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Abstract. Triple photoionization of Xe3+, Xe4+ and Xe5+ ions has been studied

in the energy range 670–750 eV, including the 3d ionization threshold. The photon-

ion merged-beam technique was used at a synchrotron light source to measure the

absolute photoionization cross sections. These cross sections exhibit a progressively

larger number of sharp resonances as the ion charge state is increased. This clearly

visualizes the re-ordering of the ǫf continuum into a regular series of (bound) Rydberg

orbitals as the ionic core becomes more attractive. The energies and strengths of

the resonances are extracted from the experimental data and are further analyzed by

relativistic atomic-structure calculations.
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1. Introduction

One of the great successes of atomic physics is its fundamental understanding of the

chemical properties of the elements and the explanation of their order within the periodic

table. Following the atomic number of elements, the (atomic) subshells are usually filled

for each principal quantum number n from the inner to the outer subshells. Prominent

exceptions are the 3d and 4d transition elements, and even more so the lanthanide and

actinide groups of elements where the 4f and 5f subshells are filled only after shells

of the next principal quantum number(s) have been (partially) occupied already. For

the lanthanides, especially, this irregularity can be explained by the peculiar shape of

the potential of f -electrons which consists of an inner and an outer well, and which are

separated by a centrifugal barrier. For low nuclear charges, the inner well is too shallow

to confine the f electrons, so that they are mainly localized in the outer well. For this

reason, the f -shell behaves first like a diffuse outer shell and remains unfilled until the

nuclear charge, and hence the potential, is sufficiently attractive to strongly bind the

f -electrons.

This contraction of the electron density has been addressed in the literature also

as the “collapse of the 4f wave function” and has been explored since the early days

of atomic-structure theory [1, 2]. For xenon and its neighbour elements, in particular,

the giant resonance in the photoionization cross section [3–9] was shown to be due to

a 4d − 4f excitation and the quite sudden change in the spatial overlap of the wave

functions, if a 4d electron is excited [10–14].

An analogue contraction for a whole series of nf orbitals is demonstrated in this

work for the 3d photoionization of Xeq+ ions with charge states q = 3, 4, 5. Until the

present, this collapse of the nf series has been investigated only in very few studies on

the photoabsorption by or ionization of the inner 3d shell, mainly because of a lack of

photon sources with sufficient intensity in the required range of energies. For the same

reason only neutral targets were considered so far [15–19], which can be prepared with

much higher particle densities than ionic targets. A notable exception ist the work of

Măıste et al. [20] who studied low-charged ions embedded in the lattices of ionic crystals.

2. Experiment

The present experimental measurements, with multiply charged ions, employed the

photon-ion merged-beam method using the Photon-Ion spectrometer at PETRAIII

(PIPE) [21]. This is a permanently installed end station at the ”Variable Polarization

XUV Beamline” (P04) [22] of the world’s brightest 3rd generation synchrotron light

source at present, PETRA III at DESY in Hamburg, Germany. A description of the

experimental setup and the data-analysis procedures has been reported [21]. In the

present experiment, xenon ions in charge states q = 3, 4, 5 were produced in an electron-

cyclotron resonance (ECR) ion source and accelerated to energies of q×6 keV. After the

mass/charge selection in a magnetic dipole field, the ions were electrostatically guided
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onto the photon beam axis. The current of the well collimated ion beams in the merged-

beam interaction region (∼ 1.7 m length) was 40 nA, 11 nA and 6 nA for the 132Xe3+,
132Xe4+ and 132Xe5+ ions, respectively. The photon flux as measured with a calibrated

photo diode amounted up to 3 × 1013 s−1 in the 670–770 eV photon energy range of

the present experiment. A second magnet, after the interaction region, separated the

product ions from the primary beam. The primary ions were directed into a Faraday

cup, and the product ions were counted with nearly 100% efficiency by a single-particle

detector.

The photon energy scale was calibrated with an uncertainty of better than ±30 meV

by remeasuring known resonances in C3+ [23, 24]. The experimental photon energy

spread was 160 meV, i.e., a factor of ∼ 20 lower than in our previous study [21]. The

systematic uncertainty of the cross section scale is ±15% [21].

