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We present a new multiphase-field theory for describing pattern formation in multi-domain and/or
multi-component systems. The construction of the free energy functional and the dynamic equations
is based on criteria that ensure mathematical and physical consistency. We first analyze previous
multiphase-field theories, and identify their advantageous and disadvantageous features. On the
basis of this analysis, we introduce a new way of constructing the free energy surface, and derive
a generalized multiphase description for arbitrary number of phases (or domains). The presented
approach retains the variational formalism; reduces (or extends) naturally to lower (or higher) num-
ber of fields on the level of both the free energy functional and the dynamic equations; enables the
use of arbitrary pairwise equilibrium interfacial properties; penalizes multiple junctions increasingly
with the number of phases; ensures non-negative entropy production, and the convergence of the
dynamic solutions to the equilibrium solutions; and avoids the appearance of spurious phases on
binary interfaces. The new approach is tested for multi-component phase separation and grain
coarsening.

I. INTRODUCTION

Despite recent advances in atomic scale continuum
modeling of crystalline freezing1–5, and efforts relying
on the orientation field models6–10, the phase-field
theoretical methods based on the multiphase-field
(MPF) concept remain the method of choice, when
addressing complex polycrystalline or multiphase/multi-
component problems, such as multi-component phase
separation or grain coarsening. A common feature of
these models is that the individual physical phases /
chemical components / solid grains are described by
separate fields u(r, t) = [u1(r, t), u2(r, t), . . . , uN (r, t)].
A variety of this kind of models is available in the
literature ranging from the early formulations by Chen
and Yang11, Steinbach12, Steinbach and Pezzola13, Chen
and coworkers14,15, via later descendants by Nestler and
coworkers16–20, Moelans and coworkers21–24, to more
recent developments by Folch and Plapp25,26, Kim et
al.27, Takaki et al.28, Steinbach29, Ofori-Opoku and
Provatas30, Cogswell and Carter31, Bollada et al.32, by
Emmerich and coworkers33, and Kim et al.34. These
models differ in important details that improve the
individual models in various respects relative to the
others. It is, therefore, desirable to compare them from
a theoretical viewpoint, and identify the possible advan-
tages / disadvantages they have relative to each other,
to see whether a more general formulation that unifies
the advantageous features can indeed be constructed on
the basis of the work done so far in this field.

In attempting to develop a consistent description of
interface driven multi-domain dynamics, we need to first
identify the criteria the models have to satisfy. A few
of such criteria have already been formulated along the
development of the MPF models:

(i) The multiphase-field descriptions view ui(r, t) as
the local and temporal volume/mass/mole fraction of

the component/grain, prescribing thus
∑N
i=1 ui(r, t) = 1.

(This work concentrates exclusively on these MPF mod-
els; the multi order parameter theories11,14,15,21–24,30,
which do not require this criterion, will be addressed else-
where.)

(ii) A further natural requirement is that the physical
results should be independent of the labeling of the vari-
ables. This condition is termed the ”principle of formal
indistinguishability” of the fields.

(iii) The solution of the dynamic equations should tend
towards the equilibrium solution obtained from the re-
spective Euler-Lagrange equations (ELEs) based on the
free energy functional, where the equilibrium solution
minimizes then the free energy of the system.

(iv) As time evolves the free energy of the total system
should decrease monotonically (second law of thermody-
namics).

(v) It is an evident requirement that the formulations
for different numbers of phases or grains should be consis-
tent with each other; i.e., it should be possible to recover
the respective models from each other, when adding or
removing a new phase/grain/orientation. It has been
suggested recently that the usual variational approach to
the MPF model does not satisfy this condition26,32.
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(vi) Another fairly general requirement, formulated by
several authors, is that (a) the two-phase planar inter-
faces should represent a (stable) equilibrium, and should
be free of additional phases. This requirement can be
extended to the dynamics (b) as follows: if a phase is
not present, it should not appear deterministically (in
the absence of fluctuations) at any time. This is of-
ten called the condition of ”no spurious phase genera-
tion”. The applicability of this requirement makes de-
pends on the problem addressed: In the case of grain
coarsening, for instance, an uncontrolled appearance of
new grains / orientations at the grain boundaries needs
to be avoided. (In other problems, however, metastable
structures35–37 or precipitates38 may appear at the solid-
liquid interface, requiring models that are able to de-
scribe such phenomena39–42.) This criterion for the ab-
sence of a third phase has been enforced different ways in
different models. For example, Folch and Plapp26 have
defined the free energy surface so that in the binary equi-
librium the system stays in a two-phase subspace of the
respective Gibbs simplex. Bollada et al.32, in turn, used
the mobility matrix to force the system to avoid the for-
mation of the third phase irrespectively of the free energy
surface (and thus the equilibrium states of the system).

Finally, a practical requirement:

(vii) The model should allow the prescription of
independent data for the interfacial properties and the
kinetic coefficient of the individual phase pairs (including
their possible anisotropy).

While most of these criteria formulate natural/self-
evident requirements, some of them were neglected when
developing previous MPF models.

In the present paper, we formulate an MPF approach
that obeys all the criteria defined above. Herein, we
address interface driven phenomena, in which the free
energy density incorporates exclusively the ”interfacial”
contributions, comprising the gradient energy and multi-
well terms, whereas driving forces associated with tilting
functions26 are not considered. (An extension that in-
cludes the latter will be outlined elsewhere.) The struc-
ture of our paper is as follows. In Section II, we present
the mathematical formulation of criteria (i) to (vii). In
Section III, we first investigate which of these criteria are
satisfied and which are not by the existing MPF models.
We also point out which features of the individual ap-
proaches can be adopted in developing a consistent the-
ory. In Section IV we outline the generalized MPF formu-
lation (henceforth abbreviated as XMPF) that satisfies
criteria (i) to (vii). In Section V, we perform illustrative
simulations using the XMPF approach to demonstrate
the robustness of the theory. Section VI is devoted to a
comparison with other models. Finally, in Section VII,
we offer a few concluding remarks.

II. CRITERIA OF PHYSICAL CONSISTENCY

In this section, we present and discuss mathematical
formulations of criteria (i) to (vii) identified above in de-
tails.

A. Free energy functional formalism

In the multiphase approach, the following local con-
straint [criterion (i)] applies for the variables:

N∑
i=1

ui(r, t) = 1 . (1)

As result of this constraint Eq. (2) is not an order
parameter model, since normally different order parame-
ters capturing various aspects of symmetry breaking are
coupled to each other via physical laws, whereas here
Eq. (2) prescribes a rather specific relationship: ui(r, t)
represents the local fraction of the i−th phase, not
identifiable as a quantity, whose magnitude is associated
with the extent of symmetry breaking.

The general interface contribution of a multiphase free
energy functional is usually written as:

F [u] =

∫
dV

{
ε2

2

N∑
i=1

Aij(∇ui · ∇uj) + w g(u)

}
, (2)

where u(r, t) is the vector of the variables, g(u) is the
free energy density landscape, and A is a coefficient
matrix of the general quadratic term for the gradients.
For example, choosing A = I (where I) is the identity
matrix yields a simple sum of the gradient square
terms, A = I − e ⊗ e [where e = (1, 1, . . . , 1)] results
in a pure pairwise construction, while Ai,i =

∑
j 6=i u

2
j ,

Aij 6=i = −uiuj corresponds to the anti-symmetrized
(Landau-type) gradient term. The (generally) u-
dependent coefficients ε2 and w can be related to the
pairwise interfacial properties (the interfacial free energy
and the interface thickness).

The equilibrium solution can be found by solving the
multiphase Euler-Lagrange equations:

δF

δui
= λ(r) , i = 1 . . . N , (3)

where δF/δui is the functional derivative of the free en-
ergy functional with respect to ui(r), and λ(r) is a La-
grange multiplier emerging from the local constraint de-
scribed by Eq. (1). Eliminating the Lagrange multiplier
results in

δF

δui
=
δF

δuj
for i, j = 1 . . . N , (4)
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thus offering the most general description of equilibrium.

For non-conserved variables, the dynamic equations
are written in the following general form:

− ∂ui
∂t

=

N∑
j=1

Lij
δF

δuj
, (5)

where the mobility matrix can be determined from the
following conditions:

1. The time derivatives sum up to zero [it follows from
criterion (i)]:

N∑
i=1

∂ui
∂t

= 0 .

2. The variables are not labeled, i.e., none of them
is distinguished on the basis of its index [criterion
(ii)].

3. The solutions of the Euler-Lagrange equations must
be stationary solutions of the dynamic equations [a
requirement that follows from criterion (iii)]:

∂u

∂t

∣∣∣∣
u∗(r)

= 0 ,

where u∗(r) stands for a solution of Eq. (4).

Applying condition 1 for Eq. (5) results in the general
form

− ∂ui
∂t

=

N∑
j=1

κij

(
δF

δui
− δF

δuj

)
, (6)

where κij > 0 still can be arbitrary. Furthermore, using
condition 2 yields

N∑
i=1

κij = 0 (7)

for j = 1 . . . N . Note that Eq. (6) and (7) resulted
in a mobility matrix, whose elements sum up to zero in
each row and column. Finally, condition 3 results in a
symmetry condition, i.e.

κij = κji (8)

(for the derivation, see Appendix A). Since
κii = −

∑
j 6=i κij , N(N − 1)/2 mobilities can be

chosen arbitrarily.

