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G. Ehlers1, J. Sólyom2, Ö. Legeza2, R. M. Noack1

1 Fachbereich Physik, Philipps-Universität Marburg, 35032 Marburg, Germany
2 Strongly Correlated Systems “Lendület” Research group,
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We study the properties of the ground states of the one- and two-dimensional Hubbard models at
half-filling and moderate doping using entanglement-based measures, which we calculate numerically
using the momentum-space density matrix renormalization group (DMRG). In particular, we inves-
tigate quantities such as the single-site entropy and two-site mutual information of single-particle
momentum states as well as the behavior of the bipartite subsystem entropy for partitions in momen-
tum space. The distribution of these quantities in momentum space gives insight into the fundamen-
tal nature of the ground state, insight that can be used to make contact with weak-coupling-based
analytic approaches and to optimize numerical methods, the momentum-space DMRG in particular.
We study the site and subsystem entropies as a function of interaction strength U and system size.
In both the one- and two-dimensional cases, we find that the subsystem entropy scales proportion-
ally to U2 for weak U and proportionally to volume. Nevertheless, the optimized momentum-space
DMRG can provide variationally accurate results for the two-dimensional Hubbard model at weak
coupling for moderate system sizes.

PACS numbers: 71.10.Fd, 71.27.+a

I. INTRODUCTION

Simulating quantum systems on classical computers
is a major challenge in theoretical physics, a chal-
lenge that has been addressed by a number of recent
algorithmic developments [1, 2]. Such simulation is
particularly difficult when strong correlations, as re-
flected in a high level of entanglement, are present [3].
For one-dimensional systems, the matrix-product-state–
based (MPS–based) [4, 5] density matrix renormaliza-
tion group (DMRG) method [6] is the most effective
tool to calculate the properties of the ground and se-
lected excited states. In higher dimensions, the DMRG is
less efficient at representing the entanglement structure
of states due to its one-dimensional topology. Recent
developments have led to several alternative methods
that potentially overcome the limitations of the DMRG.
These include, tensor network states (TNS) [7], the
multi-scale entanglement renormalization (MERA) [8],
the projected entangled pair states (PEPS) [9], the tree-
tensor network state (TTNS) [10], quantum Monte Carlo
(QMC) [11–15], and the density matrix embedding the-
ory (DMET) [16, 17]. All such methods have advantages
and disadvantages; each of these methods has competi-
tive performance in particular circumstances. However,
there is no single method yet that can be applied effi-
ciently as a black-box tool to a general quantum lattice
problem. Therefore, despite substantial effort over many
years, accessible system sizes in more than one dimension
are still strongly limited.

For example, in two and higher dimensions, QMC is a
potentially very powerful method but it suffers from the
so-called fermion sign problem [13, 18, 19], which occurs
when fermionic systems and spin systems with frustra-
tion are treated. The domain of application of PEPS is

limited due to the expensive scaling of the computational
cost with bond dimension when highly entangled systems
are treated [9, 20]. In addition, when the infinite-system
version of PEPS, iPEPS, is used, the proper choice of
the size of the unit cell can significantly effect the fi-
nal solution [21]. Another promising method for simu-
lating two-dimensional systems is the DMET, a method
that is based on the numerically exact calculation of the
ground state (or other particular state) of a finite-size
cluster embedded to an environment via a density ma-
trix. The cluster calculation is typically carried out us-
ing exact diagonalization or the DMRG, whereas the de-
grees of freedom of the environment are approximated.
The accuracy therefore depends on the level of trunca-
tion of the environment degrees of freedom. Within the
DMRG, a two-dimensional system must be mapped to a
one-dimensional lattice topology due to the nature of the
MPS, which must then be optimized by sweeping through
the system in a “snake-like” manner [22]. Thus, local
interactions become nonlocal with respect to the MPS,
and an efficient representation of a locally entangled two-
dimensional state becomes impossible. An overview of re-
cent state-of-the-art results on the two-dimensional Hub-
bard model calculated using a variety of numerical algo-
rithms has been given in a recent review [2]. One in-
teresting conclusion is that, in spite of the limitations of
MPS–based methods for two-dimensional systems, com-
petitively accurate results have been obtained for two-
dimensional frustrated spin systems using the DMRG.
For example, for the Heisenberg model on the kagome
lattice, DMRG calculations yield results that have among
the best levels of variational accuracy [23, 24] and are in
excellent agreement with results from MERA [25] and
PEPS [26].

The amount of entanglement present when partition-
ing a system, however, is basis dependent [9, 27, 28].
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Therefore, a given problem could possibly be solved with
significantly less computational cost if an optimal rep-
resentation could be found [29, 30]. For example, the
DMRG treatment of a two-dimensional noninteracting
fermionic problem is exponentially difficult in real space
due to the high level of entanglement, whereas in a
momentum-space representation the solution is a simple
product state, which can be represented exactly with a
low-dimensional MPS [27]. For the case of non-vanishing
interactions, however, interactions that are local in a par-
ticular basis (typically real space) become nonlocal after
a change of basis, influencing the scaling behavior of en-
tanglement with system size dramatically. For systems
with sufficient locality, i.e., with hopping and interac-
tion terms that have a finite range within a lattice of a
particular dimensionality, the scaling of the entropy for
ground and certain low-lying excited states is thought to
obey the entropy area law [31]. Thus, such models with
short-range interactions can, generically, be simulated ef-
ficiently using tensor network state algorithms. When
locality is lost, the area law, in general, can break down,
making efficient treatment of the problem difficult [32].
Nevertheless, for small interaction strengths and for a
given error threshold, it is still potentially possible to
find a representation that is computationally more effi-
cient for particular system sizes. In addition, the weak-
coupling regime is often well approximated by analytical
approaches [33], providing connections between numeri-
cal and analytical results. Furthermore, geometrical as-
pects of a Hamiltonian in a particular representation can
have a more compact description in another representa-
tion; in particular, what is long range in real space tends
to be short range in momentum space and vice versa.

Motivated by the arguments above, here we study and
compare the real-space and momentum-space represen-
tations of the Hubbard model in one and two dimensions
from the point of view of quantum information entropies.
Although previous numerical studies of the Hubbard
model using the momentum-space DMRG method (k-
DMRG) date from as long as two decades ago [27, 34, 35],
these studies were severely limited in the number of block
states kept, worked with non-optimally ordered MPSs for
the two-dimensional system, and did not study the be-
havior of quantum-information-based quantities. There-
fore, a rigorous analysis of the scaling of the entanglement
entropy and other measures of quantum correlation as a
function of system sizes and interaction strengths could
not be carried out. In this paper, we reexamine the Hub-
bard model using the k-DMRG, presenting state-of-the-
art results using a modern MPS–based DMRG code that
optimizes the mapping of the lattice to an MPS and can
keep up to of the order of 50 000 block states for the
momentum-space Hubbard model. To study the intrin-
sic properties of the MPS representation, we carry out a
detailed analysis of entanglement scaling with system size
and interaction strength U in one and two dimensions.

