an almost inclusive event sample. We argue that with sufficiently
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loose generation isolation the fragmentation contribution should be indeed small. The

output of the POWHEG-BOX consists of pre-showered events stored according to the Les

Houches accord (LHEs) [19]. The LHEs when fed into a SMC, result in showered events

on which the usual experimental cone isolation can be applied. We discuss the validity of

this approach on the example of W γ hadroproduction for which predictions including a

modelling of fragmentation as well as experimental results exist. Using events generated

with loose isolation cuts, we make predictions to t t̄ γ hadroproduction, but the approach

is general and can be used to make predictions for any other process that involves isolated

hard photons in the final state at NLO accuracy matched with PS.

2. Details of the implementation

PowHel is a computational framework composed of the POWHEG-BOX [13] and the HELAC-NLO

[14] packages to provide predictions at the hadron level with NLO QCD accuracy in the

hard process. The essential ingredients needed for a particular process are the matrix

elements for the Born, virtual and real-emission contributions, spin- and colour-correlated

matrix elements and a suitable phase space for the Born process.

The matrix elements are provided by HELAC-NLO while the Born phase space is con-

structed by us using the relatively simple kinematics at the Born level. The Born phase

space is generated with the help of one kinematic invariant and three angles. An overall

azimuth is kept fixed and randomly reinstated at the end of the calculation as a common

practice in POWHEG-BOX. Matrix elements are generated for the following subprocesses:

q q̄→ γ t t̄, g g → γ t t̄ (tree-level for the Born process and at one-loop for the virtual) and

q q̄ → γ t t̄ g, g g → γ t t̄ g for the real emission (q ∈ {u,d, c, s, b}). The ordering among

particles follows the convention of POWHEG-BOX: non-QCD particles, massive quarks, mass-

less partons. Matrix elements for all other subprocesses are obtained from these by means

of crossing.

All matrix elements, including the crossed ones, are compared to the stand-alone ver-

sion of HELAC-NLO in several, randomly chosen phase-space points. The internal consistency

between the Born, spin-, colour-correlated and real-emission matrix elements is checked by

comparing the limit of the real-emission part and the corresponding counter terms in all

kinematically degenerate regions of the phase space.

In order to check the whole implementation we compare differential distributions to

those in ref. [20] using the LHC setup in the published paper: the calculation was performed

for LHC at centre-of-mass energy
√
s = 14 TeV with a CTEQ6L1 and CTEQ6.6M PDF at LO

and NLO accuracy and a one- and two-loop running αs, respectively. The mass of the

t-quark was mt = 172 GeV, the fine-structure constant, was set to αEM = 1/137. The

renormalization and factorization scales were set fixed, equal to mt. In the analysis a

photon was required to be hard, p⊥ ,γ > 20 GeV and the smooth isolation of Frixione [7]

was employed with isolation parameters δ0 = 0.4 and εγ = n = 1. The cross sections

obtained with PowHel are enlisted on Tab. 1. We found complete agreement with the

predictions of [20] both for the cross sections and for the available distributions as well.

Two out of these are depicted in Fig. 1.
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µ σPH
LO [pb] σPH

NLO [pb]

2mt 1.519± 0.004 2.58± 0.03

mt 1.968± 0.005 2.94± 0.04

mt/2 2.614± 0.006 3.33± 0.06

Table 1: Cross sections obtained with PowHel at LO and NLO accuracy using the setup and cuts

of [20]. The renormalization and factorization scales are made equal to µ.
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Figure 1: Comparison between PowHel and [20] at the central scale with NLO accuracy for the

differential cross section as a function of the transverse momentum of the photon and anti-t quark.

Lower panels depict the ratio of predictions in [20] (MSS) to ours. The uncertainties appearing on

the lower panels only take into account the statistical uncertainty of our calculation.

Having checked the implementation of the NLO computation, we generated events

with the POWHEG-BOX. The final state in the Born contribution, t t̄ γ, is composed of two

massive and one massless particles. The cross section when the photon is emitted from a

massless (anti)quark can become singular. This can happen when the photon is emitted by

one massless (anti)quark from the initial state, or from a final state one in the real-emission

contribution. These configurations have to be avoided such that the physical cross sections

for isolated photon production do not depend on the actual implementation.