Next we have to test the mobility matrix against the
time dependence of the total free energy. The main rea-
son of applying a linear approximation for the dynamic

equations is to establish a free energy minimizing behav-
ior [criterion (iv)]. Using Eq. (5), the condition for the
time derivative of the total free energy reads as

dF

dt
=

∫
dV

{
N∑
i=1

δF

δui

∂ui
∂t

}
=

= −
∫
dV
{

(δFu)L(δFu)T
}
≤ 0 ,

where L is the mobility matrix, and we use the short no-

tation δFu =
(
δF
δu1

, δFδu2
, . . . , δFδuN

)
. Since the free energy

must decrease in any volume, we can write

(δFu)L(δFu)T ≥ 0 , (9)

indicating that the mobility matrix must be positive
semidefinite. A special, frequently made choice for the
mobility matrix is the Lagrangian mobility κij ≡ 1/N .
Although this matrix is used quite widely, the dynamic
equations are necessarily N − dependent [i.e., criterion
(v) is not satisfied], and it does not solve the problem of
spurious phase appearance in non-equilibrium processes
in general, as will be discussed later.

B. Spurious phases

Herein we address pattern coarsening phenomena, for
which the requirement of ’no spurious phase appearance’
needs to be satisfied [criterion (vi)]. In general, this cri-
terion means that any p–phase equilibrium solution (i.e.,
when exactly p fields are present) must be stable against
the appearance of a new phase. Accordingly, assuming
that q = N − p of the N phases (namely, i1, i2, . . . , iq)
are missing in an equilibrium solution u∗(r), the condi-
tion can be re-formulated as:

δF = F [u∗(r) + δu(r)]− F [u∗(r)] ≥ 0

for any small perturbation for which
∑N
k=1 δuk = 0 and

at least one of δui1(r), δui2(r), . . . , δuiq (r) is not equal to
zero. In other words, leaving the p = N − q dimensional
subspace (together with keeping the local constraint, nat-
urally) always has to result in higher energy. This condi-
tion is satisfied for the equilibrium solutions representing
minima of the free energy functional: Since

F [u∗(r)+δu(r)] = F [u∗]+
δF

δu
·δuT +

δu · D · δuT

2
+. . . ,

the second term on the right hand side vanishes
for a solution of the Euler-Lagrange equation:

(δF/δu) · δu = λ(r)
∑N
i=1 δui = 0. Therefore, if D is

positive definite, the equilibrium solution is a minimum.
Consequently, if the binary planar interfaces represent
minima of the multiphase functional, they are stable
against the appearance of additional phases, which is
a crucial requirement from the viewpoint of criterion (vi).
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To fulfill criterion (vi), we also have to ensure the
proper dynamic behavior of the system. The condition
of ’no spurious phase appearance’ can be generalized for
the non-equilibrium regime as follows: If a phase is not
present in the system, it must not appear deterministi-
cally, i.e.

∂ui
∂t

∣∣∣∣
ui(r,t)=0

= 0 . (10)

Unfortunately, in an arbitrary, p–phase non-equilibrium
state u(r), the condition δF = F [u(r) + δu(r)] −
F [u(r)] > 0 cannot be satisfied for all possible pertur-
bations. Therefore, Eq. (10) cannot be guaranteed on
the level of the free energy functional in general. Note,
however, that the mobility matrix defines a ’conditional
functional derivative’, which allows the system to leave
the p–dimensional subspace only in particular directions
[or, in other words, not any u(r)+δu(r) state is available
from u(r) in the dynamics]. For special mobility matri-
ces, like the Lagrangian matrix, one may find such a free
energy functional that satisfies Eq. (10)26. Nevertheless,
the free energy functional should not depend on the form
of the mobility matrix in general. This problem is re-
solved in a recent work32, in which the authors choose a
mobility matrix having vanishing rows (and columns) for
the fields not being present. Although this concept triv-
ially results in Eq. (10), the application of such a matrix
together with a particular free energy functional can be
’dangerous’ in the sense that it may generate stationary
solution from a non-equilibrium state, a possibility that
has to be checked for all solutions obtained.

III. ANALYSIS OF PREVIOUS MPF
DESCRIPTIONS

In this section, we analyze the most frequently used
multiphase-field theories from the viewpoint of equilib-
rium solutions. We check whether the trivial extension
of the planar interface emerging from the binary reduc-
tion of the free energy functional is a solution of the
multiphase problem too. Summarizing, we require that
the equilibrium solution for the pure binary planar inter-
face in the multiphase-field problem (N ≤ 3) coincides
with the equilibrium solution for the binary planar in-
terface of the binary (N = 2) problem [criterion (iv)].
The methodology for testing this feature consists of the
following steps:

1. Take the free energy functional in the two-phase
limit;

2. Solve the respective Euler-Lagrange equation of the
two-phase problem for planar interface geometry,
resulting in u(x);

3. Make a natural multiphase extension of u(x) via
adding zero additional fields as needed for the mul-
tiphase case, i.e. ui(x) := u(x), uj 6=i(x) := 1−u(x),
and uk 6=i,j(x) = 0, where 1 ≤ i, j, k ≤ N ;

4. Plug the extended solution into the Euler-Lagrange
equations of the multiphase problem described by
Eq. (3), and check whether it satisfies them.

The test can be simplified in case of free energy func-
tionals constructed exclusively from pairwise contribu-
tions, i.e.

F =

∫
dV

∑
i<j

f̂(ui, uj)

 ,

where
∑
i<j =

∑N−1
i=1

∑N
j=i+1. f̂(u, v) is called genera-

tor. The functional derivatives read as:

δF

δui
=
∑
j 6=i

δf̂(ui, uj) , (11)

where

δf̂(ui, uj) =
∂f̂

∂ui
−∇ ∂f̂

∇∂ui
.

Assuming that δf̂(ui, 0) = 0, and plugging in the ex-
tended planar interface solution into the Euler-Lagrange
equations of the multiphase problem yield

δF

δui
= δf̂ [u(x), 1− u(x)] = λ(x)

δF

δuj
= δf̂ [1− u(x), u(x)] = λ(x)

δF

δuk
= δf̂ [0, u(x)] + δf̂ [0, 1− u(x)] = λ(x) ,

where ui(x) = u(x), uj 6=i(x) = 1− u(x), and uk 6=i,j(x) =
0, and u(x) represents the planar binary solution. From
the equations above follows that

δf̂(u, 1−u) = δf̂(1−u, u) = δf̂(0, u)+δf̂(0, 1−u) (12)

must apply. If Eq. (12) does not apply, the binary planar
interface is not an equilibrium solution of the multiphase
problem.

A. Steinbach et al.

In 1996, Steinbach et al.12 proposed the following free
energy functional for multiphase systems, which serves
as the basis for the worldwide used phase-field software
MICRESS43:

F =

∫
dV {fintf(u,∇u) + fdf(u)} , (13)

where
∑N
i=1 ui(r, t) = 1, whereas the term fdf(u) is

responsible for the thermodynamic driving force (i.e.
free energy difference between the bulk phases) and
fintf(u,∇u) denotes the interface energy consisting of a
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gradient [fgr(u,∇u)] and a multi-well [fmw(u)] contribu-
tion:

fintf(u,∇u) = fgr(u,∇u) + fmw(u) , (14)

where the terms are given in the following specific forms:

fgr(u,∇u) =
∑
i<j

ε2ij
2

(ui∇uj − uj∇ui)2

fmw(u) =
∑
i<j

wij
2

(uiuj)
2 . (15)

The functional naturally reduces to the standard binary
form

F =

∫
dV

{
ε2ij
2

(∇u)2 +
wij
2

[u(1− u)]2

}
.

The 1D Euler-Lagrange equation reads as: δF/δu =
wiju(1 − u)(1 − 2u) − ε2ij∂2

xu = 0, thus resulting in the
usual

u(x) =
1 + tanh[x/(2 δij)]

2

planar interface solution, where δ2
ij = ε2ij/wij . As a first

step, we investigate whether the extension of this solution
minimizes the multiphase problem. Since fintf (u,∇u) is
a pure pairwise construction, it is enough to take the
generator, which reads as:

f̂(ui, uj) =
ε2ij
2

(ui∇uj − uj∇ui)2 +
wij
2
u2
iu

2
j ,

yielding

δf̂(ui, uj) = wijuiu
2
j + ε2ij [2(ui∂xuj − uj∂xui)∂xuj+

+ (ui∂
2
xuj − uj∂2

xui)uj
]
.

(16)

Note that δf̂(u, 0) = 0. Substituting ui(x) = u(x),
uj 6=i(x) = 1 − u(x) and uk 6=i,j(x) = 0 into Eq. (16),
yields

δF

δui
= δf̂(u, 1− u) =

wij
4

sech4[x/(2 δij)] (17)

δF

δuj
= δf̂(1− u, u) =

wij
4

sech4[x/(2 δij)] (18)

δF

δuk
= δf̂(0, u) + δf̂(0, 1− u) = 0 . (19)

These equations clearly show that the planar binary
interfaces are not equilibrium solutions of the multiphase
problem.

The dynamic equations read as:

−∂ui
∂t

=

N∑
i=1

κij

(
δF

δui
− δF

δuj

)
,

which are variational, therefore, the planar binary inter-
faces are not a stationary solutions of these. To avoid
the problem, the authors used a ”binary approximation”
of δF

δui
− δF

δuj
, in which all terms of k 6= i, j indices are

neglected12:

δF

δui
− δF

δuj
≈ wijuiuj(uj − ui) + ε2ij(ui∇2uj − uj∇2ui)

Although the planar binary interfaces represent station-
ary solutions of the resulting non-variational dynamics,
Eq. (9) does not apply, therefore, the dynamics is not en-
ergy minimizing in principle, as it will be demonstrated
later.