Our study is also motivated by the fact that informa-
tion on the dimensionality and geometry of the lattice

as well as range of the hopping is encoded in the ki-
netic term, which is diagonal in momentum space. Thus,
the k-DMRG is less sensitive than the real-space repre-
sentation to changes in these aspects of the model, that
is, more complex cases that add computational cost in
real space could potentially be treated with little addi-
tional cost in momentum space; it is important to deter-
mine to what extent this is the case. Furthermore, the
momentum-space representation is intrinsically transla-
tionally invariant, so that finite-size corrections can be
treated by scaling systems with periodic and antiperi-
odic boundary conditions rather than the open bound-
ary conditions that must usually be used in real space.
Finally, using the k-DMRG the entanglement patterns of
the wave function can be analyzed with respect to mo-
mentum, allowing us to make connections between weak-
coupling analytic pictures [33] and numerical results. In
particular, we will be able to study the role of umklapp in
one dimension and the effect of perfect and non-perfect
nesting in two dimensions.

The paper is organized as follows. In Sec. II, we de-
scribe the model, define the quantum-information-based
quantities that we treat, and describe the numerical
methods. In Sec. III, we apply our approach to the
one- and two-dimensional Hubbard models in momen-
tum space. Finally, Sec. IV contains our conclusions.

II. MODEL AND METHODS

A. Hubbard model

The Hamiltonian of the Hubbard model in real space
has the form

H = −t
∑

〈r,r′〉,σ

(
c†rσcr′σ + H.c.

)
+ U

∑

r

nr↑nr↓ , (1)

where c†rσ and crσ creates and annihilates a particle
on site r with spin σ = {↓, ↑}, nrσ = c†rσcrσ mea-
sures the number of electrons on site r with spin σ,
and 〈r, r′〉 denotes a nearest-neighbor pair on sites r
and r′. The dimensionality and structure of the lattice
is contained in the the definition of the index r and in
the definition of the nearest neighbors. By carrying out
a change of basis using a Fourier transformation, i.e.,

ckσ = 1/
√
N
∑

r exp(ik · r) crσ, we obtain the corre-
sponding momentum-space Hamiltonian

H =
∑

kσ

ε(k)c†kσckσ +
U

N

∑

kpq

c†p−q↑c
†
k+q↓ck↓cp↑ , (2)

if periodic boundary conditions are applied, where c†kσ
and ckσ creates and annihilates a particle with momen-
tum k, with k a vector with the dimensionality of the
lattice, and N is the number of sites. In one dimen-
sion, k = k = (2πn)/N , with −N/2 < n ≤ N/2 and
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ε(k) = −2t cos(k). In two dimensions, k = (kx, ky) and
ε(k) = −2t cos(kx) − 2t cos(ky). Note that the k points
will be shifted by a half-interval if antiperiodic rather
than periodic boundary conditions are applied in a par-
ticular direction. Due to momentum conservation, the
total momentum before and after the scattering processes
given by the four-operator term is the same. The inter-
action strength U is given in units of t with t = 1.

In the remainder of the paper, we will use the ex-
pression “Hartree-Fock orbitals” to denote single-particle
orbitals, i.e., k points, that are filled for the noninter-
acting case, U = 0. These points will be within the
Fermi surface where the “Fermi surface” is defined by
the boundary in momentum space between occupied and
unoccupied points for U = 0. In one dimension, the
Fermi surface consists of two points, ±kF , and in two
dimensions, it forms a curve or set of curves in the kx-
ky plane in the infinite-system limit. Also note that we
measure distance in momentum space in units of the
unit vectors of the reciprocal space, that is, 2π/N for
the one-dimensional chain and 2π/Lx or 2π/Ly for the
two-dimensional square lattice of dimension Lx×Ly = N .
Use of terms such as “long range” or “short range” as ap-
plied to momentum space will refer to momentum-space
distances measured in these units. “Volume” in momen-
tum space will be shorthand for the number of discrete
momentum points in a momentum region or in the entire
lattice.

B. DMRG and entanglement-based measures

In the two-site DMRG, the full Hilbert space of a fi-
nite system consisting of N sites, Λ(N) = ⊗Ni=1Λi, is ap-
proximated by a tensor product of four tensor spaces,

Ξ
(N)
DMRG = Ξ(l) ⊗Λl+1 ⊗Λl+2 ⊗Ξ(r). The basis states of

Λi, the local-site (tensor) space, depend on the represen-
tation in which the Hamiltonian is formulated. The bases
of the Ξ(l) and Ξ(r) are formed through a series of unitary
transformations generated by singular value decomposi-
tions (SVD) applied repeatedly as the bipartite partition
of the system is moved back and forth through the lattice
(“sweeping”). Thus, their actual form depends on the de-
tails of the procedure [28, 36–39]. The nature and size of
the bases of Ξ(l) and Ξ(r) can be optimized using the con-
cepts of quantum information theory [40–42] i.e., by con-
trolling the level of entanglement [31, 43, 44] of the sub-
systems [9, 27, 28, 45–47]. Therefore, a given problem can
be solved with significantly less computational resources
if an optimal representation is found [29, 30, 47, 48].

The single-site von Neumann entropy, si = −Trρi ln ρi
is formed from the reduced density matrix ρi of the sub-
system consisting of the site i. Its value ranges from 0
to ln 4 for a fermionic site with spin, with larger values
corresponding to a more mixed state and a larger con-
tribution to the correlation energy. In fact, an exact ex-
pression for the local single-site entropy in the ground
state of the one-dimensional Hubbard model has also

been derived [49]. Similarly, the two-site von Neumann
entropy can be constructed using the reduced density
matrix of a subsystem built from orbitals i and j, ρij .
The mutual information Iij = si + sj − sij describes
how these two orbitals are correlated with each other
given that they are embedded in the whole system. It
includes contributions from correlations of both classical
and quantum nature [50]. The number of block states,
Ml = dim Ξ(l) and Mr = dim Ξ(r), required to achieve
a given convergence is determined by the von Neumann
entropy of segments of length l = 1 . . . N − 1 of the fi-
nite chain (“blocks”) [45, 46]. In practice, we fix the
accuracy threshold and vary the number of block states
Mmax = max (Ml,Mr) to maintain the threshold. The
l-site block entropy S(l) can be used to study critical and
gapped phases and is an easily accessed quantity numer-
ically, as the reduced density matrices ρl are generated
automatically within the DMRG procedure.