Let us first focus only on the singular radiation present at the Born level. In this case

there are two simple solutions to avoid infinite contributions to the cross section. The

first is a generation cut [18], which if applied on the transverse momentum of the photon,

can avoid the singularity. This cut has to be sufficiently small so that when physical cuts

are applied, the prediction becomes independent of this generation cut. Although this

method offers an easy way to avoid the singularity, yet we end up generating events mostly

with photons having small transverse momentum. Hence the majority of events will be

generated in a region of phase space which has no physical importance and the efficiency

of the event generation is small.

The other solution is the inclusion of a suppression factor [21] which can be used

to enhance event generation in certain regions of the phase space. The distributions are
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always independent of the suppression used as events are generated according to a cross

section obtained with a suppression factor, but the weight of each event is multiplied by

the inverse of the suppression factor (for details see [22]). In our calculation the analytical

form of suppression was chosen to be

Fsupp =
1

1 +

(
p2⊥ ,supp

p2⊥ ,γ

)i , (2.1)

and we found i = 2 a suitable choice and p⊥ ,supp = 100 GeV was set throughout the whole

calculation. It is not necessary, yet we included also the generation cut on the transverse

momentum of the photon, by requiring the transverse momentum of the photon in the

underlying phase space to be larger than 15 GeV. We checked that this cut does not affect

our predictions with physical cuts larger than 15 GeV. Our strategy to handle singularities

coming from collinear photon-emission from final state massless (anti)quarks will be covered

in the next section.

In order to speed up the event generation the real emission part can be decomposed

into a singular and finite contribution such that the former contains all the kinematically

degenerate regions of phase space, while the latter is finite over the whole phase space.

When this decomposition is implemented the POWHEG Sudakov factor is evaluated with

only the singular contribution. For the decomposition we used the original suggestion of

[13] which became standard in all calculations done with the help of POWHEG-BOX. Beside of

this decomposition and the generation isolation nothing is taken into account which could

alter the shape of the POWHEG Sudakov, that is the matching systematics. In particular,

we have not used the hfact option which is only used in [23] and in all the other cases the

separation of real emission contribution, mentioned above, was considered only.

3. NLO-LHE comparison

In this and all the upcoming sections predictions are made for proton-proton collisions at√
s = 8 TeV with the following parameters: CT10nlo PDF using LHAPDF [24] with a 2-loop

running αs considering 5 massless quark-flavours, mt = 172.5 GeV, αEM = 1/137. For our

default scale we decided to use a dynamical one, the half of the sum of transverse masses

of all final-state particles:

µ0 =
1

2
Ĥ⊥ =

1

2

(
m⊥ ,t +m⊥ ,̄t + p⊥ ,γ

)
, (3.1)

where the hat reminds us that underlying-Born kinematics was used to evaluate the sum.

For the NLO-LHE comparison the following set of cuts was employed:

• The photon had to be hard enough, p⊥ ,γ > 30 GeV.

• The photon was constrained into the central region, |yγ | < 2.5.

• To avoid the quark-photon singularity a Frixione-isolation was used with δ0 = 0.4

and εγ = n = 1.
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Figure 2: Cross section with cuts listed in the text and also shown in the figure at LO (blue dotted)

and at NLO (red solid) accuracy as a function of the equal renormalization and factorization scale

normalized to the default scale µ0. The lower panel shows the NLO K-factor.

The cross section at LO and NLO accuracy as a function of the equal renormalization and

factorization scale normalized to the default scale µ0 is shown in Fig. 2. We find significant

reduction of the scale dependence and an NLO K-factor K = 1.21 at our default scale

choice.