B. Steinbach-Pezzolla

In the Steinbach-Pezzolla formalism (published first in
199913, and adopted in various works28,29,31 including the
OpenPhase software44), the interface contribution to the
free energy is given by the following simplified form of
Eq. (14):

fSP
intf =

∑
i<j

4σij
η

(
|ui| |uj | −

η2

π2
∇ui · ∇uj

)
, (20)

where the gradient term −∇ui · ∇uj is the linear ap-
proximation of (ui∇uj −uj∇ui)2, σij the interfacial free
energy of the equilibrium (i, j) planar interface, while the
local term |ui| |uj | is responsible for the finite interface
width given by η. Reducing the model to the N = 2 case
yields

fSP
intf =

4σij
η

[
η2

π2
(∇u)2 + |u| |1− u|

]
, (21)

where we used u(x) := ui(x), uj(x) := 1 − u(x), and
uk 6=i,j(x) = 0. The 1D Euler-Lagrange equation reads as

sign(u) |1− u| − sign(1− u) |u| =
(

2η2

π2

)
∂2
xu(x) ,

from which

u(x) =
1 + sin[(π/η) · x]

2

emerges for the planar binary interface. The generator
function reads as

f̂(ui, uj) =
4σij
η

(
|ui| |uj | −

η2

π2
∇ui · ∇uj

)
,

therefore,

δf̂(ui, uj) =
4σij
η

(
sign(ui) |uj |+

η2

π2
∇2uj

)
,
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yielding

δf̂(u, 1− u) =
2

η
σij

δf̂(1− u, u) =
2

η
σij

δf̂(0, u) + δf̂(0, 1− u) =
2

η
sin

(
π

η
x

)
(σkj − σki)

for the extension ui(x) = u(x), uj=6=i(x) = 1− u(x) and
uk 6=i,j(x) = 0, showing that the planar binary interfaces
do not minimize the free energy functional for non-zero
interfacial free energies.

The dynamic equations of Steinbach and Pezzolla13

also read as:

−∂ui
∂t

=
∑
j 6=i

κij

[
δF

δui
− δF

δuj

]
,

with κij = κji > 0 constants, therefore, the mobility
matrix satisfies conditions 1–3 of Section II.C. Consider-
ing that the planar binary interfaces represent no equi-
librium solution, they are not stationary. The prob-
lem is resolved again by replacing the gradient term
−∇ui · ∇uj by (ui∇uj − uj∇ui)2, and using the ’binary
approximation’29:

δF

δui
− δF

δuj
≈ sign(ui)|uj | − sign(uj)|ui|

− (uj∆ui − ui∆uj) .

(22)

Although the resulting non-variational dynamics stabi-
lizes the extension of the planar interface solution u(x) =
{1+sin[(η/π)x]}, unfortunately it does not minimize the
free energy functional. A remarkable improvement of the
Steinbach-Pezzola model has been put forward by Kim
et al.27. Introducing step functions that are Si = 1 for
ui > 0 and Si = 0 otherwise, the mobility matrix has
been assumed to have the form shown below

−∂ui
∂t

=
∑
j 6=i

κijSiSj

[
δF

δui
− δF

δuj

]
.

This change leads to an important step ahead: it
retains the variational formalism, while stabilizing the
flat interface. Nevertheless, it is not yet a solution
of the Euler-Lagrange equation of the multiphase
problem, therefore, this mobility matrix is ’dangerous’
in the sense that it generates stationary solution from
a non-equilibrium state. This approach has recently
been applied for an asymmetric case taking the grain
boundary energies from a database34.

Finally, we mention that the derivations presented
above can be trivially repeated for using ui uj instead
of |ui| |uj | in the free energy functional described by Eq.
(20), resulting in the same qualitative results, i.e. the
planar binary interfaces do not minimize the multiphase

functional. In addition, the absence of the absolute value
function terminates the bulk ui = 1 equilibrium solution
too.

C. Nestler-Wheeler

Another descendant of the original Steinbach et
al. model12 is the general Nestler-Wheeler type
formalism16–20:

fNW
intf =

∑
i<j

[
ε2ij
2

(ui∇uj − uj∇ui)2 +
wij
2

(|ui| · |uj |)p
]
,

(23)
where p = 1 or 2. For p = 216–20, Eq. (23) recov-
ers Eqs. (13)-(15) (Steinbach et al.), whereas in case of
p = 117,19,20, it reduces to Eq. (21) for N = 2 with the
solution

u(x) =
1 + sin(x/δij)

2
.

For p = 1, the derivative of the generator function reads
as

δf̂(ui, uj) =(wij/2) sign(ui)|uj |+
+ ε2ij [2(ui∂xuj − uj∂xui)∂xuj+
+ (ui∂

2
xuj − uj∂2

xui)uj
]
,

which, in the case of ui(x) := u(x), uj 6=i(x) := 1− u(x),
and uk 6=i,j(x) := 0, yields

δf̂(u, 1− u) =
3wij

4
cos2(x/δij)

δf̂(1− u, u) =
3wij

4
cos2(x/δij)

δf̂(0, u) + δf̂(0, 1− u) = 0 ,

showing that the binary planar interfaces do not min-
imize the free energy functional again. This, together
with the fact that the mobility matrix was chosen to be
Lagrangian, means that we have here the same problem
as in the case of the Steinbach-Pezzolla formalism, which
can be resolved by using Eq. (22), i.e., by adopting
non-variational dynamics.

In a recent variant of the p = 1 Nestler-Wheeler model
by Ankit et al45 the multi-obstacle free energy landscape
contains a triplet term of the form:

f3 =
∑
i<j<k

γijk|ui| |ui| |uk| , (24)

where the triple sum runs for all different (i, j, k) triplets,
and the authors use γijk to control the appearance of
the third phase at the binary interfaces. We note,
however, that Eq. (24) has no effect on the existence
of the planar interface solution, since the derivative
∂f3/∂ui = sign(ui)

∑
j<k |ui| |uj | vanishes for binary
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planar interfaces. In other words, f3 is not suitable
for generating equilibrium planar interface solutions.
Nevertheless, choosing γijk → ∞ results in two-phase
interfaces free of additional fields, but for any finite γijk,
additional fields are always present at the interfaces
mathematically.

We note that, in models relying on the multi-obstacle
potential, fintf → ∞ is often prescribed out of the
physical regime to prevent the evolution of the fields
into the ”unphysical” states ui < 0 and ui > 1. This is
another way to stabilize the (otherwise non-equilibrium)
two-phase interfaces. We recall furthermore that there is
physical interpretation for ui < 0 and ui > 1. Compari-
son of the phase-field models to the Ginzburg-Landau
model and/or to amplitude equations emerging from
classical density functional theories46 implies that ui < 0
can be simply associated with a negative amplitude of
the first reciprocal lattice vector set in the crystal, which
is a real perturbation of the liquid state for cubic crystal
structures. Similarly, ui > 1 is nothing more than an
amplitude larger than the equilibrium crystal amplitude.

D. Folch-Plapp

The term ”Lagrange multiplier formalism” originates
from Folch and Plapp26. In their multiphase description,
the free energy functional is based on several theoreti-
cal considerations including binary equilibrium solutions
and the condition of no spurious phase generation. For
three phases the interface contribution of the free energy
functional reads as:

fFPintf =
ε2

2

3∑
i=1

(∇ui)2 +
w

2
fTW (u) , (25)

where the ”triple-well” free energy density is fTW (u) =∑3
i=1 g(ui), .where g(ui) = [ui(1 − ui)]2. First, we an-

alyze the binary planar interfaces. For N = 2 the free
energy functional reduces to

fFPintf = ε2(∇u)2 + wg(u) .

generating the usual 1D Euler-Lagrange equation

δF

δu
= wg′(u)− ε2∂2

xu = 0 . (26)

The equilibrium planar interface solution is then u(x) =
{1 + tanh[x/(2δ)]}/2 with δ2 = ε2/w. Since Eq. (25) is
not a pairwise construction, the generator function tech-
nique does not apply here. The general Euler-Lagrange
equations read as:

δF

δui
=

1

2

[
w g′(ui)− ε2 ∂2

xui
]

= λ(r) . (27)

Comparing Eqs. (26) and (27) results in 2 important
properties of the model:

δF

δui
∝ δF

δu

∣∣∣∣
ui

and
δF

δui

∣∣∣∣
ui=0

= 0 ,

indicating that the equilibrium planar binary interfaces
are solutions of the multiphase problem with λ(x) = 0.
The proposed dynamics uses the Lagrangian mobility
matrix, therefore, the Folch-Plapp model is the first
model, which passes the binary interface criterion.

Next, we discuss the appearance of spurious phases.
The general condition reads as uk(r, t) = 0, i.e. if phase
k is not present at t = 0, it must not appear at any time.
In the Folch-Plapp model, the time evolution of a phase,
which is apparently not present reads as

∂uk
∂t

∣∣∣∣
uk=0

∝
(
δF

δui
+
δF

δuj

)
,

where k 6= i, j and i 6= j. Using Eq. (27) it is obvious
that δF/δui + δF/δuj ≡ 0 for ui(r, t) + uj(r, t) = 1,
therefore, no spurious phases appear.

The authors have also worked out an asymmetric
version of the model, in which different binary interfacial
free energies can be used, which also satisfies the
basic criteria of physical consistency together with no
spurious phase generation. Despite its advantageous
features compared to former approaches, there are a few
weaknesses of the model: (a) to avoid the appearance of
spurious phases, a free energy functional is used whose
form depends on the particular choice of the mobility
matrix, which is clearly not physical, (b) no N > 3
generalization of the model is available. Furthermore,
(c) as the authors suggested, the necessary minimum
exponent in the multi-well term might be proportional
to the number of phases, making the model practically
useless when a large number (e.g., thousands) of dif-
ferently oriented dendrites or grains have to be simulated.

At this stage, it is clear that the Folch-Plapp model is
a large step towards constructing a consistent multiphase
description, since it satisfies almost all the criteria of
physical consistency. Unfortunately, the price is high: it
is not immediately clear how to generalize this model to
N > 3, together with avoiding the appearance of spurious
phases via introducing special terms in the free energy
functional, which follow from the form of the dynamic
equations.