Ground states of lattice models with local interactions
are thought to obey the so-called entropy area law rela-
tively generically [31]. In one dimension, the block en-
tropy can be shown to saturate with block length for
gapped models and to diverge logarithmically for critical
systems [45]. In two dimensions, the entropy area law
still applies if interactions are short-range and all correla-
tion functions have finite correlation lengths [51]. When
nonlocal interactions are present, the arguments for the
applicability of the area law break down. In nonlocal
models, the profile of the block entropy has a more gen-
eral form that depends on several factors, as has been dis-
cussed for the Hubbard model in momentum space [27],
for the XXZ chain in momentum space [52], and for quan-
tum chemical systems [53]. The block entropy profile can
be optimized by minimizing the entanglement distance,
defined as

Idist =
∑

ij

Iijd
η , (3)

where the sum is weighted by the ηth moment of the
distance (η ≥ 1) [29, 47, 53], and the distance function
d depends on the tensor network topology [54]. In the
MPS–based DMRG, d = |i − j| refers to the distance
between sites within the MPS chain, and Eq. (3) can
be minimized by permuting the lattice sites, i.e., by re-
ordering [27, 47, 53]. In this way, both the sum of S(l)
over l = 1 . . . N − 1 and the maximum of S(l) over all
l, max[S(l)], can be reduced significantly. The sum is
related to the computational time of a full sweep, and
the maximum determines the maximum amount of com-
putational resources required for one DMRG step. By
changing a local hopping to a nonlocal hopping by per-
muting the ordering of lattice sites, one can interpolate
between a logarithmic- (area law) and a linear (volume
law) scaling [55], as has been demonstrated in a study of
the one-dimensional Hubbard model [32].

Another way of reducing Idist is to transform the single-
particle basis, choosing the transformation to optimize
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entanglement measures [27, 30, 48]. For example, for the
noninteracting (U = 0) Hubbard model, the Hamiltonian
is diagonal in the momentum-space representation, si =
0, Ii,j = 0, and the ground state is a product state; thus,
Idist and S(l) are zero. On the other hand, for finite
Coulomb interaction U , these quantities become finite
and, in the U → ∞ limit, si = ln 4, i.e., all sites are
in maximally mixed states. Therefore, the momentum-
space representation is expected to be useful in a regime
adiabatically connected to the free-particle case, typically
the weak-coupling regime.

Entanglement analysis is also a very powerful tool to
obtain physical information encoded in the wave func-
tion [29, 56–59]. Entanglement patterns by the two-site
mutual information provide information about the overall
correlations in the system, while the generalized correla-
tion functions used to form the two-site reduced density
matrix can be used to identify dominant correlations. For
more detailed discussions, see Refs. 47 and 59.

C. Momentum-space DMRG implementation

Some aspects of the usual DMRG algorithm must
be adapted to obtain an efficient implementation for
momentum-space Hamiltonians.

The main difficulty in implementing the momentum-
space DMRG comes from the fact that short-range in-
teraction terms such as that in the real-space Hub-
bard model, Eq. (1), become long-range in the momen-
tum basis. Naively implemented, the momentum-space
Hubbard model Hamiltonian requires the calculation of
O
(
N3
)

terms in order to apply the interaction part of
the Hamiltonian to the wave vector because of sum over
three momenta in Eq. (2). In an MPS formulation, the
matrix product operator (MPO) would have bond di-
mension M ∝ N3, resulting in unacceptable resource re-
quirements even for relatively small system sizes. This
problem can be ameliorated by factorizing the Hamilto-
nian and building partial sums over certain combinations
of operators within the left and right DMRG blocks, re-
sulting in an effective one-index sum and a computational
cost per diagonalization step of O (N). At the same time,
the required composed operators must be saved and up-
dated iteratively, resulting in additional memory cost of
O (N). While this technique was already described and
used in the first work on momentum-space DMRG [34],
here we have adapted this method to the MPS framework
and optimized it within this framework.

The factorization described above can only be car-
ried out for particular forms of the interaction of which
the Fourier-transformed on-site interaction is one. The
CPU time and memory costs for a single diagonalization
step can be reduced to O (N), compared to O

(
N2
)

for
other more general long-range Hamiltonians (e.g., those
for quantum chemistry) [60]. Certain extensions to the
Hubbard interaction, such as nearest- or next-nearest-
neighbor repulsion can also be factorized to obtain O (N)

terms, only affecting the prefactor but not the scaling in
the computational cost [34]. In contrast to the real-space
case, adding longer-range terms to the hopping in mo-
mentum space only affects the dispersion relation, which
enters the Hamiltonian as a diagonal term, and therefore
does not change the MPO bond dimension.

One significant advantage of working in the
momentum-space representation is the availability
of the additional momentum quantum numbers. Within
an MPS–based DMRG implementation, all contractions
of the tensor network can be reduced to a series of
matrix operations, principally multiplications. The
Abelian momentum quantum numbers can be used
to decompose all matrices to block form, where the
blocks are labeled by quantum number pairs. Carrying
out operations only using these blocks significantly
speeds up the algorithm and significantly lowers the
memory required. For the Hubbard model calculations
carried out here, we typically obtain very small dense
blocks with O (10×10) elements, which make up sparse
matrices with up to millions of blocks. This large
number of blocks makes it essential to carry out the
quantum-number bookkeeping as efficiently as possible
and to reduce additional overhead to a minimum. In our
code, we obtain very good results by using hash tables
to do the quantum-number bookkeeping.

At the same time, use of the momentum quantum num-
bers introduces convergence problems because the quan-
tum numbers of local states of two neighboring sites can,
in general, no longer be recombined to the same target
quantum number in more than one way. Due to this, the
algorithm tends to get stuck in local minima even if the
DMRG is implemented in the usual way with two sin-
gle sites in the center. (Such problems typically occur in
the variant of the DMRG where a single site is taken in
the center.) For example, a two-site k-DMRG calcula-
tion initialized with a product state will remain stuck in
that state throughout the entire calculation unless addi-
tional measures are taken. For the single-site real-space
DMRG algorithm, an effective solution to this problem
is to add a noise term to the density matrix [61]. Here,
we add such a noise term within the two-site algorithm
and find that the convergence problem is essentially elim-
inated, provided that the noise term is given appropriate
strength.

In our implementation, which exploits the additional
momentum quantum numbers and carries out an effi-
cient factorization of the interaction term, a compara-
tively large number of block states can be kept at rea-
sonable computational cost. We typically increase the
number of block states after every second full sweep by
4 000 states and keep a maximum of up to 54 000 states
during the last two sweeps. Running on 10 CPU cores
(Intel R© Xeon R© 5140), the calculation for a 6×6-site sys-
tem with a maximum of 54 000 states kept during the last
two sweeps takes roughly three days of wall-clock time
and uses 30 GB of main memory. We use two codes, one
sequential code based on a strongly modified version of
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the open-source ITensor library [62] and one parallelized
code based on a self-written tensor library.