Next we turn to comparisons of predictions at NLO accuracy with those obtained from

the pre-showered events. With this comparison our only aim is to demonstrate that our

framework can generate meaningful pre-showered events using the Frixione isolation (the

standard in fixed-ordered calculations). On Figs. 3–5 six sample distributions are depicted

to illustrate the effect of the POWHEG Sudakov factor. In general we find agreement

between the corresponding predictions except for the transverse-momentum distribution

for the extra parton (left plot of Fig. 5). The effect of the POWHEG Sudakov suppression

is clearly visible in the low p⊥ region where the radiation activity is highly limited, as

expected. The presence of the extra cut in the real-emission part (the Frixione isolation)

causes small distortion in the Sudakov shape as seen at about 0.75. in the left plot of

Fig. 5. These comparisons show good agreement between the fixed-order predictions and

those from the pre-showered events. The visible differences can be accounted for the effect

of the POWHEG Sudakov factor. It is worth mentioning that the formal accuracy is still

NLO, the difference is due to higher order terms.
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Figure 3: Comparison between predictions from LHEs (solid red) and at NLO (blue dashed) using

Frixione isolation for the transverse momentum of the photon and t-quark. On the lower panel the

ratio of the two predictions is shown.
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Figure 4: The same as Fig. 3 for the rapidities of the photon and the t-quark.

4. Photon isolation as a generation cut

When photons are produced with massless partons in the final state the usual soft/collinear

divergences coming from parton-parton splittings are accompanied by a new type of collinear

splitting, namely the quark-photon one. The singularity produced by a collinear photon

emission off a massless (anti)quark can be absorbed into the photon fragmentation func-

tion, decomposing the cross section into direct photon production and a fragmentation

contribution.

The only known solution that leads to an IR-safe cross section at all orders in pertur-

bation theory that avoids the fragmentation contribution is offered in ref. [7] where QCD

activity is considered in a continuously shrinking cone around the photon such that the

allowed activity decreases with decreasing cone size.

While in a theoretical calculation the shrinking cone size can be easily implemented,

in an experiment the finite resolution of the detector does not allow for taking the smooth

limit. As a result most of the experiments adopt a different isolation criterion: reduced
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Figure 5: The same as Fig. 3 but the differential cross section is depicted as a function of the

logarithm of the extra-parton transverse momentum and the separation of the photon and the

t-quark. The separation is defined in the rapidity–azimuthal angle plane.

hadronic activity is allowed around the photon in a cone with finite size such that for the

total hadronic transverse energy inside the cone

E⊥ ,had =
∑

i∈tracks

E⊥ ,iΘ (Rγ −R(pγ , pi)) < Emax
⊥ ,had . (4.1)

In Eq. (4.1) E⊥ ,i is the transverse energy of the ith track, Rγ is the isolation cone size,

R(pγ , pi) is the separation between the photon and the ith track measured in rapidity–

azimuthal angle plane, while Emax
had is the maximal hadronic energy allowed to be deposited

in the cone of Rγ around the photon. In the following we call this quantity hadronic

or partonic leakage depending on whether the process is considered on the hadron or

the parton level. In a fixed-order calculation an isolation of the form of Eq. (4.1) does not

completely remove the singularity of collinear quark-photon emission and therefore, cannot

be applied. Setting Emax
⊥ ,had = 0 removes this singularity, but cuts into the phase space of

soft gluon emission in the real correction, hence it is not IR-safe.

As shown in the previous section, there is one photon isolation which is free from

perturbative singularities and can be used to generate meaningful pre-showered events.

When generating LHEs according to the POWHEG formula, we can generate events using

the smooth isolation prescription of the photons according to the formula (Frixione-type

isolation with εγ = n = 1)

E⊥ ,had =
∑

i∈partons

E⊥ ,iΘ (δ −R(pγ , pi)) ≤ E⊥ ,γ
(

1− cos δ

1− cos δ0

)
, (4.2)

for all δ ≤ δ0, where δ0 is a sufficiently small, pre-defined number. This isolation can

be considered as a generation isolation, Θgen
isol(δ0). Then the inclusive cross section can be

decomposed as

σincl = σincl Θgen
isol + σincl

(
1−Θgen

isol

)
, (4.3)

where the first term on the right hand side is the perturbatively computable cross section

with smooth photon isolation of Eq. (4.2). The second one contains non-perturbative con-
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tribution to, therefore, cannot be computed in perturbation theory. Thus Eq. (4.3) can

be considered as (an unconventional) factorization of the quark-photon singularity into

non-perturbative contribution. Applying a physical isolation on Eq. (4.3), we obtain the

experimentally measurable cross section for isolated photon production,

σexp
isol = σincl Θexp

isol = σincl Θgen
isol(δ0) Θexp

isol + σincl

(
1−Θgen

isol(δ0)
)

Θexp
isol . (4.4)

If the experimental isolation is simply a tighter version of the smooth isolation of Eq. (4.2),

then the non-perturbative contribution trivially vanishes, as
(
1−Θgen

isol(δ0)
)

Θexp
isol = 0. Thus

the events generated with smooth isolation can be used to make such physical prediction.