E. Bollada-Jimack-Mullis

In the previous sections it has been demonstrated that
the condition of no spurious phase generation works at
two levels. First, if a solution of the Euler-Lagrange equa-
tion represents minimum of the free energy functional,
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it is stable against small perturbations (assuming vari-
ational dynamics with a positive semi-definite mobility
matrix). In addition, to avoid the appearance of spu-
rious phase outside of equilibrium may necessitate the
adjustment of the free energy functional. In a recent
work32, however, Bollada et al. avoided the problem by
introducing a field-dependent mobility matrix

Lii =

N∑
j 6=i

h(ui, uj) and Lij = −h(ui, uj) for i 6= j ,

(28)
where

h(ui, uj) =

(
ui

1− ui

)(
uj

1− uj

)
.

Apparently, Eq. (28) satisfies the conditions of Section
II.C; i.e., the dynamics ensures non-negative entropy
production inside the simplex (i.e., when all ui ∈ [0, 1],
all h(ui, uj) ≥ 0). In addition, the spurious phase
generation is excluded, since for uk(r, t) = 0 the kth row
(and column) of the mobility matrix vanishes, yielding
(∂uk/∂t)|uk(r,t)=0 = 0. Note that this is achieved with-
out revising the free energy functional. Moreover, the
description is N -independent, since the mobility matrix
consistently reduces to the N − 1 case. Despite the
significant improvement, one has to be careful with the
Bollada-Jimack-Mullis mobility matrices, since they can
be dangerous with respect to the free energy functional
in the sense that the mobility matrix may generate sta-
tionary solution of the dynamics from a non-equilibrium
state (as it happens in case of a multi-obstacle potential).
In addition, outside of the simplex (i.e., for ui < 0), the
mobility matrix is indefinite, thus violating criterion (iv).

The results of the above analysis of the MPF theories
are summarized in Table I. The following has been found:

(A) The criteria for the sum of the fields and for label-
ing are satisfied by all the models investigated.

(B) The lack of equilibrium planar two-phase inter-
faces (in the N -phase problem) can be resolved by em-
ploying: (a) non-variational dynamics (the models by
Steinbach et al.12, Steinbach and Pezzola13, Nestler and
Wheeler16–20), (b) a degenerate mobility matrix (the
models by Kim et al.27, and by Bollada et al.32), or by
(c) penalizing the triplet term (the model by Ankit et
al.45). We identified the following problems associated
with methods (a)-(c): the solution does not converge
to the equilibrium solution; furthermore, in case (c) the
third phase is unavoidably present (even if in a small
amount).

(C) When the equilibrium conditions are satisfied (as
in the model by Folch and Plapp26), we obtain an N -
dependent approach without the possibility of prescrib-
ing freely the pairwise interfacial data.

Considering these, we conclude that none of the MPF
models investigated here satisfy all the consistency crite-
ria specified. We stress furthermore that the introduction

TABLE I. Properties of different multiphase-field models from
the viewpoint of criteria defined in this work.

model \ criterion i ii iii iv v vi(a) vi(b) vii

Steinbach et al. x x x x
Steinbach & Pezzola x x x x
Nestler & Wheeler x x x x

Kim et al. x x x x x x
Bollada et al. x x x x x x
Ankit et al. x x x x x

Folch & Plapp x x x x x x

of additional thermodynamical driving force via an ap-
propriate tilting function (as needed for describing poly-
crystalline solidification) would influence neither the va-
lidity of these criteria, nor the outcome of this analysis.

IV. CONSISTENT MULTIPHASE FORMALISM

A. General framework

Herein, we derive a multiphase description that satis-
fies criteria (i) to (vii). It is useful to start with the con-
dition of formal reducibility [criterion (iv)]. First, setting
uN (r, t) = 0 in the N -phase free energy functional F (N)

should result in the N − 1 phase functional, FN−1. The
same should apply for the dynamic equations

−∂ui
∂t

=
∑
i 6=j

κij

(
δF

δui
− δF

δuJ

)

as well; i.e., −u̇(N) = L(N) ·δF (N)
u |uN (r,t)=0 should reduce

to −u̇(N−1) = L(N−1) · δF (N−1)
u , and u̇N = 0. Note

that the latter satisfies the condition of no spurious phase
generation [criterion (ii)]), since u̇i|ui = 0 = 0. Here L(N)

is a general, symmetric, positive semidefinite N–phase
mobility matrix, i.e. Lij = −κij for i 6= j, while Lii =∑
j 6=i κij , where i, j = 1 . . . N , and κij = κji > 0. Since

the (modified) Bollada-Jimack-Mullis matrix defined by
Eq. (28) satisfies the condition of formal reducibility, we
choose this mobility matrix, namely,

κij := κ0
ij

∣∣∣∣ ui
1− ui

∣∣∣∣ ∣∣∣∣ uj
1− uj

∣∣∣∣ ,
where constant positive prefactors κ0

ij accounting for the
mobility of the planar i, j interface are also incorporated.
Furthermore, we prescribe the condition of reduction
also for the functional derivatives; i.e., the first N − 1

components of δFNu should reduce to δF
(N−1)
u for

uN (r, t) = 0. Since the N th row (and column) of the
reduced Bollada-Jimack-Mullis matrix is 0, it always
results in u̇N = 0, therefore, (δFN/δuN )|uN (r,t)=0 can
be arbitrary. Since the n–phase Bollada-Jimack-Mullis
matrix is positive semidefinite on an n–phase state (i.e.
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when none of the n components vanishes) with multiplic-
ity 1 for the eigenvalue 0 (it can be proven numerically),
the n–phase stationary solutions coincide with the n
phase equilibrium states. Moreover, since the dynamic
equations reduce naturally to the (N − 1)–phase case,
the stationary solutions of the reduced dynamics include
the natural N phase extensions of the (N − 1)–phase
equilibrium solutions (where none of the N − 1 phases is
missing). Therefore, the natural N–phase extensions of
all (N − 1)–phase equilibrium solutions emerging from
F (N−1) should represent extrema of FN . If this is true,
the Bollada-Jimack-Mullis matrix is not dangerous with
respect to the free energy functional, since all stationary
states of the dynamics represent equilibrium. Since
the condition must apply for arbitrary N , the general
condition for the free energy functional reads as follows:

The (p + q)–phase trivial extensions of all p–phase
equilibrium solutions (where all the p phases are
non-vanishing) emerging from the p–phase free en-
ergy functional F (p) must represent extrema of the
(p + q)–phase free energy functional F (p+q) too, for any
p > 0, q > 0.

For practical reasons, we introduce the following con-
dition: for a field, which is not present, the functional
derivative vanishes, i.e.

δF

δui

∣∣∣∣
ui(r,t)=0

= 0 .

If the Lagrange multiplier also vanishes [λ(r) = 0] for
all p−phase equilibrium solutions of F (p) (where p > 1
arbitrary), while the free energy functional (and the func-
tional derivative) reduces naturally, all trivial extensions
of all p-phase equilibrium solutions remain equilibrium
solutions of the N -phase free energy functional. Conse-
quently, here the Bollada-Jimack-Mullis matrix does not
stabilize non-equilibrium solutions, while preventing the
appearance of spurious phases. Note, that this is obvi-
ously not true for the models of Steinbach et al., Stein-
bach and Pezzola, Nestler and Wheeler, Ankit et al., and
for the model potential used in the work of Bollada, Ji-
mack, and Mullis. Although there the free energy func-
tionals and the functional derivatives reduce naturally,
and (δF/δui)|ui=0 = 0 also applies, the planar two-phase
interface solution generates different Lagrange multipli-
ers for the vanishing and non-vanishing fields in the com-
plete (N -phase) Euler-Lagrange problem, indicating that
the natural extensions of the planar two-phase interfaces
do not represent equilibrium. Yet, the application of the
Bollada-Jimack-Mullis mobility matrix transforms them
into stationary solutions, showing that in these cases the
application of the Bollada-Jimack-Mullis matrix is ”dan-
gerous”.

B. Free energy functional

1. Symmetric system

The main question is, how one should construct an
interface term that satisfies the conditions given above.
First, we consider the symmetric case, where all interface
thicknesses and interfacial free energies are equal. Fol-
lowing Chen and co-workers11,14,15 and Moelans and co-
workers21–24, the interface term of the free energy func-
tional is constructed as follows

fintf =
ε2

2

N∑
i=1

(∇ui)2 + w g(u) , (29)

where we use the following new Ansatz for the multiphase
barrier function:

g(u) :=
1

12
+

N∑
i=1

(
u4
i

4
− u3

i

3

)
+

1

2

∑
i<j

u2
iu

2
j . (30)

The functional derivative reads as

δF

δui
= w [ui(u

2 − ui)]− ε2∇2ui , (31)

which vanishes for ui = 0. The binary planar interface so-
lution is u(x) = {1 + tanh[x/(2δ)]}/2 (where δ2 = ε2/w),
for which the multiphase Euler-Lagrange equations re-
duce to

δF

δui
= − δF

δuj
= w u(1− u)(1− 2u)− ε2∂2

xu = 0

δF

δuk
= 0 .

Here we used the trivial extension ui := u(x),
uj 6=j := 1 − u(x) and uk 6=i,j = 0. Since the free
energy functional and the functional derivatives reduce
naturally, and δF/δui vanishes for ui = 0, together with
the fact that any trivial extension of the planar interface
solution represents equilibrium, it is reasonable to assume
that the Bollada-Jimack-Mullis matrix is not dangerous
considering at least the planar interfaces, i.e., it does
not stabilize a non-equilibrium planar interface, since all
planar interfaces represent equilibrium. Naturally, the
same investigation should be repeated for all n–phase
equilibrium solutions of F (n) for any positive n, however,
this kind of study is out of the scope of the present paper.