In addition to these technical optimizations, choosing
appropriate boundary conditions for each calculation so
that a “closed-shell” configuration is obtained for the
Fermi sea can lower the maximum block entropy and
thus improve the DMRG convergence for a fixed number
of block states. The idea is to coordinate lattice size, fill-
ing, and boundary conditions so that the noninteracting
ground state is non degenerate. For example, consider
the noninteracting half-filled one-dimensional Hubbard
model in momentum space. For periodic boundary con-
ditions and system sizes N ∈ {2, 6, 10, 14, ..} the ground
state in momentum space is a unique product state,
while system sizes N ∈ {4, 8, 12, 16, ..} lead to a fourfold-
degenerate ground state. For antiperiodic boundary con-
ditions, the momentum-space sites are shifted, reversing
the situation. It is known that this behavior is preserved
in the exact Bethe ansatz solution for the interacting one-
dimensional system [63]. Although interaction tends to
wash out degeneracies in open-shell configurations, tak-
ing closed-shell configurations for weak to moderate cou-
pling strength is still very useful. For moderate cou-
pling strength, closed-shell configurations have a unique
Hartree-Fock ground state and thus have fewer energet-
ically low-lying excitations, leading to a less entangled
ground state. The system sizes, fillings, and boundary
conditions in the next section are selected accordingly.

III. RESULTS

In this section, we present our numerical results ob-
tained with the momentum-space DMRG on the half-
filled and doped Hubbard model in one and two dimen-
sions for finite systems. First, we analyze the entangle-
ment patterns in the ground-state wave function, identi-
fying relevant correlations by examining highly entangled
momenta points. Next, we calculate the wave-function
coefficients in full tensor form, which are an alternate way
of characterizing the wave function and can be connected
to the configuration-interaction (CI) expansion technique
used in quantum chemistry. Finally, we study the scaling
of entanglement, quantified by the von Neumann block
entropy, as a function of interaction strength and system
size.

A. Entanglement patterns and correlations

In order to investigate the entanglement structure and
optimize the site ordering within the MPS, we examine
the two-site mutual information Iij as well as the site
occupancy and single-site entropy for the one- and two-
dimensional Hubbard models.

We start with the half-filled one-dimensional case in
Fig. 1. Figure 1(a) is a (color) density plot of the Iij ma-
trix, with the row and column indices i and j referring to

the sites of the DMRG chain, while in Fig. 1(b) the same
correlations are plotted as lines between the correspond-
ing points in momentum space, where the momentum
points are arranged in the vertical direction according to
the dispersion relation ε(k). One can see that the pairs of
sites with the strongest correlations are the pairs which
are associated with the allowed scattering processes close
to the Fermi surface, as depicted in Fig. 2. Consequently,
the single-site entropy si [Fig. 1(d)] shows two peaks at
the Fermi points. Correspondingly, the site occupancy
[Fig. 1(c)] drops from close to 2.0 to almost 0.0 at the
Fermi points; the sharp drop is characteristic of the rela-
tively weak interaction strength U = 1.0. The strongest
bonds can be found between those pairs of sites with dis-
tance k1 − k2 = π in momentum space. Therefore, in
order to improve the DMRG convergence, sites with a
separation π in momentum space should be placed on
neighboring sites on the DMRG chain. In addition, pairs
close to the Fermi surface should be put in the center of
the DMRG chain. Automatic ordering of the sites, car-
ried out by minimizing the entanglement distance (3),
gives the optimal ordering shown in Table I, which cor-
responds quite well to these heuristic rules.

We now examine the doped one-dimensional system
[Fig. 3], taking an average particle number n = 0.727.
The entanglement structure is similar to that in the half-
filled case; the pairs of sites close to and symmetric rela-
tive to the Fermi points (now at somewhat smaller k)
show the strongest correlations [see Fig. 3(b)]. How-
ever, the pairs of momentum points analogous to those
which, in the half-filled case, are associated with back-
ward and umklapp scattering, g1 and g3, respectively,
are now significantly less correlated. This can be under-
stood by examining the effect of the shifting of the Fermi
points on the conservation of momentum. In the half-
filled case, the energetically lowest excitations relative to
the Hartree-Fock ground state |Ψ〉HF that have the same
total momentum are of four different types:

|Ψ〉A = c†±k2↓c
†
±k2↑c∓k1↑c∓k1↓ |Ψ〉HF , (4a)

|Ψ〉B = c†k2σc
†
−k2σ̄ck1σc−k1σ̄ |Ψ〉HF , (4b)

|Ψ〉C = c†k2σc
†
−k2σ̄ck1σ̄c−k1σ |Ψ〉HF , (4c)

and

|Ψ〉D = c†k2σc
†
−k2σck1σc−k1σ |Ψ〉HF , (4d)

with k1 = kF − δk, k2 = kF + δk, δk = π/N , and
σ ∈ {↑, ↓}. In the doped case, states of type A no longer
have the same momentum as |Ψ〉HF because kF 6= π/2.
Thus, they cannot be in the space of the ground state.
Without these excitations, two-particle umklapp pro-
cesses symmetric to the Fermi surface are no longer pos-
sible; this also holds for higher excitations. In terms of
equal-time correlations, the number of excitations that
make up the interacting ground state and can contribute
to the correlations drops, consequently lowering the two-
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FIG. 1. (Color online) Ground state of the N = 22-site Hubbard model in momentum space (with periodic boundary
conditions) for U = 1.0 at half-filling. (a) Two-site mutual information Ii,j between MPS sites i and j for the optimal site
ordering (Table I). (b) Two-site mutual information Ii,j between momentum points k, where the k points are arranged according
to the dispersion relation. The blue (gray) dashed line indicates the Fermi level. (c) Site occupancy dtot. (d) Single-site entropy
si.
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FIG. 2. Scattering processes near the Fermi surface in the
half-filled system where g1 is backward scattering, g2 and g4
forward scattering, and g3 umklapp scattering.

site mutual information between these sites.

In matrix form for optimal ordering, Iij [Fig. 3(a)]
is somewhat less diagonal-dominated than at half-filling,
but the strongly off-diagonal elements have comparable
or smaller values than the half-filled case. Note that
although the Fermi edge is quite sharp [Fig. 3(c)] the
peaks in the single-site entropy si [Fig. 3(d)] are some-
what washed out relative to the half-filled case, reflect-
ing the reduced entanglement of momenta near the Fermi
points.