3. Results and Discussion

In our previous low-resolution study on 3d photoionization of multiply charged xenon

ions [21] we found that product ions were created in a range of charge states. The relative

contribution of each product charge state depends on the cascade of Auger and radiative

processes that follow the initial inner-shell ionization event. Net triple ionization, i.e.,

emission of two electrons by autoionization in addition to the directly ionized electron,

was found to be one of the strongest channels. Therefore, in the present high-resolution

measurements, where the emphasis is on the spectroscopic aspect of the experiment,

only the triple ionization channel was investigated.

Measured cross sections for triple photoionization of Xe3+, Xe4+, and Xe5+ are

displayed in Fig. 1. Pronounced resonance structures are observed for all ions but

with an increasing number of resonances as the charge state of the ions is increased.

In contrast to the usually rather complex cross sections for outer shell ionization of

atoms and ions, the present inner-shell ionization cross sections can be interpreted

straight-forwardly. The strongest resonances are associated with the photoexcitation

of a 3d electron to an atomic nf subshell (n = 4, 5, 6, ...) and the subsequent multiple

autoionization of the associated hole states. The 3d−1

3/2 − 3d−1

5/2 fine structure splitting

(∼ 13 eV) of the 3d hole leads to two distinct Rydberg series of resonances in each

spectrum. For Xe3+, for example, resonances with principal quantum numbers n from

4 to 7 can be clearly discerned. For Xe5+ the series of nf resonances could be observed

up to n = 9, while weaker resonances associated with 3d → np excitations are barely

measurable. Only the 3d → 5p resonances in the Xe5+ spectrum at energies below

685 eV could be measured. For Xe3+ and Xe4+ no data were taken at these energies.

As seen in Fig. 1, the resonance positions shift towards higher energies as the charge

state of the xenon ions is increased. This is attributed to the fact that the binding of

the electron is enhanced when successive outer electrons are removed from the xenon

atom (reduced screening). The measured resonance widths are significantly larger than

the 160 meV experimental energy spread. These are mainly determined by the short
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Figure 1. Measured absolute cross sections (symbols) for triple ionization of Xe3+,

Xe4+, and Xe5+ ions. The experimental photon energy spread was ∆E = 0.16 eV.

The full lines are results of Voigt line profile fits to the measured spectra. The dashed

lines are the fitted direct ionization (DI) contributions to the measured cross sections.

Resonances are labelled by the nℓ subshell to where the 3d electron is excited. Because

of the fine structure of the 3d hole, there are two resonance features for each nl,

associated with j = 5/2 (lower resonance energies) and j = 3/2 (higher resonance

energies), respectively.
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Table 1. Resonance energies (in eV) as extracted from the high-resolution spectra

in Fig. 1. In addition, we list the quantum defects δ and Rydberg series limits E∞

from the fit of the Rydberg formula (Eq. 1) to the tabulated resonance positions. The

values for E
(DF)
∞ are the results of the present MCDF calculations.

assignment Xe3+ Xe4+ Xe5+

3d−1
5/25p 674.1(1)

3d−1
3/25p 684.6(2)

700.40(8)†

3d−1
5/24f5/2 690.28(3)

691.73(7) 693.5(1)

3d−1
5/24f7/2 692.43(4) 694.13(7)

3d−1
5/25f5/2 702.40(5)* 707.62(1)

714.3(2)

3d−1
5/25f7/2 715.17(4)

3d−1
5/26f 704.68(7) 714.31(3) 724.31(2)

3d−1
5/27f 707.1(1) 718.20(4) 729.50(3)

3d−1
5/28f 720.21(2)* 732.61(3)

3d−1
5/29f 722.6(2) 734.70(7)

δ 1.0(1) 0.83(3) 0.78(3)

E∞ 714(2) 727.1(3) 742.1(1)

E
(DF)
∞ 712.5 726.5 741.5

3d−1
3/24f 702.40(5)* 703.99(2) 705.86(3)

3d−1
3/25f 713.05(5) 720.21(2)* 727.17(4)

3d−1
3/26f 717.4(1) 727.05(4) 737.04(3)

3d−1
3/27f 730.73(5) 742.18(3)

3d−1
3/28f 733.1(1) 745.45(5)

3d−1
3/29f 735.7(3) 747.5(1)

δ 0.99(3) 0.96(1) 0.85(1)

E∞ 726.5(4) 740.7(2) 755.3(2)

E
(DF)
∞ 725.6 739.5 754.6

† not identified

* unresolved line blend

lifetime of the 3d hole which is rapidly filled by autoionizing transitions from higher

atomic subshells. For neutral xenon the associated resonance width is ∼ 0.6 eV [16],

and this is consistent with the present observations, although a slight (experimentally

unresolved) dependence on the charge state of the ions can be expected. In addition to

the natural line width, there is also a resonance broadening due to the fine structure

of the 3d−1

5/2 5p
6−q nℓ and 3d−1

3/2 5p
6−q nℓ hole-state configurations. Some of the measured

4f and 5f resonance line shapes indicate an associated substructure. For higher n the

fine-structure splitting becomes smaller than the natural line width such that individual

resonance levels cannot be resolved.