It is important to mention, that Eq. (30) shows a very
practical feature

g({1/N, 1/N, . . . , 1/N}) =
1

12

(
1− 1

N2

)
, (32)

i.e., the higher-order junctions are energetically increas-
ingly less favorable. Note that this is not true for Eq.
(15). The tendency of increasing free energy is also en-
sured by the multi-well term defined in Eq. (20), however
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there, as we have shown previously, the binary planar in-
terfaces do not minimize the free energy functional in
the general N -phase case. It is worth noting that Eq.
(32) contradicts Folch and Plapp26, who expect that the
polynomial degree of the g(u) function that penalizes the
high-order multiple junctions would increase with N . Eq.
(32) shows that the double-obstacle function is not the
only one that realizes this tendency, furthermore, here
[see Eq. (30)] the planar binary interface represents an
equilibrium solution of the multiphase problem.

2. Asymmetric extension

Following Moelans22, the asymmetric extension of
Eq. (29) can be obtained by employing the Kazaryan-
polynomials47

ε2(u) :=

∑
i,j ε

2
iju

2
iu

2
j∑

i,j u
2
iu

2
j

(33)

w(u) :=

∑
i,j wiju

2
iu

2
j∑

i,j u
2
iu

2
j

. (34)

The free energy density then reads as

fintf =
ε2(u)

2

N∑
i=1

(∇ui)2 + w(u) g(u) , (35)

where g(u) is defined by Eq. (30). Since the Kazaryan
polynomial is ”quasi-constant” (the nominator and the
denominator contain the same terms with different co-
efficients), it is reasonable to assume that this modifica-
tion does not change the structure of extrema of g(u).
Although it will be demonstrated for asymmetric N = 4
and N = 5 systems, a strict mathematical derivation for
arbitrary number of phases is out of the scope of the
present paper.

The binary reduction of Eq. (35) reads as

fintf = ε2ij(∇u)2 + wij [u(1− u)]2 ,

generating the equilibrium planar binary interface with
δ2 = ε2ij/wij . The general functional derivative is

δF

δui
= w

∂g

∂ui
+
∂w

∂ui
g(u)− ε2∇2ui

+

N∑
j=1

[
1

2

∂ε2

∂ui
∇uj −

∂ε2

∂uj
∇ui

]
· ∇uj ,

(36)

where

∂ε2

∂uj
= (2uj)

∑
l 6=j(ε

2
lj − ε2)u2

l∑
k,l u

2
ku

2
l

∂w

∂uj
= (2uj)

∑
l 6=j(wlj − w)u2

l∑
k,l u

2
ku

2
l

.

Note that ∂χ
∂uk

∣∣∣
uk=0

= ∂χ
∂ui,j

∣∣∣
ui+uj=1

= 0, where χ =

ε2, w, therefore, (δF/δuk)uk=0 = 0, and the second line
of Eq. (36) also vanishes for ui = u, uj = 1−u, uk 6=i,j =
0, therefore, the planar binary interfaces are equilibrium
solutions of the multiphase problem for arbitrary pairwise
ε2ij and wij fitted to the interfacial free energy γij and
interface thickness δij as follows:

ε2ij = 3 (δij · γij) and wij = 3 (γij/δij) .

3. Introducing anisotropy

In various practically important cases, including den-
dritic solidification and grain coarsening, the interfa-
cial free energy between two phases displays anisotropy,
which can be formulated mathematically as:

εij → εij [1 + aij · ηij(nij)] ,

where aij is the amplitude (strength) of the anisotropy,

nij =
∇ui −∇uj
|∇ui −∇uj |

is a unit vector characterizing the (i, j) binary interface,
while ηij(nij) reflects the crystal symmetry. This exten-
sion modifies Eq. (33) and the functional derivative as
follows

δF

δui
= g(u)

∂w

∂ui
+ w(u)

∂g

∂ui
+
∂ε2

∂ui

1

2

N∑
j=1

(∇uj)2

−
−∇ ·

 ∂ε2

∂∇ui

1

2

N∑
j=1

(∇uj)2

+ ε2 · ∇ui

 .

Here the extra term reads as

∂ε2

∂∇ui
=

∑
k,l

∂ε2kl

∂∇ui
u2
ku

2
l∑

k,l u
2
ku

2
l

,

where
∂ε2kl

∂∇ui
∝ δki + δli, therefore, ∂ε2

∂∇ui
∝ u2

i , which

means (δF/δuk)|uk=0 = 0. In addition, for ui + uj = 1
∂ε2

∂∇ui,j
=

∂ε2ij
∂∇ui,j

, therefore, δF
δui,j

= 1
2
δF
δu , where δF/δu is

the functional derivative in the reduced model, there-
fore, the equilibrium binary interfaces emerging from
δF/δu = 0 are stationary solutions of the multiphase
problem.

V. TESTING THE XMPF MODEL

In this section, we review whether the proposed model
satisfies indeed criteria (i) to (vii). Several of these crite-
ria are satisfied owing to the specific formulation of our
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model [these are (i), (iii) – (vi), and (vii)] as summa-
rized in sub-section A. Fulfillment of practical criterion
(ii), however, needs further investigation, which is under-
taken in sub-section B. Finally, illustrative simulations
are presented for grain coarsening in sub-section C.

A. Consistency criteria satisfied

It can be shown that the proposed model satisfies the
following criteria:

(i)
∑N
i=1 ui(r, t) = 1 (see Section IV.A);

(ii) Since the mobility matrix is symmetric, the
physical results are invariant to formally exchanging
pairs of field indices, i ↔ j, i.e. the variables are not
labeled (see Section IV.A);

(iii) Under appropriate boundary conditions, any
trivial multiphase extension of the equilibrium binary
solution represents equilibrium solution of the multi-
phase problem, which is then a stationary solution of the
dynamic equations towards which the time dependent
solution evolves (see Section IV.D);

(iv) Since the mobility matrix is positive semidefinite,
non-negative entropy production is ensured for both
conserved and non-conserved dynamics (see Sections
IV.A and VI.B);

(v) Reduction/extension of the N -field theory to
N − 1 or N + 1 fields is trivial on the level of both the
free energy functional (and the functional derivative)
and the mobility matrix (see Sections IV.A and IV.D);

(vi) No additional phases appear at the equilibrium
binary interfaces (see Sections IV.B, IV.C, IV.D and
VI.A), and the dynamic spurious phase generation is
also excluded (see Sections IV.A and V.B);

(vii) Freedom for choosing independent interfacial (εij
and wij) and kinetic properties (κij) for the individual
binary boundaries, including their anisotropy (see the
formulation in Sections IV.C and IV.D).

Since the dynamic generation of spurious phases is ex-
cluded by the modified Bollada-Jimack-Mullis mobility
matrix, the trivial extensions of the equilibrium planar
solutions represent equilibrium, and the stationary solu-
tions of the dynamic equations coincide with the equi-
librium solutions, hence the mobility matrix is regarded
as ’not dangerous’, when considering planar interfaces.
Nevertheless, it still remains unclear, whether the same
applies for all equilibrium solutions, such as the trivial
extensions of equilibrium trijunctions, etc.. Therefore,
next we investigate the time evolution of multi-domain
systems in this respect.

(a) (b)

(c) (d)

(e) (f)

FIG. 1. (Color online) Time evolution in an N = 5
symmetric Cahn-Hilliard problem with starting conditions
u1 = u2 = u3 = u4 = u5 = 0.2: Different colors stand
for different phases (where ui > 0.99). Snapshots taken at
t = (1, 3, 10, 30, 100, 300)×25, 000 dimensionless time are dis-
played. (Time increases from left to right, and from top to
bottom.)

B. Multiphase separation

For practical reasons, the time evolution of multi-
domain systems is investigated in two dimensions using
conserved dynamics (N − component Cahn-Hilliard sys-
tems), for which the dimensionless equations of motion
read as

∂ui
∂t

= ∇ ·

∑
j 6=i

κij∇
(
δF

δui
− δF

δuj

) .

Our choice is motivated by the fact that simulations
with conserved dynamics are much less forgiving to
possible numerical errors than those with non-conserved
dynamics.

First, we consider a symmetric system, and demon-
strate that our free energy functional prescribes the hier-
archy Fbulk < Finterface < Ftrijunction < Fquadruple <
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. . . for the equilibrium solutions, therefore, a 2-
dimensional, multi-domain system displays a bulk–
interface(–trijunction) topology. Accordingly, the ad-
ditional phases near any bulk / interface / trijunction
vanish with time, since these states are energetically
not preferred in the vicinity of the equilibrium solu-
tions, to which the system converges. This happens in-
dependently of the particular choice of the mobility ma-
trix ; the only requirement is that the mobility matrix
has to be symmetric and positive semidefinite. Since∑N
i=1(δF/δui) ≡ 0 applies for the symmetric model, the

Lagrangian mobility matrix κij = 1 yields:

∂ui
∂t

= ∇2 δF

δui
,

a fairly simple system of dynamic equations. Since
(δF/δui)ui=0 = 0, this dynamics satisfies the condition
of ”no spurious phase generation”. Indeed, we demon-
strate that if a phase is not present in the beginning
of the calculation, it never appears, even if the other
phases are not in equilibrium.

Next, we perform simulations in an N = 4 asym-
metric system with two types of mobility matrices (the
Lagrangian and the Bollada-Jimack-Mullis type) to
demonstrate spurious phase generation. We show that
the spurious phase appears with the Lagrangian mobil-
ity, whereas in the case of the Bollada-Jimack-Mullis
mobility matrix the zero-amplitude initially prescribed
for one of the field is retained throughout the simulation,
even if the other fields are not in equilibrium. Finally, a
similar behavior is demonstrated for anisotropic systems.