We now proceed to the entanglement patterns in the
two-dimensional Hubbard model. Many characteristics
observed in the one-dimensional model can be found in
generalized form in the two-dimensional case. At half-
filling, we consider points kF and k̃F that lie on opposite
sides of the Fermi surface, i.e., that fulfill the nesting
condition kF = k̃F + (π, π). Pairs of lattice sites directly
above and below such opposing locations on the Fermi
surface also fulfill the nesting condition and allow for en-
ergetically favorable processes that are generalizations of

n=1.0 n=0.727
i k ε(k) k ε(k)
1 9 1.683 10 1.819
2 20 -1.683 13 1.819
3 8 1.31 14 1.511
4 19 -1.31 9 1.511
5 7 0.831 8 1.081
6 18 -0.831 15 1.081
7 17 -0.285 1 -1.98
8 6 0.285 0 -1.98
9 16 0.285 2 -1.819
10 5 -0.285 21 -1.819
11 15 0.831 4 -1.081
12 4 -0.831 18 -0.564
13 14 1.31 5 -0.564
14 3 -1.31 19 -1.081
15 13 1.683 20 -1.511
16 2 -1.683 3 -1.511
17 10 1.919 17 0.0
18 21 -1.919 6 0.0
19 1 -1.919 7 0.564
20 12 1.919 16 0.564
21 11 2.0 11 1.98
22 0 -2.0 12 1.98

TABLE I. Mapping between MPS-site indices i and
momentum-space site indices k for the optimal ordering of the
of the 22-site system depicted in Figs. 1 and 3, with momen-
tum points k = k 2π

22
for half-filling n = 1.0 and shifted mo-

mentum points k = (k + 0.5) 2π
22

for the doped case n = 0.727.

umklapp processes in the one-dimensional system. As
can be seen in Figs. 4(a) and (b), such pairs of points
have particularly large values of Iij , with the largest oc-
curring for pairs of points near the corners of the Fermi
surface, i.e., the pairs k = (±δkx, π) and k̃ = (π±δkx, 0),
with δkx = π/Lx. Note that there is asymmetry in the
kx–ky plane due to the mixed boundary conditions (peri-
odic in y and antiperiodic in x). The single-site entropy
[Fig. 4(d)] reflects this structure in that the largest val-
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FIG. 3. (Color online) Ground state of the doped N = 22-site Hubbard model in momentum space (with antiperiodic boundary
conditions) for U = 1.0 at average occupancy n = 0.727. (a) Two-site mutual information Ii,j between MPS sites i and j for
the optimal site ordering (Table I). (b) Two-site mutual information Ii,j between momentum points k, where the k points are
arranged according to the dispersion relation. The (blue) dashed line indicates the Fermi level. (c) Site occupancy dtot. (d)
Single-site entropy si.
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FIG. 4. (Color online) Ground state of the 6×6 Hubbard model in momentum space (antiperiodic / periodic boundary
conditions in x- / y-direction) for U = 2.0 at half-filling: (a) two-site mutual information Ii,j between MPS sites i and j for the
optimal site ordering (Table II). (b) two-site mutual information Ii,j between momentum points (kx, ky). The (blue) dashed
line indicates the Fermi surface. (c) Site occupancy dtot. (d) Single-site entropy si.
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FIG. 5. (Color online) Ground state of the doped 6×6 Hubbard model in momentum space (periodic boundary conditions
in both directions) for U = 2.0 at n = 0.722 filling: (a) two-site mutual information Ii,j between MPS sites i and j for the
optimal site ordering (Table II). (b) two-site mutual information Ii,j between momentum points (kx, ky). The (blue) dashed
curve indicates the Fermi surface. (c) Site occupancy dtot. (d) Single-site entropy si.
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n=1.0 n=0.722
i kx ky ε(k) kx ky ε(k)
1 2 3 3.732 3 2 3.0
2 5 0 -3.732 3 4 3.0
3 3 3 3.732 2 3 3.0
4 0 0 -3.732 4 3 3.0
5 2 2 2.732 0 0 -4.0
6 5 5 -2.732 5 5 -2.0
7 1 2 1.0 2 1 0.0
8 4 5 -1.0 4 5 0.0
9 4 4 1.0 2 5 0.0
10 1 1 -1.0 4 1 0.0
11 4 2 1.0 3 0 0.0
12 1 5 -1.0 0 2 -1.0
13 1 4 1.0 0 4 -1.0
14 4 1 -1.0 0 3 0.0
15 3 1 0.732 2 0 -1.0
16 0 4 -0.732 4 0 -1.0
17 5 4 -0.732 1 2 0.0
18 2 1 0.732 5 4 0.0
19 2 0 -0.268 5 2 0.0
20 5 3 0.268 1 4 0.0
21 3 0 -0.268 1 1 -2.0
22 0 3 0.268 5 1 -2.0
23 2 5 0.732 1 5 -2.0
24 5 2 -0.732 1 0 -3.0
25 3 5 0.732 5 3 1.0
26 0 2 -0.732 5 0 -3.0
27 4 0 -2.0 1 3 1.0
28 1 3 2.0 0 1 -3.0
29 4 3 2.0 0 5 -3.0
30 1 0 -2.0 3 1 1.0
31 3 2 2.732 3 5 1.0
32 0 5 -2.732 4 2 2.0
33 2 4 2.732 2 4 2.0
34 5 1 -2.732 4 4 2.0
35 3 4 2.732 2 2 2.0
36 0 1 -2.732 3 3 4.0

TABLE II. Mapping between and MPS-site indices i and
momentum-space site indices { kx , ky } for the optimal order-
ing of the 6×6 system depicted in Figs. 4 and 5, with momen-
tum points ( kx , ky ) =

(
(kx + 0.5) 2π

6
, ky

2π
6

)
for half-filling

n = 1.0 and ( kx , ky ) =
(

kx
2π
6
, ky

2π
6

)
for the doped case,

n = 0.722.

ues occur at the k = (±π, 0) and k = (0,±π) corners of
the Brillouin zone. As can be seen in Fig. 4(a), Iij has a
fairly diagonal structure for the optimal ordering, except
for a relatively limited region in the middle of the MPS
site ordering. However, this region is quite important
for the convergence in that the DMRG steps with a high
number of states kept will be required in this region.

Doping the two-dimensional system deforms the Fermi
surface and destroys its perfect nesting, as is depicted
in Fig. 5(b). The sites that correspond to those that
showed the strongest correlations in the half-filled case
are now less correlated. Similarly to the one-dimensional
case, reordering the MPS sites can significantly reduce
the entanglement in the system, but a “perfect” ordering
is again not possible because of loops in the entangle-

ment structure, which can be seen in Figs. 4(b) and 5(b).
The site occupancy [Fig. 5(c)] shows a sharp jump at the
Fermi surface, and the single-site entropy [Fig. 5(c)] a
relatively broad peak, with the highest values occurring
at the corners of the Fermi surface, in the (kx, 0) and
(0, ky) directions.