In order to extract the positions and strengths of the resonances, we have fitted line

profiles to the measured cross sections. Individual (resonance) features in the spectra
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Figure 2. Resonance energies as obtained from a fit of the Rydberg formula (Eq. 1)

to the measured resonance positions, listed in Tab. 1. Full and open symbols refer to

the 3d−1
5/2 5p

6−q nℓ and, respectively, 3d−1
3/2 5p

6−q nℓ resonances of Xe3+ (q = 3, stars),

Xe4+(q = 4 squares), and Xe5+ (q = 5, circles).

were represented by up to two Voigt line profiles with the Lorentzian widths fixed to 0.6

eV. In addition, a continuous cross section due to 3d direct ionization (DI) was modelled

by an inverse tangent function. This simple approach neglects the fine-structure splitting

of the threshold, Nevertheless, it should be sufficiently accurate for the purpose of

extracting resonance parameters from the experimental PI cross sections. The fitted DI

contribution and the sum of DI and all resonances are shown as dashed and full lines in

Fig. 1, respectively. The resonance energies obtained from the fit are listed in Tab. 1.

As mentioned above, two Rydberg series of nf resonances can be clearly

distinguished. They are associated with the two fine structure components of the 3d

hole. For each of these series, the resonance positions will approximately follow the

simple Rydberg formula

Eres = E
∞
−R

(q + 1)2

(n− δ)2
(1)

with q denoting the primary ion charge state. We have fitted this formula (with

R ≈ 13.606 eV) to the experimental nf resonance positions (Fig. 2) in order to extract

the series limits E
∞

and quantum defects δ as displayed in Tab. 1. The quantum defects

range from 0.8 to 1.0 and show that the 3d3/2, 5/2 holes increasingly overlap with the

(radial extent of the) 4f wave function as the charge state of the xenon ion increases.

The series limits are in reasonable agreement with results from our atomic structure

calculations (see below). The series limits also coincide with the thresholds for 3d

DI. Indeed, the onsets of the DI cross sections in Fig. 1 (dashed lines) agree with the

3d−1

5/2 nf series limits as well as one might expect from the crude fit model for the DI cross

section. For each charge state, the difference between the 3d−1

3/2 nf and 3d−1

5/2 nf series

limits corresponds to the fine-structure splitting of the 3d hole. Our analysis gives rise

to the values of 12(2), 13.6(4), and 13.2(2) eV for Xe3+, Xe4+, and Xe5+, respectively.

These values agree with each other within the experimental uncertainties and are also
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Figure 3. Comparison of the squared moduli of the 3d → nf electric-dipole matrix

elements (atomic units, open symbols, left scales) with the experimental resonance

strengths (full symbols, right scales). For each n, the sum of the experimental strengths

of the corresponding 3d−1
5/2 nf and 3d−1

3/2 nf resonances is plotted. The lines are just

drawn to guide the eye.

close to the value of 12.7 eV for neutral xenon [25], indicating that the number of outer

shell 5p electrons does not have a strong influence on the structure of the 3d shell.

In contrast to the 3d fine structure splitting, the formation of the nf Rydberg

shells is found to be much more strongly affected by the ion charge state. Additional

higher nf orbital functions seem to collapse into (or, at least, towards) the ionic

core, i.e., into the inner potential well. The resulting enlarged overlap of the nf

with the 3d wave functions also leads to enhanced probabilities for resonant 3d → nf

excitations, as it is readily seen in the spectra of Fig. 1. Indeed, nf resonances with

increasingly higher n occur as the ion charge increases. The above interpretation is

supported by relativistic multiconfiguration Dirac-Fock (MCDF) calculations [26,27] as

is demonstrated in Fig. 3 where we compare the calculated (squared modulus of the)

electric-dipole matrix elements |〈3d||E1||nf〉|2 with the strengths of the experimentally