If not stated otherwise, the dynamic equations were
solved numerically, using a pseudo-spectral semi-implicit
method based on operator splitting (see Appendix C),
on a rectangular grid of size 512 × 512, applying pe-
riodic boundary conditions at the perimeters. The di-
mensionless time and spatial steps were ∆t = 1, and
∆x = 1. The computations were performed in double
precision on GTX Titan GPU cards. As starting condi-
tion, we prescribe a spatially homogeneous state contain-
ing equal quantities of all the components, supplemented
by a small amplitude of flux noise. For this composition,
equilibrium requires the coexistence of N pure phases.
Accordingly, the transition process requires the forma-
tion and coarsening of these phases. We present illustra-
tions for symmetric (N = 5), asymmetric (N = 4), and
anisotropic (N = 4) cases.

1. Symmetric case

Snapshots illustrating the time evolution of an N = 5
symmetric Cahn-Hilliard problem (where ε2ij = 1 and
wij = 1 for all phase pairs, i, j = 1 to N) are dis-
played in Fig. 1. The simulation started from a spatially
homogeneous initial condition u(r, 0) = {0.2, 0.2, 0.2,

(a) (b)

(c) (d)

FIG. 2. (Color online) N = 5 symmetric Cahn-Hilliard
problem with starting conditions u1 = u2 = 0.5 and u3 =
u4 = u5 = 0. (a), (b): Snapshots of the phase fields u1 and
u2 at t = 2.55 dimensionless time; (c) in the left half panel
|u3|+ |u4|+ |u5| is shown, whereas the right half panel shows∑5

i=1 ui − 1. Note the absence of spurious phases [criterion
(ii)] and that the sum of the phase fields is 1 [criterion (i)].
(d) Multiphase-field map at the same instant.

0.2, 0.2}, which was perturbed by a small amplitude
of initial noise to induce phase separation. Note the
coarsening of the various types of grains with time. To
test whether spurious phase generation takes place, we
have performed two N = 5 simulations with initial
conditions: (1) u(r, 0) = {0.5, 0.5, 0, 0, 0} and for (2)
u(r, 0) = {0.25, 0.25, 0.25, 0.25, 0}. The individual phase-
field maps are shown for t = 250, 000 dimensionless time
in Figs. 2 and 3. Apparently,

∑
uj = 1 is satisfied with a

high accuracy [criterion (i), see Figs. 2(c) and 3(f)]. Fur-
thermore, the zero amplitude fields retained accurately
their zero amplitude status throughout the simulations,
i.e., no third phase generation took place at the phase
boundaries, indicating that, in agreement with the expec-
tations, criterion (ii) is also fully satisfied. While in the
effectively two-component case (Fig. 2), we observe the
usual binary phase separation pattern, the patterns ap-
pearing in Figs. 1 and 3 are significantly different: multi-
grain networks appear that are dominated exclusively by
trijunctions and binary boundaries; higher-order junc-
tions have not been observed at all.

2. Asymmetric case

Here, the parameters ε2ij and wij are different for the
individual binary interfaces (for the matrices used in the
present work see Ref.48). The simulations were per-
formed for an N = 4 Cahn-Hilliard model. u(r, 0) =
{1/3, 1/3, 1/3, 0} has been chosen as the initial condi-
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(a) (b)

(c) (d)

(e) (f)

FIG. 3. (Color online) N = 5 symmetric Cahn-Hilliard
problem with starting conditions u1 = u2 = u3 = u4 = 0.25
and u5 = 0. (a) – (b): Snapshots of the phase fields u1, u2, u3

and u4 at t = 106 dimensionless time; (e) in the left half panel
u5 is shown, whereas the right half panel shows

∑5
i=1 ui − 1.

Note the absence of spurious phases [criterion (ii)] and that
the sum of the phase fields is 1 [criterion (i)]. (f) Multiphase-
field map at the same instant.

tion, with a small amplitude of initial noise to induce
phase separation. First a Lagrangian mobility matrix
has been used. The phase-field maps corresponding to
t = 106 dimensionless time are displayed in the left col-
umn of Fig. 4. Apparently, the solution is less satisfac-
tory than the results for the symmetric case: substantial
deviation from u4(r, t) = 0 is observed [Fig. 4(g)]. How-
ever, this spurious phase generation disappears entirely,
if the Bollada-Jimack-Mullis mobility matrix is used [see
Fig. 4(h)], as expected. Again, the multiphase domain
structure is dominated by trijunctions and binary bound-
aries at all times. It appears though that the structure
obtained with the Bollada-Jimack-Mullis type mobility
matrix contains chains of alternating u1 and u4 ”bub-
bles” [see Fig. 4(j)], a feature that can be associated with
the asymmetry of the kinetic coefficients (κij) applied in
this simulation.

(a) (b)

(c) (d)

(e) (f)

(g) (h)

(i) (j)

FIG. 4. (Color online) N = 4 asymmetric Cahn-Hilliard
problem with initial condition u = {1/3, 1/3, 1/3, 0}. The
results on the left were obtained with a Lagrangian mobility
matrix, whereas those on the right were obtained using the
Bollada-Jimack-Mullis type mobility matrix. The upper four
rows [panels (a) – (h)] show the maps for u1, u2, u3 and u4,
respectively, whereas in the lowermost row [panels (i) and (j)]
phase distribution maps are displayed. Results corresponding
to t = 106 dimensionless time are presented. Note that using
the Lagrangian mobility matrix spurious phase generation in
the vicinity of the phase boundaries could not be avoided for
u4 [see panel (g)], whereas the Bollada-Jimack-Mullis mobility
matrix suppresses the formation of spurious phases entirely
[see panel (h)].
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(a)

(b)

(c)

(d)

(e)

FIG. 5. (Color online) N = 4 asymmetric Cahn-Hilliard
problem with anisotropy: (a) Time evolution towards the
equilibrium shapes of u1 and u2 embedded into u3 at t =
3.125 × 106 dimensionless time. (b)-(e): Snapshots of the
phase fields u1, u2, u3, and u4, respectively, taken at t =
2× 105 dimensionless time. Note the lack of third phase gen-
eration at the phase boundaries, and that u4 remains absent
even at the phase-boundaries.

3. Anisotropic case

Next, we investigated an asymmetric N = 4 Cahn-
Hilliard theory48, however, with anisotropic interface free
energies and a Bollada-Jimack-Mullis type mobility ma-
trix. The dynamic equations were solved on a rectan-
gular grid of size 1024 × 512. Time and spatial steps of
∆t = 0.25 and ∆x = 0.5 were used. The starting con-
ditions were as follows: Two circles filled with u1 = 1
(left) and u2 = 1 (right) were placed besides each other,
while a zero value was assigned to these fields outside the
circles. In contrast, u3 = 1 was prescribed in the back-
ground, and u3 = 0 inside the circles, whereas u4 = 0
was assigned to the whole simulation domain (i.e., the
fourth field was missing everywhere). All interfaces were
assumed isotropic, except for the 1–3 interface, for which
an anisotropy of a13 = 0.1 was prescribed that is larger
than the critical anisotropy ac = 1/(2k − 1) = 1/15 for
fourfold (k = 4) symmetry49,50. With elapsing time,
the circle on the left evolved into a square-like object of
curved sides, and four pointed corners (see Fig. 5), dis-
playing missing orientations (following from a13 > ac), as
expected on the basis of the prescribed anisotropy func-
tion. Apparently, as found for the central finite differenc-
ing scheme50, the spectral discretization regularized the
high anisotropy problem: the predicted numerical shape
is very close to the analytical solution corresponding to
this anisotropy. Remarkably, no spurious phase appear-
ance was observed at the phase-boundaries, and u4 = 0
has been satisfied throughout the simulation. We have
obtained similar results using finite difference discretiza-
tion.

C. Grain coarsening

In this subsection, we apply the XMPF model for grain
coarsening in a two-dimensional (2D) polycrystalline sys-
tem that contains a large number of differently oriented
crystal grains that have equal free energy, therefore, the
time evolution of the system is driven by the grain bound-
ary energy. For the sake of simplicity, we distinguish only
30 orientations represented by N = 30 fields. The respec-
tive non-conservative equations of motions read as:

− ∂ui
∂t

=
∑
j 6=i

κij

(
δF

δui
− δF

δuj

)
, (37)

which have been solved numerically on a rectangular grid,
using a finite difference discretization and Euler forward
time-stepping. As starting condition, the simulation box
was covered by a large number of small random field
patches arranged on a square lattice (512 × 512 and
256 × 256, respectively, for the larger and smaller size
simulations), mimicking athermal nucleation on a fine
grid. [We note that, during time evolution, the initial
condition is fast forgotten: for example, after a transient
period, very similar results were obtained with a uniform
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FIG. 6. (Color online) Snapshot of grain/phase-map taken
at dimensionless rime, t = 104, for a simulation relying on
misorientation dependent grain boundary energy obeying the
Read-Shockley relationship51. The simulation was performed
on a 40962 rectangular grid. About 4000 grains can be dis-
tinguished at this stage.

1/N starting, while adding a small pixelwise Gaussian
noise (a spatially random initiation).] Two cases were in-
vestigated: (a) with an isotropic grain boundary energy
(on a 81922 grid), and (b) the misorientation dependence
of the grain boundary energy follows the Read-Shockley
relationship51 (on a 40962 grid). The corresponding mo-
bilities were κij = 1, and κij = |ui/(1−ui)| |uj/(1−uj)|,
respectively.

A typical grain map displaying the result of the simu-
lation for case (b) at a dimensionless time t = 104, when
∼ 4000 grains exist, is shown in Fig. 6. Similar grain
maps have been obtained for the other case, except that
there most of the trijunctions are close to symmetric,
displaying angles ∼ 120◦.