The mappings between MPS sites i and momentum
points k /k for optimal ordering for the one-dimensional
systems depicted in Figs. 1 and 3 are listed in Table I, and
the two-dimensional systems depicted in Figs. 4 and 5 in
Table II. In the matrix plots of Iij [Figs. 1(a), 3(a), 4(a),
and 5(a)], the first minor diagonals correspond to the
correlation between neighboring sites, the second minor
diagonals to correlations between next-nearest neighbors,
etc. Therefore, the task of optimizing the MPS ordering
can be graphically interpreted as permuting the columns
and rows of Iij symmetrically with the purpose of arrang-
ing its entries in descending order from the main diagonal
Iii towards the outer edges I1N and IN1.

The decay rate of the elements of Iij , provides im-
portant information about the correlations in the sys-
tem [59]. This decay is depicted on a logarithmic scale in
descending order for the 6×6 Hubbard model in Fig. 6,
for both the half-filled and doped systems at two differ-
ent U values. As can be seen, there are plateaus with
jumps and changes in slope in all four curves. Adopting
the terminology of quantum chemistry, the small number
of components with large Iij values are associated with
the so-called static correlations, while the large number
of elements with small weight correspond to dynamic cor-
relations. As the interaction strength U is increased, the
curves shift upward for both the half-filled and doped
cases, indicating an increased level of entanglement. For
the doped case, the static correlations are significantly
smaller than for the half-filled case. This is due to the ab-
sence of the umklapp processes in the doped case. Thus,
we expect that the doped case can be studied more effi-
ciently in momentum-space representation than the half-
filled case. Note that in real space the opposite holds.

We have also calculated the correlation patterns and
the decay of the two-site mutual information for the 6×6
lattice at interaction strength U = 4.0. While the results
do not reveal qualitatively new behavior, the DMRG con-
vergence becomes critical due to the increased overall en-
tanglement in the system. Compared to U = 2.0, the cor-
relations between sites that fulfill the nesting condition
in the half-filled case become even more dominant.

B. Wave-function coefficients

The wave-function coefficients Ψ(σ1, .., σN )
in the full tensor representation Ψ =∑
{σ1,..,σN} Ψ(σ1, .., σN )|σ1, .., σN 〉 can also be cal-

culated from the DMRG wave function within the MPS
formalism. The squares of the coefficients Ψ(σ1, .., σN )
of the ground state of the half-filled 4×4 Hubbard model
in momentum space are shown in Fig. 7(b) for different
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FIG. 6. (Color online) Two-site mutual information Ii,j for
the ground state of the 6×6 Hubbard model in momentum
space for different U values and different fillings n. The values
are sorted in descending order. We include only unique entries
of Ii,j , i.e., take i>j.

values of U . The increased level of entanglement is
reflected by the increase in the weight of the wave
function coefficients, a behavior similar to that seen for
the decay of Iij in Fig. 6.

In order to make contact with the CI-expansion tech-
nique used in quantum chemistry, the number of excita-
tions from the Hartree-Fock state (CI = 0) in the corre-
sponding basis states |σ1, .., σN 〉 for U = 2.0 are shown in
Fig. 7(a). The single CI (CI = 1) and the second highest
(CI = N − 1) excitation are forbidden due to momen-
tum conservation. The most important excitations are
the double, triple, and quadruple CI determinants, but
higher CI excitations also provide significant contribu-
tions. For small U values, these excitations are reflected
in the behavior of the square of the coefficients of the
wave function in that there are plateaus with jumps. The
first few plateaus come mainly from the lower-order CI
excitations. This structure becomes smoother for larger
interaction strength and completely disappears for large
U values. The decay of the coefficients with coefficient in-
dex also becomes increasingly longer range with increas-
ing U . Therefore, a truncated CI expansion would not
converge sufficiently rapidly in the level of excitation in
the momentum-space representation due to strong cor-
relations in the system, except possibly at very small U
values.

C. Block entropy and entanglement scaling

After studying the entanglement patterns and correla-
tions for particular finite-sized systems, we now analyze
the scaling of the entanglement as a function of interac-
tion strength and system size. We begin by examining
the behavior of lattice-site-dependent quantities at op-
timal ordering (i.e., as a function of the DMRG index
i) for the two-dimensional system, for which the behav-
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FIG. 7. (Color online) (a) Number of excitations from the
Hartree-Fock state in the basis states |σ1, .., σN 〉 for U = 2.0.
(b) Square of the coefficients Ψ(σ1, .., σN ) of the ground state
of the 4×4 Hubbard model in momentum space at half-filling
for different values of U . The data in (a) and (b) is sorted by
the value of |Ψ(σ1, .., σN )|2 in descending order.

ior is not known and is particularly interesting in view
of the nontrivial mapping of the two-dimensional mo-
mentum lattice to MPS sites. In Fig. 8, we display the

normalized block entropy S̃(l) ≡ S(l)/max[S(l)] and the
similarly rescaled single-site entropy s̃i ≡ si/max[S(l)] of
the ground state of the half-filled 6×6 Hubbard model in
momentum space for small values of U . As can be seen,
the rescaled profiles of both quantities fall onto a sin-
gle curve to a good approximation, although the actual
values of both the block and the site entropies change
significantly.

To understand the scaling behavior, we consider the
subadditivity of the entropy [64], i.e., the change in the
block entropy in each full step of the DMRG, in which an
enlarged block with l+1 sites is formed from a block with
l sites and the (l+ 1)th site [65]. This entropy reduction
is due to the correlations between the block and the site
and is given by the mutual information

I(l) = S(l) + sl+1 − S(l + 1) . (5)

In the DMRG, the set of block states is chosen by tak-
ing the eigenstates of the reduced density matrix with
the largest eigenvalues. It can be shown that this opera-
tion can be implemented as a LOCC (local operation and
classical communication) so that it cannot lead to an in-
crease in entanglement. With no truncation, it holds that
Itot ≡

∑
l I(l) for a full sweep is equal to the sum of the

single-site entropies,
∑
i si. Thus, Itot quantifies the to-

tal quantum information encoded in the wave function.
Therefore, the scaling of the site entropy as a function
of U and system size also determines the scaling of the
block entropy. We will come back to the detailed scal-
ing for weak U once we have investigated the system-size
and U dependence of the maximum of the block entropy,
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FIG. 8. (Color online) Normalized block entropy S̃(l) (upper
curves) and single-site entropy s̃i (lower curves) of the ground
state of the 6×6 Hubbard model in momentum space for small
values of U at half-filling.

max[S(l)].