If the physical isolation is the cone-type isolation of Eq. (4.1), then the non-perturbative

contribution is non-zero. Nevertheless, we shall argue that if the generation isolation is

sufficiently loose and the photon is sufficiently hard, then for cone-type isolation with values

of parameters used in the experiments, the non-perturbative contribution is negligible

within the accuracy of the perturbative one, thus the first term still gives a sufficiently

good description of data.

First let us note that left hand side of Eq. (4.4) is independent of δ0, so must be the right

hand side, too. Below we shall demonstrate that for sufficiently loose generation isolation,

in the range δgen
0 ∈ [0.01, 0.1], the term σincl Θgen

isol Θexp
isol obtained with usual experimental

cone-type isolation of Eq. (4.1), depends on δgen
0 very little. As a result, the second term on

the right hand side of Eq. (4.4) has to be almost independent of δgen
0 , too. Although this

second term is not computable in perturbation theory, making Θgen
isol looser, it decreases, and

we expect it becomes negligible within the accuracy of the calculation, when δgen
0 ≤ 0.05

and the photon is hard. We shall discuss the accuracy of this assumption further in Sec. 6

by comparing the prediction from the first term on the right hand side of Eq. (4.4) to the

experimentally measured cross section for a specific process. This means that the first

term, σincl Θgen
isol Θexp

isol approximates the experimentally isolated hard photon cross section

within the accuracy of the prediction.

With such a generation isolation we can generate a sufficiently inclusive sample of pre-

showered events. On the events prepared this way it is easy to apply a close-to-experiment

type of cut such as Eq. (4.1), the quark-photon singularity is appropriately screened hence

allowing for a small hadronic (or partonic) activity in the cone around the photon and

cannot lead to infinite predictions. This procedure of making theoretical predictions is

made possible by the generation of LHEs as opposed to producing differential distributions

directly, as in the case of computing cross sections at fixed order in perturbation theory

beyond LO accuracy.

5. Independence of the generation isolation

We generate an almost inclusive event sample with a loose photon isolation. The generation

isolation parameter δgen
0 should be chosen such that the distributions with experimental

photon isolation obtained at various stages of event simulation (from LHEs, after parton

shower and after full SMC) should be independent of it. In order to see this independence,

we generated events with three different generation isolation values: δgen
0 ∈ {0.01, 0.05, 0.1}.
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Figure 6: Isoloted photon cross sections obtained after full SMC with different generation isolations

using cuts listed in the text, as a function of a) the radius of experimental photon isolation cone,

b) the hadronic leakage inside the photon isolation cone.

These event generations are done with parameters listed in Sec. 3. Then we compare the

predictions made with different values of δgen
0 at various stages of the event simulation.

Although the particle content can be different at different stages of event evolution, we

kept the set of cuts applied to the events the same:

• There is a cut on the transverse momentum of the hardest photon: p⊥ ,γ > 30 GeV.

• The hardest photon should be central: |yγ | < 2.5.

• A jet algorithm is applied using the anti-k⊥ algorithm [25] provided by FastJet

[26, 27] with pj⊥ > 30 GeV and R = 0.4.

• The hardest photon should be well-isolated from the jets: ∆R(γ, j) > 0.4 measured

on the rapidity–azimuthal angle plane.

• A hadronic (or partonic) leakage is allowed in an Rγ = 0.4 cone around the photon

according to Eq. (4.1) with Emax
⊥ ,had = 3 GeV.