As observed in other MPF models27,52, in the
experiments53, and predicted by theory54–56, after a tran-
sient period a limiting grain size distribution (LGSD) is
established, which in the case of experiments on metallic
film can be accurately fitted53 by the lognormal distri-
bution proposed by Feltham54. The models of Mullins
and Hillert predict significantly different LGSDs (Fig. 7).
The LGSD predicted by the XMPF model approximates
the experimental results somewhat better than the previ-
ous MPF models27,52 [see Figs. 7(b) and 7(c)], and prac-
tically coincides with the results from the mutli order pa-
rameter approaches11,14,57, yet the agreement is not par-
ticularly good with the experiments at small grain sizes.
Apparently, in the experiments the small grains disap-

FIG. 7. (Color online) Limiting grain size distributions
(LGSD): (a) for the isotropic simulation on a 81922 grid. For
comparison, experimental results53 for metallic films (solid
line: lognormal distribution fitted to experimental data53),
and predictions by the theories of Mullins55 and Hillert56

(dashed and dotted lines, respectively) are also shown. (b)
Comparison of the LGSD from XMPF (histogram) with pre-
dictions from previous MPFs by Kim et al.27 (triangles) and
Schaffnit et al.52 (circles). The solid line indicates a lognor-
mal fit to the experimental results53. (c) The same as panel
(b), except that LGSD from an asymmetric XMPF model
(the simulation shown in Fig. 6) is displayed (histogram), in
which the grain boundary energy follows the Read-Shockley
relationship51. Note that some improvement relative to the
previous MPF models has been achieved, but the population
of the small grains is larger than desirable.

pear faster than in the XMPF simulations. In the investi-
gated cases, the time dependence of the average grain size
[〈r〉 = A(t−t0)q, where A is a constant and t0 the freezing
time] is described by an exponent q = 0.5(1 ± 0.05), in-
dicating an essentially diffusion controlled grain growth.

We mention in this respect that a simple dynami-
cal density functional theory, the Phase-Field Crystal
approach1,4, which incorporates a broad range of phys-
ical phenomena (elasticity, dislocation dynamics, grain
rotation, etc.), reproduces the experimental LGSD fairly
well58. Unfortunately, in the PFC studies, as in the case
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of experiments, the effect of different physical phenomena
on the LGSD cannot be easily separated. It is expected,
however, that the comparison of different models may
contribute to the identification of the governing phenom-
ena. Along these lines, the present study determined
the LGSD the physically consistent XMPF model pre-
dicts. Apparently, further efforts are needed to improve
the agreement between MPF models and experiments.
Work is, underway59 to evaluate LGSD from phase-field
models relying on orientation field(s)8,9,60 in describing
different crystallographic orientations.

VI. COMPARISON WITH OTHER MODELS

Having presented the essential properties of the
XMPF model, it is desirable to compare it with other
models from the following viewpoints:

A. For a few of the most important multiphase-field
models, we investigate whether the trivial N = 3 exten-
sion of the equilibrium binary solution is a stationary
solution of the N = 3 dynamic problem [part of criterion
(vi), which in addition requires that the trivial extension
be a solution of the N = 3 Euler-Lagrange equation
too].

B. We explore, furthermore, for the best behaving
models identified in sub-section A. whether the free en-
ergy decreases indeed monotonically with time [criterion
(v)].

A. Planar interfaces:
comparing the MPF models

Here, we investigate for several MPF models, whether
a trivial N = 3 extension of the equilibrium interface
of the two-phase problem (obtained by adding u3 = 0
to the two-phase equilibrium solution) behaves like a lo-
cal free energy minimum of the multiphase-field model:
starting from the extended solution, we explore whether
the N = 3 equations of motion keep the solution equal
to the starting condition, or drive it away. For this test,
we adopt non-conservative dynamics

−∂ui
∂t

=
∑
j 6=i

(
δF

δui
− δF

δuj

)
,

The initial condition is a liquid-solid-liquid slab, with
periodic boundary condition at the two ends, while
employing the respective analytic solutions in the inter-
face regions, accompanied with u3(z) = 0 throughout
the computation box. (See Figs. 8(a) and 9(a) for the
initial conditions used for the models that have binary
equilibrium solutions of the forms u(z) = [1 + sin(z)]/2
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FIG. 8. (Color online) u(z) = [1 + sin(z)]/2 models. (a)
Initial condition (top panel), (b)-(g) final states after 106 time
steps. From second to bottom row, respectively: the model
of Nestler and Wheeler p = 117,19,20, the model of Steinbach
and Pezzola13, and the model of Steinbach and Pezzola with
non-variational dynamics29. (Left column: final states, right
column: difference of final state and initial condition.)

and u(z) = [1 + tanh(z/2)]/2, respectively).

The one-dimensional dynamic equations were solved
numerically, using finite difference method, while em-
ploying dimensionless time and spatial steps, h and ∆t,
as specified below.
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FIG. 9. (Color online) u(z) = [1 + tanh(z/2)]/2 mod-
els. (a) Initial condition (top panel), (b)-(g) final states after
2.5×105 time steps. From second to bottom row, respectively:
the model of Steinbach et al.12 (coincides with the model of
Nestler and Wheeler for p = 216–20), the model of Steinbach
et al. with non-variational dynamics12, and the XMPF model
proposed in this work. (Left column: final states, right col-
umn: difference of final state and initial condition.)

1. Models with sinusoidal equilibrium profile

The long-time solutions of the dynamic equations (106

time steps, beyond which no further changes were per-
ceptible) are shown in Fig. 8 for the Nestler-Wheeler
p = 1 model17,19,20[Figs. 8(b) and 8(c)], for the
Steinbach–Pezzola model13 [Figs. 8(d) and 8(e)], and
for the Steinbach–Pezzola model with non-variational
dynamics29 [Figs. 8(f) and 8(g)] (h = 0.1 and ∆t =

0.0025 were used.) The long-time interfacial field pro-
files are shown on the left [Figs. 8(b), 8(d), and 8(f)],
together with their difference relative to the initial con-
ditions on the right [Figs. 8(c), 8(e), and 8(g)]. While in
the first and second cases, third-phase generation can be
seen at the interface, the application of non-variational
dynamics in the Pezzola-Steinbach model suppressed this
phenomenon (u3 ≈ 0 was retained).

2. Models with hyperbolic tangential equilibrium profile

The long-time solutions (2.5× 105 time steps, beyond
which no perceptible changes were seen) of the EOMs
are shown in Fig. 9 for the following models: Figs. 9(b)
and 9(c) – the model of Steinbach et al.12; Figs. 9(d) and
9(e) – the model of Steinbach et al.12 with non-variational
dynamics; Figs. 9(f) and 9(g) – the model proposed in
the present paper. (h = 0.25 and ∆t = 0.01.) The
long-time interfacial field profiles are shown on the left
[Figs. 9(b), 9(d), and 9(f)], together with their difference
relative to the initial conditions on the right [Figs. 9(c),
9(e), and 9(g)]. While the model of Steinbach et al.12

leads to third-phase generation, the other two approaches
are free of this problem. Remarkably, the predictions
from the latter two models fall very close to each other.
Yet, in the model of Steinbach et al.12, the trivial three-
phase extension of the binary equilibrium solution is not
a solution of the three-phase Euler-Lagrange equation
(see Section III.C). In other words: although the same
solution is a stationary solution of the non-variational
EOM, stabilized by the non-variational dynamics, it is
not a free energy minimum of the three-phase problem.

While in this test, the results of the model of Stein-
bach et al. (with non-variational dynamics) are practi-
cally indistinguishable from those of the XMPF model
proposed in this work, under other conditions significant
differences can be seen.

B. Time dependence of the free energy

In this test, we investigate the time evolution of the
system in the non-variational model of Steinbach et al.12,
and in the XMPF model presented in this work. A sym-
metric N = 4 Cahn-Hilliard model and Lagrangian mo-
bility matrix have been chosen for the demonstration.

The results are summarized in Fig. 10, which shows
the map of one of the fields (the others are qualitatively
similar) at dimensionless times t = 2000 and 20000, com-
puted on a grid 512 × 512. While in the XMPF model
proposed here, the free energy decreases monotonically
with time as expected, in the model of Steinbach et al.
(when relying on a non-variational formalism), the free
energy increases initially, reaching then a maximum at
about t = 3000, followed by a slow decrease beyond.
This behavior is presumably a consequence of the ap-
plied ’binary’ approximation, in which various terms of
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FIG. 10. (Color online) Comparison of the time evolution
of phase transition (a), (c) in the non-variational model of
Steinbach et al.12 (left), and (b), (d) in the present model
(right). Snapshots of one of the fields are displayed. The time
dependence of the free energy is shown in panel (e): dashed
line – model of Steinbach et al.; solid line – the XMPF model.
The symbols correspond to snapshots shown in panels (a)-(d).

the variational equations of motion are omitted: once the
free energy functional (Lyapunov functional) is defined,
the variational dynamics ensures a monotonic reduction
of the free energy with time. Any deviation from this
approach raises the possibility of a non-monotonic time
evolution of the free energy.

VII. SUMMARY

In this work, we formulated a physically consistent
multiphase-field theory for describing interface driven
multi-domain processes. First, we identified a set of crite-
ria, a physically consistent multiphase-field approach has
to satisfy. These are: (i) the sum of the fields is 1 every-
where; (ii) the physical results should be invariant to ex-
changing pairs of field indices, i↔ j; (iii) a trivial multi-
phase extension of the equilibrium binary solution should
represent an equilibrium solution of the multiphase prob-
lem, which in turn should be a stationary solution of the
dynamic equations towards which the time dependent so-
lutions evolve; (iv) variational dynamic equations shall

be used to ensure non-negative entropy production; (v)
reduction/extension of the N -field theory to N − 1 or
N + 1 fields should be straightforward, and happen con-
sistently within the formalism; (vi) there should be no
spurious third phase appearance at the equilibrium bi-
nary boundaries, and once a field is not present, it should
not appear at any time in the dynamic equations; finally,
(vii) freedom to choose the interfacial and kinetic prop-
erties for individual phase pairs.