observed resonances from the fits in Fig. 1. Since the (single-electron) wave functions

of the 3d and nf electrons are orthogonal to each other, we have chosen the (squared

magnitude) of the electric-dipole matrix elements as this best reflects the probability

for a 3d → nf excitation and, hence, also the spatial overlap of these shells. As seen

from Fig. 3, the electric-dipole matrix elements become larger with increasing charge

and decrease for larger n. We shall note, however, that the increase of the one-electron

matrix elements reflects the overlap of the 3d and nf orbitals and, hence, the contraction

of the nf wave functions but does not tell much about the resonance strength as observed

experimentally. The latter one depends on the many-electron ionization and subsequent

decay amplitudes and is much more difficult to compute reliably (cf. Fig. 4).

To gain further insight into the formation of the resonances in Fig. 1, one needs

to analyse the multiple Auger deexcitation processes which follow the excitation or

ionization of a 3d electron. Such a detailed analysis is beyond the scope of the present

work. However, we can still compare the measured and calculated resonance structures

by assuming that the branching ratio for triple ionization is the same for all resonances.
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Figure 4. Experimental (symbols) and theoretical (full line) cross section for the

triple photoionization of Xe5+.

This assumption appears to be well justified in view of a recent low-resolution study [21]

where cross sections, also for double and quadruple ionization, were measured and where

the resonance structures in the different final channels were found to be similar to one

another. Moreover, we assume identical widths for all calculated resonances. Thus, all

these resonances were represented by a Voigt line profile with a Lorentzian width of

0.6 eV and a Gaussian width of 0.16 eV.

Fig. 4 compares the measured cross section with calculated data for the triple

ionization of Xe5+. To bring the theoretical data to the scale of experiment, we

multiplied the theoretical (absorption) cross section by a (global) factor 0.3. This factor

corresponds to a 30% probability that Xe8+ ions are produced by the Auger cascades

that follow an initial 3d → nf excitation in the primary Xe5+ ion. In view of the crude

assumptions made above, the agreement between the experimental and theoretical cross

sections is quite satisfying. The largest deviation in the theoretical cross sections, when

compared with experiment, occurs for the position of the 3d−1

5/2 5p 4f resonances. It

amounts to 2.8 eV and is in line with what we expect for a rather small-scale calculation

as applied here to resonant photoionization of Xe5+ with its 5s25p ground configuration.

In these computations, only the ionization via the 3d → nf (4 ≤ n ≤ 8) excitations was

considered as these channels are the most important ones for the observed resonance

structures.

More extensive calculations employing large configuration expansions can be

expected to substantially improve on the theoretical resonance energies, in particular, in

the case of the 3d−1

j 4f resonances which are subject to comparatively strong correlation

effects. Such large scale calculations would also reduce the currently too large (fine

structure) energy splittings within these groups of resonances. The calculations would

also have to account for photoionization of ions in long-lived metastable levels which

are expected to have been present in the Xeq+ ion beams [21]. More experimentally

observed details, such as the irregularly strong 3d−1

5/2 5f resonance strength in the triple
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ionization cross section of Xe4+ (Fig. 1), can be addressed only by means of large-

scale calculations which fully account for the Auger and radiative cascades following an

initial 3d excitation. Until the present, however, such detailed computations of multiple

cascades have been performed in some approximate manner only [28, 29].

4. Summary and Conclusions

In summary, we have measured absolute cross sections for the triple ionization of

multiply charged Xe3+, Xe4+, and Xe5+ ions in the vicinity of the 3d ionization threshold.

The measured cross sections exhibit a threshold due to the direct 3d ionization as

well as strong resonances associated with 3d → nf excitations and their subsequent

autoionization. The number of these resonances increases with the charge state of

the initial ion. This nicely demonstrates the formation of the nf Rydberg resonances

or, loosely speaking, shows how the nf wave functions collapse into the ionic core as

n increases. This conclusion is supported also by our atomic structure calculations.

The present photoionization measurements, therefore, visualize directly the transition

from a dilute spectator density of excited electrons into a regular shell structure. This

may affect our understanding of chemical binding from a non-covalent association of

electrons to covalent bonds as well as the behaviour of quantum dots and nanostructures.

Quantum dots are often referred to as “artificial atoms” and their excitation (strength)

strongly depends on the size and shape of the associated shell structure [30], with

applications in semiconductors, solar cells or quantum information [31, 32].
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