We have checked that for δgen
0 ∈ [0.01, 0.1] the physical predictions depend marginally on

δgen
0 at all stages of the event evolution, but show here only for predictions obtained at the

hadronic stage, i.e. after SMC. The cross section values after full SMC and given selection

cuts are presented as a function of the radius of experimental photon isolation cone, and of

the hadronic leakage inside the photon isolation cone in Fig. 6. We see that independently

of these parameters (within the ranges shown here), the physical cross section depends on

the generation isolation weakly.

For kinematic distributions we find even smaller dependence on δgen
0 . Six sample

distributions are presented on Figs. 7–9.
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Figure 7: Transverse-momentum distribution for the hardest photon and the t-quark after parton

shower and hadronization with PYTHIA for smooth generation isolation with δgen0 ∈ [0.01, 0.1]. On

the lower panels the ratios of the predictions are shown.
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Figure 8: The same as Fig. 7 but for the rapidities of the hardest-photon and the t-quark.

6. Estimation of the non-pertrubative contribution

In Eq. (4.4) we decomposed the isolated photon cross section into a perturbatively com-

putable part (first term) and a non-perturbative contribution (second term). Furthermore,

we argued that provided δgen
0 sufficiently small, we expect the non-perturbative contribu-

tion to be small. This statement can only be verified by explicit comparison to experimental

data, which is presently not possible for isolated photon production in association with a

t t̄ pair. It is possible however, for the case of massive vector boson + isolated photon

production for which the ATLAS collaboration published results for both isolated photon

+ 0 jet (exclusive) and isolated photon +N(≥ 0) jets (inclusive) in the final state [28]. This

final state has also been considered recently at NLO accuracy interfaced to a shower gen-

erator according to the POWHEG prescription supplemented with the MiNLO procedure

[29]. In this work the fixed order result is matched to an interleaved QCD+QED parton

shower, in such a way that the contribution arising from hadron fragmentation into photons

is fully modeled. Thus for this process the comparison is possible not only for experimental
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Figure 9: The same as Fig. 7 but for separations in the rapidity–azimuthal angle plane.

results, but also with a theoretical prediction where the fragmentation is included through

a shower model.

Within PowHel the Wγ process can be implemented straightforwardly. We generated

events for Wγ production with the same three values of δgen
0 as in the case of t t̄ γ production

and checked that the predictions from the pre-showered events agree with those at NLO

accuracy, just as in the case of t t̄ γ production in Sec. 3. Next, we checked the dependence

on the generation isolation parameter, similarly as in Sec. 5 and found that the perturbative

prediction depends weakly (below 10 % for the exclusive and below 5 % for the inclusive

case) on the choice of δgen
0 in the range δgen

0 ∈ [0.01, 0.1] if a similar physical isolation is used

as in Sec. 5. Thus we have implemented the event selection of ref. [28] and made predictions

for the inclusive case and for the exclusive case using events obtained with δgen
0 = 0.05.

We show our predictions for the transverse momentum distribution of the isolated

photon, compared to the predictions of ref. [29] and the results of ref. [28] in Fig. 10.

In general, we find that our approach gives a good description of the data if the radiated

photon is harder than the accompanying jets. Thus for the exclusive case, the data overlap

with our predictions for the full range within the uncertainty of the prediction. In fact, for

this case the two theoretical predictions also coincide within the scale dependence band

except for the first bin. For the inclusive case the two predictions differ and the difference,

in principle, may be attributed to the neglected fragmentation contribution. However, it

should be noted that the predictions of ref. [29] do not use non-perturbative information

extracted from data, but a model of fragmentation. At the present accuracy of the data it

is difficult to make a clear conclusion which prediction is favoured by experiment, but the

following general trend seems to emerge: the harder the photon the better the agreement

between our prediction and the data, while for the case of matched NLO to an interleaved

QCD+QED parton shower, the agreement is better for small transverse momenta, with

transition around 60 GeV for the given selection cuts.

7. Effect of the parton shower

In the previous sections we estimated the effect of the neglected non-perturbative contribu-
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Figure 10: Transverse momentum distribution of the isolated photon for the a) W + γ + N ≥ 0

jets and b) W + γ + 0 jet final states. The lower panels show the ratio of the predictions to the

data.

tion, as well as demonstrated that predictions for isolated photon cross section made with

full SMC do not depend upon the sufficiently small generation-isolation. In fact, we also

checked that the latter is true at various stages of event simulation (LHE, PS and SMC).