Next, we examine the large-U behavior of the single-
site and block entropies, depicted in Fig. 9. In this case,
not only the amplitude but also the shape of the pro-
files changes; thus, we do not rescale the data. As can
be seen, above a critical value of U , some of the site en-
tropies reach the maximum value of ln 4, and the site
entropy profile starts to broaden. (In the U → ∞ limit,
all sites will have si = ln 4.) Since the growth of the
block entropy per site is bounded by the single-site en-
tropy due to Eq. (5), the block entropy profile and its
maximum must also saturate. Furthermore, in the half-
filled case for these larger-U values, zig-zag peaks appear
superimposed upon the profile. These peaks correspond
to those bipartite partitions of the system that cut the
system between two sites that fulfill the nesting condition
(which are the strongest correlated sites, as reflected in
Iij). Therefore, the peaks are related to the zig-zag pat-
tern seen in the first minor diagonals of Iij in Fig. 4(a).

We now turn to the effect of doping. In Fig. 10, we
display a comparison of block entropy profiles for the
half-filled and doped system for weak and intermediate
coupling strength. At U = 1, the profiles are similar,
with no additional structures present. At U = 4, it is ev-
ident that the additional oscillating structures are only
present at half-filling. This is due to the fact that the
perfect nesting of the Fermi surface is destroyed in the
doped system, so that the corresponding bonds are less
entangled, as discussed before, and no additional peaks
develop. Note that for each parameter set, the block
entropy is calculated for the corresponding optimal or-
dering and thus the MPS site indices i do not correspond
to the same k points.

We now analyze the entanglement scaling as a func-
tion of system size N , starting with the one-dimensional
model and then moving to the two-dimensional case. In
both cases, the data points in the figures refer to the max-
imum of the block entropy taken from the last half sweep
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FIG. 9. (Color online) Block entropy S(l) (a) and single-site
entropy si (b) of the ground state of the 4×4 Hubbard model
in momentum space for large values of U at half-filling.
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FIG. 10. (Color online) Block entropy profiles S(l) of the
6×6 Hubbard model in momentum space for weak coupling
U/t = 1.0 and intermediate coupling U/t = 4.0 for the half-
filled n = 1.0 and doped n = 0.722 case. Every profile is
calculated using the optimal ordering for the particular set of
parameters U , n.

of each calculation, while the error bars are given by the
difference between these values and the zero-truncation
extrapolated values. (The extrapolated values are ob-
tained by repeatedly measuring the maximum of the
block entropy during the sweeping process while simul-
taneously increasing the number of block states kept and
thus lowering the truncation error.) This procedure for
error estimation generally tends to overestimate the ac-
tual error. Figure 11 depicts the maximum of the block
entropy, max[S(l)], for the half-filled, n = 1.0, and for
the doped, n = 0.75, one-dimensional Hubbard model as
a function of the number of sites N for various values of
U . The dashed lines, which are linear fits to the data,
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FIG. 11. (Color online) Maximum of the block entropy,
max[S(l)], as a function of the system volume N for differ-
ent values of U for the one-dimensional Hubbard model in
momentum space at half-filling and at three-eighths filling,
n = 0.75. The dashed lines are linear fits to the data.

show that the maximum of the block entropy scales with
the volume of the system. This scaling with volume for
a wide range of U values clearly shows that the entropy
area law does not hold for this case. Interestingly, in mo-
mentum space, the block entropy is appreciably smaller
for the doped system than for the half-filled system of
the same size and interaction strength. Consequently,
the doped system is easier to treat computationally than
the half-filled system, in contrast to real space, in which
the doped case is generally harder to treat numerically.

For the two-dimensional system, Fig. 12 depicts the
scaling of the maximum of the block entropy with system
size for different values of U for the half-filled, n = 1.0,
and for the doped, n ≈ 0.75, systems. The dashed lines
are linear fits to the data for the half-filled system, indi-
cating almost perfect scaling with the system size. For
the doped case, the block entropy for a particular value
of U is again noticeably smaller than for the half-filled
system. As we have seen earlier in the entropy profiles,
this effect becomes stronger for larger values of U . Note
that for the 4×4 system, the nesting of the Fermi surface
is not destroyed in the doped case; therefore, the block
entropies for the half-filled and doped cases do not differ
much.

Regarding the question of the origin of the volume scal-
ing of the maximum block entropy, we argue as follows:
Within the momentum-space picture, what is important
is how strongly a given region in momentum space is
correlated with other regions, especially regions that cor-
respond to DMRG blocks at optimal site ordering. As
the system size is increased, the density of the k points
in each region of momentum space increases linearly with
system size, ultimately leading to a linear increase in the
total correlation. Furthermore, the correlation patterns
in momentum space depicted in Figs. 1(b), 3(b), 4(b),
and 5(b) show that strong correlations occur between re-
gions close to each other as well as widely separated from
each other. In particular, correlation bonds of compara-
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FIG. 12. (Color online) Maximum of the block entropy,
max[S(l)], as a function of the system volume N = LxLy for
different values of U for the two dimensional Hubbard model
in momentum space at half-filling and near n = 0.75 filling
(n = 0.75 for 4×4, n = 0.722 for 6×6, n = 0.75 for 8×8,
n = 0.74 for 10×10). The dashed lines are linear fits to the
data at half-filling.

ble strength form loops, which cannot be disentangled
globally when the momentum-space lattice is mapped
onto the sites of the MPS. Thus, even for optimal site or-
dering, regions of sites separated by a macroscopic num-
ber of sites in the MPS lattice, i.e, a separation of up to
an appreciable fraction of the system size, will still be cor-
related with one another. The growth of the total corre-
lation with the site density, in combination with the fact
that the corrections are long range in the MPS, finally
leads to a linear scaling of the block entropy S(l) with sys-
tem size for all decompositions and to volume-law scaling
of the maximum block entropy. The linear growth of the
total correlation with subsystem size is also reflected in
the approximately triangular-shaped block entropy pro-
files in Figs. 8 and 10. Note that reordering the system in
an optimal way is still crucial in order to obtain good con-
vergence, even though it cannot avoid the volume scaling
of the entropy in the momentum-space Hubbard model.