Next, considering these requirements, we have re-
viewed a range of the existing multiphase field models,
and identified their advantageous and less advantageous
features.

Combining the advantageous features of the ear-
lier multiphase-field models, we have constructed a
multiphase-field approach (termed the XMPF model)
obeying all criteria defined above. In addition, we
performed illustrative simulations for N = 4 and 5
multiphase-field models that rely on conserved dynam-
ics, describing thus multiphase separation problems (N -
component Cahn-Hilliard problems). Symmetric (identi-
cal interface properties), asymmetric (pairwise different
interface properties), and anisotropic (orientation depen-
dent interfacial properties) cases were addressed, and it
has been shown that using a suitable mobility matrix
(Bollada-Jimack-Mullis type), the XMPF model avoids
dynamic spurious phase generation. We have performed
further illustrative simulations for grain coarsening in
polycrystalline systems using an N = 30 XMPF model
relying on non-conserved dynamics. While the predicted
limiting grain size distribution is closer to the experimen-
tal results than those from the previous MPF models,
further works is needed to improve the agreement.

The present work opens up the way towards physically
consistent computations for microstructure evolution in
multiphase / multigrain / multicomponent structures,
and shall serve as a basis for developing a physically con-
sistent quantitative multiphase-field approach that might
be combined with melt flow and elasticity, and extended
to fast processes along the lines described in Refs.61–64,
leading towards developing improved tools for knowledge
based materials design.

Work is underway to incorporate a phase-dependent
thermodynamic driving force (a multiphase analogy of
the ’tilting function’ in Ref.26) into the XMPF model,
which will be presented in a separate paper.

We note in this respect that the inclusion of thermo-
dynamic driving force via a tilting function has no effect
on the present results concerning the two- and multi-
phase equilibria. The existence of equilibrium two-phase
planar interfaces in the multiphase problem is a basic
requirement, which needs to be satisfied by a physically
consistent model.
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APPENDIX A1: INVARIANCE OF RESULTS TO
EXCHANGING PAIRS OF FIELD INDICES, i↔ j

The general dynamic equations of a multiphase model
read as:

−∂ui
∂t

=
∑
j 6=i

κij

(
δF

δui
− δF

δuj

)
,

where there are N(N − 1) mobilities (κij). The princi-
ple of formal indistinguishability of the variables means
that the variables are not ”labeled”, i.e. none of them
is distinguished formally on the basis of its index. This
is true if the dynamic equations are invariant for the re-
labeling of the variables, i.e. re-labeling of the variables
on the level of the free energy functional results in the
same as re-labeling the variables in the dynamic equa-
tions. This criterion is satisfied by symmetric mobility
matrices, namely,

κij = κji .

Proof. The dynamic equation for uJ reads as

− ∂uJ
∂t

=
∑
k 6=J

κJk

(
δF

δuJ
− δF

δuk

)
. (38)

The variables can be re-labeled by using the variable
transformation vk := uk for k 6= I, J , vI := uJ , and
vJ := uI . Using this in Eq. (38) yields then

−∂vI
∂t

=
∑
k 6=I,J

(
δF

δvI
− δF

δvk

)
+ κJI

(
δF

δvI
− δF

δvJ

)
,

where the chain rule for the functional derivative has also
been used (see Appendix A2). Furthermore, re-labeling
variables in the free energy functional first (F [u] →
F [v]), then deriving the dynamic equations simply re-
sults in

−∂vI
∂t

=
∑
k 6=I,J

(
δF

δvI
− δF

δvk

)
+ κIJ

(
δF

δvI
− δF

δvJ

)
.

Comparing the two equations yields then κIJ = κJI .

In order to illustrate the ”no labeling” condition in
practice, we choose a typical example of labeling the vari-
ables. Some authors eliminate of one of the variables even

at the level of the free energy functional, i.e. they intro-
duce the independent variables vi := ui for i = 1 . . . N−1,

thus resulting in uN = 1−
∑N−1
i=1 vi. Then, the following

dynamic equations are used:

−τi
∂vi
∂t

=
δF

δvi
.

These can be written in terms of the old variables as:

− ∂ui
∂t

=
1

τi

(
δF

δui
− δF

δuN

)
(39)

for i = 1 . . . N − 1, and

− ∂uN
∂t

= −
N−1∑
j=1

1

τi

(
δF

δui
− δF

δuN

)
. (40)

It is straightforward to see, that Eqs. (39) and (40) pre-
scribe the following mobility matrix:

Lii = τ−1
i and LiN = −τ−1

i

for i = 1 . . . N − 1, while the last row reads as

LNi = −τ−1
i and LNN =

N−1∑
i=1

τ−1
i ,

where the form −∂ui/∂t =
∑N
j=1 Lij(δF/δuj) is used. It

is trivial that the elements of L sum up to 0 in each row
and column, but the matrix is not symmetric! It means
that the concept of eliminating a variable on the level of
the free energy functional labels the variables, i.e. the
eliminated variable is formally distinguished. Indeed,
exchanging variables I and N , deriving the dynamic
equations, then exchanging I and N back result in a
mobility matrix similar to the one described by Eqs.
(39) and (40), however, the N th and the Ith rows are
exchanged. On the one hand, it means that the for-
mal variable exchange corresponds to the elimination of
phase I instead of phase N . On the other hand, since the
resulting mobility matrix is not identical to the original
one, the eliminated variable is always labeled, therefore,
this concept does not satisfy the condition of no labeling.

APPENDIX A2: CHAIN RULE FOR
FUNCTIONAL DIFFERENTIATION

Mathematically speaking, the solution of the Euler-
Lagrange equations is invariant to the variable transfor-
mation Q = T[q], if the transformation T[.] is unam-
biguous, i.e., if the inverse transform T−1[.] also exists.

Proof. The Euler-Lagrange equations for the new vari-
ables read as:

δF

δQi
=

∂I

∂Qi
−∇ ∂I

∂∇Qi
= 0 , (41)
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where I denotes the full integrand of Eq. (2). The terms
on the right-hand side can be expanded as follows:

∂I

∂Qi
=
∑
j

∂I

∂qj

∂qj
∂Qi

+
∂I

∂∇qj
∂∇qj
∂Qi

(42)

∇ ∂I

∂∇Qi
= ∇

∑
j

∂I

∂qj

∂qj
∂∇Qi

+
∂I

∂∇qj
∂∇qj
∂∇Qi

 .(43)

Since qj = T−1
j (Q), ∂qj/∂∇Qi = 0. In addition, formally

∇qj =
∑
i
∂qj
∂Qj
∇Qi, therefore,

∂∇qj
∂∇Qi

=
∂qj
∂Qi

. Using these

together with Eqs. (42) and (43) in Eq. (41) yields

δF

δQi
=
∑
j

(
∂I

∂qj
−∇ ∂I

∂∇qj

)
∂qj
∂Qi

+

+
∑
j

∂I

∂∇qj

(
∂∇qj
∂Qi

−∇ ∂qj
∂Qi

) (44)

Finally, ∇qj =
∑
k
∂qj
∂Qk
∇Qk ⇒ ∂∇qj

∂Qi
=
∑
k

∂2qj
∂Qk∂Qi

∇Qk
and ∇ ∂qj

∂Qi
=
∑
k

∂2qj
∂Qi∂Qk

∇Qk, therefore, the second sum

on the right hand side of Eq. (44) vanishes. The final
result then reads as:

δF

δQi
=
∑
j

δF

δqj

∂qj
∂Qi

, (45)

i.e. the chain rule of differentiation also applies for the
functional derivative. Let now q∗(r) denote the solution
of δF/δq = 0. Apparently, the right hand side of Eq.
(45) vanishes at q∗(r). Formally q∗(r) = T−1[Q∗(r)],
indicating that Q∗(r) = T[q∗(r)], i.e. the solution in Q
is just the transformation of the solution in q. In other
words, the solution of the Euler-Lagrange equations is
invariant to the choice of the generalized variables.

APPENDIX B: NUMERICAL METHOD

The dynamic equations were solved numerically on a
periodic, two-dimensional domain by using an operator-
splitting based, quasi-spectral, semi-implicit time step-
ping scheme as follows. The dynamic equations can be
re-written in the form

∂u

∂t
= f(u,∇u) , (46)

where f(u,∇u) is the general, non-linear right-hand side.
During time stepping f(u,∇u) is calculated at time point
t, while ∂ui/∂t is approximated as

∂ui
∂t
≈ ut+∆t

i − uti
∆t

. (47)

Next, we add a suitably chosen linear term ŝ[ui] =∑∞
i=1(−1)isi∇2iui (where si ≥ 0) to both sides of Eq.

(46). We consider this term at t + ∆t at the left-hand
side, but at t on the right-hand side of the equation. This
concept, together with Eq. (47) results in the following,
explicit time stepping scheme in the spectrum:

ut+∆t
i (k) = uti(k) +

∆t

1 + si(k)∆t
F{fi[ut(r),∇ut(r)]} ,

(48)

where si(k) =
∑∞
j=1 s

(i)
j (k2)j , and F{.} stands for the

Fourier transform. The splitting constants {s(i)
j } must

be chosen so that Eq. (48) to be stable.
It is important to note that our numerical scheme is

unbounded, which means that the spatial solution ui(r, t)
can go under 0 or above 1 because of the numerical errors.
The construction of the free energy functional and the
modified Bollada-Jimack-Mullis mobility matrix, how-
ever, ensure that the system converges to equilibrium.
This means that no artificial modification of the solution
is needed after a time step, which could lead to instabil-
ities in the spectral method.
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