To quantify the effect of the parton shower and in the next section to present physical

predictions after full SMC we decided to use δgen
0 = 0.01 in our generation isolation. For

this comparison we used the setup of Sec. 5. Our standard distributions can be found on

Figs. 11–13. While for rapidities and separations the difference between the LHE and PS

stages only manifest in an overall change in normalization, for the transverse-momentum

distributions the change is not only a constant factor in normalization, but there is even a

change in the shape. As we expect, the shower softens the spectra. This softening added to

the difference between the predictions of LHEs and at NLO suggests very small PS effect at

high transverse momenta. (We cannot compare Figs. 3 and 11 directly as photon isolations

are different.) In the case of the photon p⊥ the change remains small, around 5%, while

for the transverse momentum of the t-quark it reaches even 12% when the p⊥ approaches

500 GeV. If our default, rather tight, criterion on the allowed hadronic leakage is loosen up

(going from 3 GeV to 10 GeV) the difference observed in the photon transverse-momentum

distribution remains more-or-less the same, but in the case of the transverse momentum

of the t-quark the difference drops below 10% in the high-p⊥ region. The relaxation in

the hadronic leakage condition results in a smaller difference, ∼ 1%, for rapidities and

separations.

8. Predictions

We conclude with a simple phenomenological study at the hadron level. To this end

PYTHIA-6.4.25 was chosen to decay, shower and finally hadronize the events. The event

sample with δgen
0 = 0.01 at 8 TeV was selected, PYTHIA was run with the 2010 Perugia tune
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Figure 11: Transverse-momentum distribution for the photon and t-quark at the LHE stage and

after parton shower. The lower panel shows the LHE/PS ratio.
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Figure 12: The same as Fig. 11 but for the rapidities of the photon and t-quark.
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Figure 13: The same as Fig. 11 but for the separation of the photon-t and t t̄ systems.

[30], omitting photon showers, making τ± and π0 stable and we turned off multi-particle

interactions. The cuts employed in this analysis were the following:

• The analysis was done in the semileptonic decay-channel by requesting exactly one

– 14 –



10−5

10−4

10−3

d
σ
/d
p ⊥

,γ
[p
b
/G

eV
]

SMC, PY, µ0 = Ĥ⊥/2
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Figure 14: Transverse momentum distribution for the photon and the t-quark at the hadronic

stage. On the lower panel the ratio of predictions to that obtained with our default scale choice is

shown.

hard lepton or antilepton in the final state with p⊥ ,` > 30 GeV, the (anti)lepton had

to be isolated from all the jets with ∆R(`, j) > 0.4.

• The final state had to contain one hard photon in the central region, |yγ | < 2.5 with

p⊥ ,γ > 30 GeV, isolated from all the jets by ∆R(γ, j) > 0.4. A minimal hadronic

leakage was allowed in a Rγ = 0.4 cone around the photon with Emax
⊥ ,had = 3 GeV

according to Eq. (4.1).

• The (anti)lepton and photon had to be separated from each other, ∆R(γ, `) > 0.4.

• Jets were reconstructed with the anti-k⊥ algorithm [25] with R = 0.4 and pj⊥ >

30 GeV.

• The event had to have significant missing transverse momentum, /p⊥ > 30 GeV.

In our calculation, throughout, a different scale choice was used than that in the

literature [20] for t t̄ γ production. Our default scale choice, the half the sum of transverse

masses Ĥ⊥/2 was already motivated in [31]. To see the difference between the two scale

choices a scale-uncertainty study is performed and scale-uncertainty bands are shown for

the distributions obtained at the hadron level. The renormalization and factorization scales

are defined as µR = ξRµ0 and µF = ξFµ0, respectively, and the band is formed as the upper-

and lower-bounding envelopes of distributions taken with

(ξR, ξF ) ∈
{(

1

2
,
1

2

)
,

(
1

2
, 1

)
,

(
1,

1

2

)
, (1, 1) , (1, 2) , (2, 1) , (2, 2)

}
. (8.1)

The antipodal choices ((1/2, 2) and (2, 1/2)) are left out. When these are included, the

uncertainty band for rapidities and separations are unchanged while for transverse momenta

in the large transverse-momentum region the band widens by a few percent.