Having established the volume scaling of the block en-
tropy, we finally investigate the U dependence of the
volume-scaled maximum block entropy, taking the half-
filled case. We divide out the volume scaling in max[S(l)]
by taking max[S(l)]/N so that we can compare the be-
havior for different system sizes. We start with the one-
dimensional case, depicted in Fig. 13. For U → 0, the
block entropy must vanish because the noninteracting
ground state is a product state in momentum space. For
weak coupling, the maximum block entropy scales with
U2, as can be seen in the inset, where a fit to U2 is shown.
For large U , the maximum of the block entropy saturates
for a given system size, but the upper limit seems to be
significantly smaller than its theoretical limit of ln 2. Fur-
thermore, while the curves for different system sizes fall
on top of each other (as expected given a volume law
for the system size scaling) for small U , for large U the
limiting value decreases somewhat with system size, in-
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FIG. 13. (Color online) Maximum of the block entropy
S(l) per site as a function of U calculated exactly for the
N = 6, 10, 14 site Hubbard model in momentum space at
half-filling. The inset shows a quadratic fit (gray line) for
0 ≤ U ≤ 1 and N = 14.
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FIG. 14. Maximum of the block entropy S(l) per site
as a function of U calculated exactly for the 4×4 Hubbard
model in momentum space at half-filling. The inset shows a
quadratic fit (gray line) for 0 ≤ U ≤ 1.

dicating a sub-linear scaling. However, only relatively
small system sizes are accessible in the large-U limit, so
that a definitive analysis of this effect cannot be carried
out.

For the two-dimensional case, an analysis for the com-
plete range of U values can only be carried out for the
exactly treatable 4×4 system. For this system, the be-
havior of the maximum block entropy as a function of
U , shown in Fig. 14, is similar to that in one dimension,
with quadratic scaling in U in the weak-coupling regime
and saturation of the maximum of the block entropy in
the strong-coupling limit. We have previously shown that
the block entropy S(l) and the single-site entropy si show
the same scaling behavior as a function of U for all l or
i, respectively. Therefore, S(l) and si also scale quadrat-
ically with U at weak coupling. Note that the saturation
value for large U is actually significantly smaller in the
two-dimensional case than in the one-dimensional case.

IV. DISCUSSION AND CONCLUSION

In this paper, we have applied an efficient, optimized
version of the momentum-space DMRG to the Hubbard
model in one and two dimensions. The effectiveness of
our method has allowed us to carry out an extensive
study of the entanglement structure for both the one-
dimensional and two-dimensional models at half-filling
and at moderate doping. In particular, we have exam-
ined a number of quantum-information-based measures
in order to understand the entanglement and pair-wise
correlation of sites in the single-particle momentum ba-
sis.

By analyzing the correlations between individual sites
in terms of the two-site mutual information, we have been
able to determine what type of excitations of the nonin-
teracting system are most important within the inter-
acting ground state. For the one-dimensional half-filled
system, we have found that the strongest correlations are
between pairs of sites that are close to the Fermi points
but are separated by π in momentum space. Excitations
over these sites, due to their relative positioning in mo-
mentum space, are energetically favorable and have a mo-
mentum transfer of 2π, which is necessary for umklapp
scattering processes. In the doped case, the pairs of sites
close to the now shifted Fermi points are no longer sep-
arated by π, and therefore umklapp scattering and the
corresponding excitations are forbidden by momentum
conservation. With fewer favorable excitations allowed
in the ground-state space, the correlations drop signifi-
cantly, leading to lower block entanglement for the cor-
responding bipartite decompositions of the system. For
the two-dimensional system, the perfect nesting of the
Fermi surface in the half-filled case is responsible for an
analogous effect. Pairs of sites near the Fermi surface
that are separated in the k plane by (π, π) thus allow
for a larger number of energetically low-lying excitations.
When the system is doped, the deformation of the Fermi
surface destroys the nesting and truncates the number of
energetically favorable excitations allowed in the ground-
state space. Apart from these observations, we have used
the results directly to obtain an optimal ordering of mo-
mentum sites within the MPS chain for each situation in
order to significantly improve the DMRG convergence.

In a second step, we have investigated the behavior
of the von Neumann entropies, in particular, the single-
site entropy and the subsystem entropy of the DMRG
blocks. The most important indicator for the computa-
tional costs and convergence of the DMRG is the scaling
of the maximum of the block entropy, which we have an-
alyzed as a function of the system volume and coupling
strength. For the half-filled and doped systems we have
found that the maximum block entropy scales propor-
tionally to the number of sites. We understand this from
the two-site mutual information measurements, which in-
dicate that there is an increase in total correlation be-
tween regions in momentum space proportional to the
density of momentum points and that the correlations in
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our system are long range in the MPS structure in spite
of the optimization of the site ordering. The combina-
tion of these two effects leads to volume-law scaling of
the block entropy.

Once the volume dependence is factored out, we obtain
almost universal curves for the maximum of the block en-
tropy per site for both the one- and two-dimensional Hub-
bard models, at least at half-filling. These curves must go
to zero at zero interaction and increase with the square
of the interaction strength for weak coupling, retaining a
perfect volume scaling. The presence of volume scaling
of the entropy at arbitrary weak interaction is a distinct
indication of the fundamental limitations of perturbative
approaches for the Hubbard model in one and two dimen-
sions. For strong coupling, the maximum entropy per site
saturates, with a boundary value lying clearly below its
theoretical limit and with a volume scaling that seems
to be slightly sublinear, at least in the one-dimensional,
half-filled case. We find this result somewhat surprising
and slightly less unfavorable than naively expected, even
though, admittedly, the high value of the maximum en-
tropy per site and the approximate volume law preclude
any well-controlled MPS–based approaches.

Despite these limitations, the momentum-space
DMRG also has some interesting favorable properties.
While the convergence of the real-space DMRG becomes
worse for doped systems, we have found that, in momen-
tum space, the block entanglement decreases and the con-
vergence improves upon doping. In addition, our highly
optimized and parallelized code has enabled us to keep
a comparably large number of block states at reasonable

computational cost, a number of states that is typically
significantly larger than a comparably optimized real-
space DMRG code for similar system size and param-
eters. Since the coefficient of the volume scaling can be
made arbitrarily small at weak interaction, the k-DMRG
could nevertheless yield variationally competitive results,
at least relative to the real-space DMRG, for particular
moderate system sizes at sufficiently weak interaction.

One possibility to overcome the main problems of
momentum-space DMRG while keeping some of its ad-
vantages is to use a hybrid real- and momentum-space
representation, i.e., take a momentum basis in the trans-
verse direction and a real-space basis in the other direc-
tion. In this way, the translational invariance and good
momentum quantum numbers are preserved in the trans-
verse direction, but the volume-law entanglement due to
long-range interactions the in the longitudinal direction
can be avoided.
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[33] J. Sólyom, Fundamentals of the Physics of Solids
(Springer, Heidelberg, 2010), Vol. 3.

[34] T. Xiang, Phys. Rev. B 53, R10445(R) (1996).
[35] S. Nishimoto, E. Jeckelmann, F. Gebhard, and R. M.

Noack, Phys. Rev. B 65, 165114 (2002).
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[53] G. Barcza, Ö. Legeza, K. H. Marti, and M. Reiher, Phys.
Rev. A 83, 012508 (2011).

[54] V. Murg, F. Verstraete, R. Schneider, P. R. Nagy, and
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