In Fig. 14 the transverse momenta of the photon and the t-quark are shown. The

momentum of the t-quark is reconstructed just like in the previous cases using MCTRUTH.
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Figure 15: The same as Fig. 14 but for the spectra of the transverse momentum of the charged

(anti)lepton and the missing momentum.
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Figure 16: The same as Fig. 14 but for separations measured in the rapidity–azimuthal angle

plane.

Taking a look at the transverse momentum of the photon the static scale results in a

narrower band with a shrinking width. This hints a cross-over point at a higher p⊥ value,

while in the case of the dynamical scale the band, although wider, keeps the same width all

across the whole plotted transverse momentum spectrum. While for the p⊥-distribution of

the photon the presence of a cross-over point is only hinted by the narrowing uncertainty

band, for the transverse momentum of the t-quark it is indeed visible around 350 GeV.

Until this point the uncertainty band taken with the static scale decreases in width than

after opens up. This is somehow expected since a highly boosted t-quark with a heavy

companion anti-t and a photon correspond to a system with a large summed transverse

mass hence lying far away from the central scale mt.

In Fig. 15 the spectrum of the transverse momentum of the charged lepton and that of

the missing momentum are shown. For both distributions a cross-over can be seen around

250 GeV when static scale is used. The dynamical scale choice appears to give reliable scale

dependence over the whole plotted range for these observables.

If we turn our attention to the separations between the photon and the t-quark, as
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Figure 17: The same as Fig. 14 but for the rapidity distributions of the photon and (anti)lepton.

well as between the photon and the charged lepton, measured in the rapidity–azimuthal

angle plane, we do not find significant difference between the two scale choices, as seen

in Fig. 16. The static scale gives somewhat higher cross section and a slightly narrower

uncertainty band below ∆R = π and larger scale dependence above. Similar conclusions

can be drawn from the rapidity distributions for the photon and the (anti)lepton shown

in Fig. 17. In general, the scale dependence is moderate, below 20 % for both scale choices

and all observables, except for the predictions at large transverse momenta with the static

scale.

9. Conclusions

In this paper we presented a new way to make predictions for the hadroproduction of

isolated photons which uses event samples that emerge in simulations aimed at matching

predictions at NLO accuracy with PS. Our approach uses only the direct-photon contribu-

tion, i.e. we neglect the fragmentation. We demonstrated that the presence of a sufficiently

small smooth isolation of the direct photons, applied during generation of the events,

does not affect the physical predictions, within the numerical accuracy of the calculation.

Hence it can be used to generate sufficiently inclusive pre-showered event samples. The

pre-showered events obtained this way can be further showered and hadronized to obtain

differential distributions at the hadronic stage, which include NLO QCD corrections in the

hard process, and either smooth or standard experimental photon isolation can be applied.

Using the POWHEG method one can make predictions at various stages of the event

simulation. In particular, for most of the phenomenologically interesting distributions we

estimate fairly small (about 10 %, or less) corrections for the t t̄γ final state due to the

parton shower. We also studied the dependence of our predictions on the renormalization

and factorization scales and found small and rather uniform scale dependence for the default

scale Ĥ⊥/2.

The events generated with a loose generation isolation contain only perturbative infor-

mation, we neglected the non-perturbative (fragmentation) contribution. We argued that

making the generation isolation looser, the fragmentation contribution should decrease.
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Therefore in case of sufficiently loose generation isolation the fragmentation can be ne-

glected within the expected uncertainty of matched NLO+PS predictions if the photon is

harder than the accompanying jets. This statement is trivially true if the experimental iso-

lation is a tighter version of the smooth isolation than that employed for event generation.

We demonstrated the fragmentation also becomes negligible in the case of hadroproduction

of a W boson in association with a hard isolated photon by comparing our predictions to

measured data if the photon is harder than the accompanying jets. Our method is com-

pletely general and can be used to any process with isolated hard photons in the final state,

in particular also for t t̄ production in association with hard isolated photons.
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